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Abstract: Medical image segmentation plays a crucial role in clinical diagnosis, treatment planning,
and disease monitoring. The automatic segmentation method based on deep learning has devel-
oped rapidly, with segmentation results comparable to clinical experts for large objects, but the
segmentation accuracy for small objects is still unsatisfactory. Current segmentation methods based
on deep learning find it difficult to extract multiple scale features of medical images, leading to an
insufficient detection capability for smaller objects. In this paper, we propose a context feature fusion
and attention mechanism based network for small target segmentation in medical images called
CFANet. CFANet is based on U-Net structure, including the encoder and the decoder, and incorpo-
rates two key modules, context feature fusion (CFF) and effective channel spatial attention (ECSA),
in order to improve segmentation performance. The CFF module utilizes contextual information
from different scales to enhance the representation of small targets. By fusing multi-scale features,
the network captures local and global contextual cues, which are critical for accurate segmentation.
The ECSA module further enhances the network’s ability to capture long-range dependencies by
incorporating attention mechanisms at the spatial and channel levels, which allows the network
to focus on information-rich regions while suppressing irrelevant or noisy features. Extensive ex-
periments are conducted on four challenging medical image datasets, namely ADAM, LUNA16,
Thoracic OAR, and WORD. Experimental results show that CFANet outperforms state-of-the-art
methods in terms of segmentation accuracy and robustness. The proposed method achieves excellent
performance in segmenting small targets in medical images, demonstrating its potential in various
clinical applications.

Keywords: medical image segmentation; convolution neural network; context feature fusion;
attention mechanism

1. Introduction

Medical image segmentation is a fundamental task in medical image analysis and
plays an important role in clinical diagnosis, treatment planning, and disease monitoring.
Traditional medical image segmentation methods involve manual annotation by experi-
enced radiologists or physicians, which is time-consuming and prone to inter-observer
variation [1]. As a result, there is a growing need for automated and accurate medical
image segmentation algorithms.

In recent years, deep learning-based methods have achieved remarkable success in
various medical image segmentation tasks [2–8]. However, the segmentation results for
larger organs can reach the level of clinical experts, but the results for small targets are not
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high enough. In clinical medicine, there is a demand for the accurate segmentation of small
targets (such as tumors, blood vessels, cells, etc.) to support medical image analysis and
disease diagnosis.

Taking intracranial aneurysm segmentation as an example, intracranial aneurysms are
aneurysmal protrusions formed due to the disruption of the intracranial arterial blood ves-
sel wall or local congenital defects resulting in abnormal enlargement of the local internal
lumen, and ruptured intracranial aneurysms carry a high risk of death or permanent disabil-
ity. In clinical practice, the segmentation of the early shape of intracranial aneurysms is very
important. Figure 1 demonstrates the difficulties in segmenting intracranial aneurysms:

(1) Sparse sample: Due to the small size of intracranial aneurysms, the target region is
only present in a few CT or MRI slices of each case, with the majority (90%) of slices
not containing the target. As a consequence, the 2D slice dataset has a limited sample
size, presenting a significant challenge for the segmentation algorithm.

(2) Small target: Intracranial aneurysms are characterized by their small size, occupying
only a limited area in a single slice. Consequently, the number of pixels represent-
ing the target region is relatively small compared to the entire image. This inherent
challenge lies in accurately segmenting intracranial aneurysms on a single slice. Con-
ventional U-shaped segmentation networks often struggle to detect smaller objects
effectively, and existing methods primarily focus on segmenting larger targets, lacking
optimization for the detection and precise segmentation of small targets.

(3) Complex background: Small targets within an image present a notable challenge
as they can be easily overshadowed by the surrounding environment, leading to
potential inaccuracies in segmentation. The complexity of the background further
exacerbates this issue, rendering many existing segmentation models susceptible to
imprecise segmentation results.

(a) (b)

Figure 1. Demonstration of the difficulty of small target segmentation for intracranial aneurysms.
(a) An example of a 3D display of a patient’s brain MRI image, highlighting an intracranial aneurysm
in blue, which makes up only about 5% of all brain slices. (b) An example of a 2D presentation of a
patient’s brain slice image, highlighting an intracranial aneurysm in red, which makes up less than
1% of all the entire image.

To solve the above problems, we propose a context feature fusion and attention-
mechanism-based network for small target segmentation called CFANet. Two key modules,
including context feature fusion (CFF) and effective channel spatial attention (ECSA), are
proposed to improve the segmentation performance based on the encoder and the decoder
framework. Four datasets are adopted to validate the performance of the CFANet. The
main contributions of this paper are summarized, as follows:

• We propose the Context Feature Fusion (CFF) module that merges high-dimensional
features and conduct a multi-scale features extraction. High-dimensional features excel in
capturing subtle variations and texture information in small targets, while the multi-scale
feature extraction augments the accuracy and robustness of small target segmentation
tasks. This enhances the ability to capture contextual information and depict details and



Sensors 2023, 23, 8739 3 of 16

shape changes of targets at different scales. Such a comprehensive target representation
significantly boosts recognition and segmentation accuracy, particularly for small targets.

• We propose the Effective Channel Spatial Attention (ECSA) module, a novel approach
that dynamically adjusts channel and spatial attention at the bottom of the encoder.
The channel attention enhancement network improves the ability to discriminate small
targets from the background, while the spatial attention focuses on the critical regions
of small targets in medical images. This adaptive mechanism of ECSA enhances the
characterization of small targets and mitigates the impact of background interference.
The ablation experiments result show that the ECSA module could effectively improve
the segmentation performance for small targets and enables the network to focus more
on crucial regions for accurate segmentation.

• The performance evaluation of CFANet on four distinct small target segmentation
datasets demonstrates its excellent generalization capability in accurately segmenting
small targets.

2. Related Work
2.1. CNN-Based Segmentation Methods

Since the introduction of convolution neural network (CNN)-based approaches for
medical image segmentation, a growing number of methods [2–10] have extended the
standard 2D CNN architecture to solve various segmentation tasks. Ronneberger et al. [3]
proposed a convolution neural network (CNN) architecture designed for medical image
segmentation, called U-Net. The U-Net network structure consists of an encoding stage
and a decoding stage. In the encoding process, down-sampled images are used to extract
image features. In the decoding process, images are upsampled to gradually restore the
original size. After up-sampling in the decoding stage, the feature maps are fused with
the skip connections of the encoding information, which enriches the fine details of the
image features. U-Net has become a popular and widely used model in medical image
segmentation. Milletari et al. [4] proposed a V-Net segmentation framework based on
the U-Net network to 3D image volume down-sampling to low resolution and used 3D
convolution kernels for 3D medical images, which extends the U-Net architecture to volume
segmentation by replacing 2D operations with 3D operations. Isensee et al. [8] proposed
a generalized convolution neural network framework for medical image segmentation,
named nnUNet, that can automatically configure the neural network structure to extract
features. In addition, there are now image pyramids [11], attention mechanisms [9,10,12],
separable convolution [13], large convolution kernels [14], and recurrent convolution [10]
to encode the overall contextual information into a CNN-based framework. However, most
recent CNN-based methods use convolution kernels for general-purpose target segmenta-
tion, while small target segmentation requires smaller convolution kernels to achieve better
segmentation results.

2.2. Transformer-Based Segmentation Methods

The Transformer [15] is a neural network architecture primarily used in natural lan-
guage processing (NLP) tasks. The key innovation of the Transformer architecture is the
self-attention mechanism, which allows the network to weigh the importance of different
parts of the input when making predictions. This mechanism is very effective at capturing
long-range dependencies and improving model quality. Alexey Dosovitskiy et al. [16] have
extended the Transformer architecture and proposed Vision-Transformer, a framework for
image classification and recognition. In the context of medical image segmentation, recent
works [17–20] have investigated the design of hybrid models that combine CNN with
Transformer. J Chen et al. [17] introduced TransUNet, which combines the Transformer
and U-Net, two classic neural network architectures, for medical image segmentation tasks.
TransUNet addresses these limitations by incorporating a Transformer encoder into the
U-Net architecture. The Transformer encoder enhances the model’s ability to capture global
context information and long-range dependencies, resulting in an improved understand-
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ing of image semantics and structures. Another architecture, SwinUNet [19], combines
the Swin Transformer and U-Net for image segmentation tasks. The Swin Transformer
is a variant of the Transformer model that introduces hierarchical representations and
window-based self-attention mechanisms to efficiently capture both local and global image
features. Compared to TransUNet, SwinUNet greatly reduces computational complexity
while achieving similar performance. Transformer-based methods achieve better segmenta-
tion performance compared to pure CNN counterparts. However, the transformer-based
methods require pre-training on large-scale datasets to better exploit their advantages,
while the small number of datasets targeted for small target segmentation and the large
parameters are also disadvantages of the Transformer-based methods.

3. Methodology
3.1. Network Architecture

Figure 2 presents the architecture of the proposed CFANet, which is based on the encoder-
decoder framework and comprises four main components: encoder, context feature fusion
(CFF) module, effective channel spatial attention (ECSA) module, and decoder. To enrich
feature information during the encoder stage, we utilize a pre-trained ResNet34 [21] to extract
image features, initializing the model with ImageNet pre-trained weights. For segmentation
purposes, we exclude the average pooling layer and fully connected layers from ResNet34.
The ECSA module is integrated into the lower encoder layer to enhance the model’s ability
to capture precise feature information of the segmentation target. Additionally, multiple
CFF modules are introduced in the skip connection section to fuse high-dimensional features
extracted during the encoder stage with those from the decoder stage.

Figure 2. The architecture of the proposed CFANet.

To reconstruct the original image from the feature map, we employ multiple decoder
blocks in the decoder network. As illustrated in Figure 2, the decoder leverages attention fea-
tures generated by the ECSA module to restore spatial information and progressively integrates
high-dimensional multi-scale information from the CFF module through 3 × 3 convolutions.
Each decoder block follows the subsequent steps: the input features undergo a 3 × 3 convolu-
tional operation, and the resulting feature maps are then upsampled using bilinear interpolation.
Next, the upsampled features are element-wise summed with the features from the CFF mod-
ule. Upon reaching the last decoder block, the resulting feature matrix is convolved by a 1 × 1
convolutional layer to match the original input image’s dimensions.
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3.2. Context Feature Fusion

On one hand, traditional U-Net’s skip connections are limited in transferring informa-
tion only between neighboring layers, which may not effectively capture global context and
long-distance dependencies. Although they can retain some low-level detail information,
they might not be sufficient for modeling the entire image context. On the other hand,
small targets, due to their small sizes and low pixel density, are relatively tiny compared to
the surrounding environment. As a result, standard skip connections may not adequately
capture the features of these small targets. To overcome these challenges, we introduce
the Context Feature Fusion (CFF) module, as depicted in Figure 3, to enhance information
transfer across different layers and improve the feature capture of small targets.

Figure 3. Illustration of context feature fusion (CFF) module.

The incorporation of multi-scale feature extraction enables the network to effectively
capture feature information at various scales, thereby adapting to the size variations of
small targets and enhancing the detection and segmentation performance for such targets.
In complex tasks, low-dimensional features may not provide sufficient information for
accurate classification or prediction. In contrast, high-dimensional features contain more
detailed and intricate information about the input data, making them better suited to
describe complex patterns and structures. By integrating high-dimensional features, the
model can retain and leverage valuable information, enhancing its representativeness and
effectively handling complex tasks.

In the CFF module, instead of fusing only the features of a single stage, the skip
connection will fuse the features of the current stage with all the features extracted by
the encoder after the current stage. Taking the green feature matrix x1 in Figure 2 as
an example, the CFF module fuses the features of the current stage with all stages of its
higher-dimensional features (x2, x3). The features of all stages are then passed through
a 3 × 3 convolutional layer to unify the channels to match the channel size of the green
feature matrix. Next, the feature matrices F2 and F3 are upsampled to the same size as F1
and concatenated together. This phase of the process can be summarized as:

C1 = Concatn=3
i=1 ( f 3×3(xi)⊗ 2i−n+2) (1)

where the f n×n represents a convolution operation with the kernel size of n × n, ⊗2i−n+2

represents the up-sampling operation with rate of 2i−n+2 , and Concat represents the
operation of concatenation.

To capture feature information at different scales and enhance the segmentation of
small targets, we draw inspiration from the SPC module in EPSANet [22], which utilizes
convolution kernels of different sizes. Specifically, for C1, we apply 1 × 1 convolutional
layer, 3 × 3 convolutional layer, and 5 × 5 convolutional layer. The resulting C2 is obtained
by concatenating the feature matrices extracted at multiple scales. Finally, we use a conven-
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tional convolution to obtain the feature map of the Context Feature Fusion (CFF) module.
In summary, this latter stage of the process can be summarized as:

F = f 1×1(Concatk=3
i=1 ( f (2i−1)×(2i−1)(C1))) (2)

In order to reduce the effective model size and potentially speed up the inference, we
keep only 3 CFF modules at the skip connections. By introducing the CFF modules, we
solve the problem of large dimensional differences of segmentation targets and difficul-
ties in multi-scale feature extraction, which can improve the segmentation accuracy and
boundary clarity.

3.3. Effective Channel Spatial Attention

As we know, small targets are easily mixed with the background in the original image,
and how to make the network extract the small targets from the complex background is
a pressing problem. Therefore, we add an attention mechanism called ECSA in the last
part of the encoder to make the model focus on the important information in the medical
image and ignore the unimportant information, as shown in Figure 4. The ECSA assigns
different weights to each part of the input features and extract the critical information of
the segmentation target, so that the model can make more accurate judgments without
imposing more computational and storage overhead on the model.

Figure 4. Illustration of effective channel spatial attention (ECSA) module.

The ECSA module mainly consists of channel and spatial attention: the channel atten-
tion mechanism adjusts the importance of each channel in the feature map by weighting
each channel. The channel attention is achieved by the following steps: Firstly, we transform
the input feature map x into scalar values for each channel by applying the maximum and
average pooling operations. Next, two 1 × 1 convolutional layers are applied to the pooled
feature maps to learn channel weights, and their outputs are summed up. This process
compresses and then expands the channel dimension of the features, reducing complexity
and enhancing generalization. Finally, the obtained weights are multiplied with the input
feature map x and normalized using the sigmoid function to obtain the channel attention
feature map Achannel . This step aims to emphasize the channel information most relevant
for accurately segmenting small targets. This part of the process can be summarized by the
following equation:

Achannel = σ( f 1×1( f 1×1(MP(x))) + f 1×1( f 1×1(AP(x)))) (3)

where the x represents the input feature, f n×n represents a convolution operation with the
kernel size of n × n, MP represents the maximum pooling operation, AP represents the
average pooling operation, and σ represents the sigmoid function.

The spatial attention mechanism highlights the spatial regions where the small targets
are located by weighting the different spatial locations of the feature maps, which helps
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the model to better capture the details and shape information of the small targets. The
implementation steps for spatial attention are as follows: First, we extract the spatial
information from the channel attention feature map Achannel using maximum and average
pooling, and then connect them together. Next, we learn the weights of each spatial location
through a 7 × 7 convolutional layer, which are used to normalize and map the attention
weights using a sigmoid function. This process results in the spatial attention feature map
Aspatial , which highlights the spatial regions most relevant for the task at hand. The results
of this part can be summarized by the following equation:

Aspatial = σ( f 7×7(MP(Achannel) + AP(Achannel))) (4)

We preserve the input detail information of the original features by summing the
processed feature maps with the original feature inputs in the last layer of the spatial
attention module. The ECSA module equation is summarized as:

A = x + Aspatial (5)

We introduce the ECSA module to better focus on small targets in segmentation tasks.
Channel attention enables the network to select important channel information, while
spatial attention enables the network to highlight the spatial locations where small targets
are located. The ECSA module enables the network to focus on small target areas and
reduce the interference of the background, which can make CFANet capture and segment
the features of small targets more accurately and improve the performance of segmentation.

3.4. Loss Function

In this section, we describe the loss function used in our proposed model. We use
soft dice loss [4] as our loss function. The soft dice loss is a widely used loss function for
evaluating the similarity between predicted and ground truth segmentation masks. The
loss function is defined as follows:

Ldice = 1− 2 ∑N
i=1 pi · ti + smooth

∑N
i=1 p2

i + ∑N
i=1 t2

i + smooth

where pi and ti represent the predicted and ground truth values for pixel i, respectively, smooth
is a small constant used to smooth the denominator, and N is the total number of pixels.

4. Experiments

In this section, we evaluate the performance of the proposed method on multiple
types of small target datasets and compare it with the performance of several leading
networks. The datasets include: ADAM (https://adam.isi.uu.nl/, accessed on: 7 June
2022) for intracranial aneurysm segmentation from an MR image, LUNA16 (https://luna16.
grand-challenge.org/, accessed on: 22 May 2023) for pulmonary nodule segmentation from
CT image, Thoracic OAR (https://structseg2019.grand-challenge.org/, accessed on: 22
May 2023) for organs at a risk segmentation from CT image and WORD [23] for abdominal
organ segmentation from the CT image.

We chose U-Net [3], UNet++ [24], Attention-UNet [12], ResUNet [25] and
TransUNet [17] as our comparison methods. We chose these methods because they rep-
resent different network architectures and technologies. Specifically, we chose U-Net as
the benchmark method because it is a commonly used and classical image segmentation
network. We also chose U-Net based on the Attention Mechanism and Transformer-based
network (TransUNet) because the Attention Mechanism and Transformer techniques have
made significant progress in the field of medical image segmentation. Our goal is to com-
pare the performance of these methods on small-object segmentation tasks in order to find
the best segmentation method and improve the current research.

https://adam.isi.uu.nl/
https://luna16.grand-challenge.org/
https://luna16.grand-challenge.org/
https://structseg2019.grand-challenge.org/
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Our proposed CFANet network architecture, along with other leading network struc-
tures, are implemented on the PyTorch framework and trained using an NVIDIA RTX
3090 GPU with 24 GB of memory. To ensure optimal training, we dynamically adjust
the learning rate during the training process, where the learning rate lr is calculated as
lr = baselr× decline_rate. The base learning rate baselr is set to 0.01, and the decline rate
decline_rate is set to 0.95. The batch size is set to 8, and we perform 150 training iterations.
To optimize our model, we utilize the Adam optimizer with a weight decay of 0.00001.

We perform 5-fold cross-validation ablation experiments and comparison experiments
on ADAM, LUNA16, and thoracic OAR, and ablation experiments and comparison ex-
periments on the test set of the WORD dataset. We assess the model’s performance using
two metrics: the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HD). Dice
Similarity Coefficient is a statistical measure used to compare the similarity of two sets. it is
defined as follows:

DSC =
2× |A ∩ B|
|A|+ |B| (6)

where A and B denote the ground truths and output probabilities, respectively.
Hausdorff Distance is a measure of similarity or distance between two sets. It repre-

sents the shortest distance between the farthest points in two sets. It is defined as follows:

H(A, B) = max(sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)) (7)

where d(a, b) denotes the distance between pixel point a and pixel point b.

4.1. ADAM for Intracranial Aneurysm Segmentation
4.1.1. Overview

Intracerebral aneurysms are found in 3% of the general population, and some groups
have a higher risk. If an aneurysm ruptures, it may causes bleeding in the brain (subarach-
noid haemorrhage) [26]. Early detection of intracranial aneurysms, as well as the accurate
measurement and assessment of shape, is important in clinical routine. This enables careful
monitoring of the growth and rupture risk of aneurysms to allow informed treatment
decisions to be made [27]. The purpose of this Aneurysm Detection And segMentation
Challenge is to automatically detect and segment intracranial aneurysms from TOF-MRA
images. Automatic segmentation allows an accurate and reliable analysis of the size and
shape of the aneurysms, which can help doctors to accurately identify and distinguish
intracranial aneurysms from other lesions and improve the accuracy of diagnosis.

4.1.2. Dataset

The ADAM dataset comprises 113 patients, including 93 with intracranial aneurysms
and 20 without intracranial aneurysms. The patients in the ADAM dataset have images
with varying resolutions. To demonstrate the segmentation of our proposed segmentation
network for small targets, we resize the images to a resolution of 512 × 512.

4.1.3. Results

Table 1 shows the segmentation results on the ADAM dataset. We report the segmen-
tation performance for small target intracranial aneurysms using DSC and HD metrics. In
addition, a series of ablation experiments are performed to validate the effectiveness of
the proposed CFF module and ECSA module. For better visualization, we zoom in on the
small target region in the images, and Figure 5 shows our visualization results.

The highest DSC of the pure CNN-based U-Net method is 58.53%. Among the existing
transformer-based methods, TransUNet [17] achieves a DSC of 55.74%. Our proposed
method obtains a better performance than other existing works with a DSC of 60.74%.
Moreover, in terms of HD metrics, CFANet continues to perform well. From Figure 5, we
can see that CFANet segment the intracranial aneurysm completely in the figure; however,
UNet++, Attention-UNet and TransUNet segment the target region blankly.
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Table 1. Segmentation results of different methods on ADAM.

Methods DSC (%) HD (mm)

U-Net [3] 58.53 10.5799
UNet++ [24] 58.29 9.7273

Attention U-Net [12] 57.18 10.0882
ResUNet [25] 53.79 8.0249

SmaAt-UNet [28] 54.62 8.5619
TransUNet [17] 55.74 11.7138

CFANet 60.74 7.7917

Figure 5. The examples of ADAM dataset segmentation. The red parts represent the segmentation
results for intracranial aneurysms. From left to right: source image, ground truth (GT), UNet++,
Attention-UNet, TransUNet, and our CFANet.

4.2. LUNA16 for Pulmonary Nodule Segmentation
4.2.1. Overview

Lung cancer is the leading cause of cancer-related death worldwide. The National
Lung Screening Trial (NLST), a randomized control trial in the U.S. including more than
50,000 high-risk subjects, showed that lung cancer screening using annual low-dose com-
puted tomography (CT) reduces lung cancer mortality by 20% in comparison to annual
screening with chest radiography [29]. In 2013, the U.S. Preventive Services Task Force
(USPSTF) has given low-dose CT screening a grade B recommendation for high-risk in-
dividuals [30] and in early 2015, the U.S. Centers for Medicare and Medicaid Services
(CMS) has approved CT lung cancer screening for Medicare recipients. As a result of these
developments, lung cancer screening programs using low-dose CT are being implemented
in the United States and other countries. Computer-aided detection (CAD) of pulmonary
nodules could play an important role when screening is implemented on a large scale.

4.2.2. Dataset

We apply our proposed method to the LUNA16 dataset, which excludes scans with
slice thickness greater than 2.5 mm and includes a total of 888 CT scans. For the dif-
ferent scans, the number of scanned slices is usually small, and the size of each slice is
512 × 512 pixels. We resize the 512 × 512 image to 256 × 256 to speed up the training.
After processing the images with labels, there are 2372 slices.
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4.2.3. Results

Table 2 shows the segmentation results on the LUNA16 dataset. We report the segmen-
tation performance for pulmonary nodules using DSC and HD metrics. Figure 6 shows our
visualization results.

Table 2. Segmentation results of different methods on LUNA16.

Methods DSC(%) HD(mm)

U-Net [3] 56.29 7.3719
UNet++ [24] 56.25 7.4910

Attention U-Net [12] 64.43 7.7931
ResUNet [25] 64.08 8.0332

SmaAt-UNet [28] 62.89 7.4230
TransUNet [17] 55.78 5.2651

CFANet 65.24 6.9376

As can be observed from Table 2, CFANet achieves good results in DSC evaluation
metrics compared to other methods. Although the HD metrics of TransUNet are better
than ours, the HD results of the proposed CFANet are still very competitive compared
with other leading methods. Figure 6 shows the segmentation results of parts of different
methods on the LUNA16 dataset, and also demonstrates that the proposed CFANet is also
general for small targets of lung nodules. From Figure 6, we can observe that CFANet can
segment the lung nodules completely; however, most of the comparison methods segment
multiple parts of the target region, which is not entirely consistent with the ground truth.

Figure 6. The examples of LUNA16 dataset segmentation. The red parts represent the segmentation
results for pulmonary nodules. From left to right: source image, ground truth (GT), UNet++,
Attention-UNet, TransUNet, and our CFANet.

4.3. Thoracic OAR for Organs at Risk Segmentation
4.3.1. Overview

Radiation therapy is an important cancer treatment that kills cancer cells by external
irradiation. The key to treatment is to ensure that cancer cells receive enough radiation and
to prevent excessive damage to normal cells in the organ at risk (OAR) [31].

The OAR may have different shapes, sizes, and locations from patient to patient,
so treatment planning needs to be tailored to the patient’s characteristics. Many Small
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OAR such as the trachea need to be delineated accurately for designing a optimal plan, so
automatic segmentation of small targets in the organ at risk is necessary.

4.3.2. Dataset

We apply our proposed method to the Thoracic OAR dataset, which consists of CT
images of 50 patients with segmentation targets of six organs at risk in the chest. Our
primary objective is the segmentation of small targets, focusing specifically on segmenting
the trachea in the dataset. The size of each slice is 512 × 512, and after processing the
images with labels there are 3208 slices.

4.3.3. Results

Table 3 shows the segmentation results on the Thoracic OAR dataset. We report the
segmentation performance for the trachea organ using DSC and HD metrics.

Table 3. Segmentation results of different methods on Thoracic OAR.

Methods DSC(%) HD(mm)

U-Net [3] 85.50 3.7401
UNet++ [24] 85.32 2.9489

Attention U-Net [12] 81.94 3.6448
ResUNet [25] 85.94 3.1941

SmaAt-UNet [28] 86.95 3.3427
TransUNet [17] 85.69 6.1262

CFANet 87.51 3.6094

As can be observed from Table 3, CFANet still achieves good results in DSC evaluation
metrics compared to other methods. Although UNet++ is better than ours in HD metrics,
our HD results are still very competitive compared to other leading methods. Figure 7
shows the segmentation results of parts of different methods on the Thoracic OAR dataset,
and also demonstrates that the proposed CFANet is also general for small targets in
thoracic organs. From Figure 7, we can observe that CFANet can segment the trachea
of the chest organ completely, and our segmentation accuracy is higher than most of the
comparison methods.

Figure 7. The examples of Thoracic OAR dataset segmentation. The red parts represent the seg-
mentation results for the trachea. From left to right: source image, ground truth (GT), UNet++,
Attention-UNet, TransUNet, and our CFANet.
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4.4. WORD for Abdominal Organ Segmentation
4.4.1. Overview

Abdominal organ segmentation, like thoracic oar at risk segmentation, is a funda-
mental and important task that plays a crucial role in areas such as abdominal disease
diagnosis, cancer treatment, and radiation therapy [32]. However, in clinical practice, organ
segmentation is usually performed manually by radiation oncologists or radiologists. This
is time-consuming and error-prone compared to the number of organs in the chest, and
segmentation for small abdominal targets is particularly difficult. Therefore, segmentation
of abdominal organs can be a challenging task for oncologists.

4.4.2. Dataset

We apply our proposed method to the WORD dataset, a large-scale real clinical
abdominal dataset (WORD), with careful annotation. All scans in the dataset are manually
segmented in great detail, covering 16 organs in the abdominal region [23]. The official
division of the training set, validation set, and testing set is based on a 10:2:3 ratio. To
facilitate training and testing, we fuse the data from the validation set with the training set
and compare the methods on the test set. In our experiments, we specifically focus on small
target segmentation, and thus, we only segment the adrenal in the dataset. The number of
slices in the training and test sets after processing is 2800 and 874, respectively.

4.4.3. Results

Table 4 shows the segmentation results on the WORD dataset. We report the segmen-
tation performance for abdominal organ segmentation using DSC and HD metrics.

As can be observed from Table 4, CFANet achieves the best results on DSC evaluation
metrics and HD evaluation metrics compared to other methods. Figure 8 shows the segmen-
tation results of parts of different methods on the WORD dataset, and also demonstrates
that the proposed CFANet is also general for small targets in abdominal organs. From
Figure 8, we can observe that CFANet can segment the adrenal of the abdominal organ
completely, and our segmentation accuracy is higher than most of the comparison methods.

Figure 8. The examples of WORD dataset segmentation. The red parts represent the segmentation
results for the adrenal. From left to right: source image, ground truth (GT), UNet++, Attention-UNet,
TransUNet, and our CFANet.
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Table 4. Segmentation results of different methods on WORD.

Methods DSC(%) HD(mm)

U-Net [3] 60.80 3.5396
UNet++ [24] 58.03 3.3330

Attention U-Net [12] 55.50 2.3379
ResUNet [25] 61.56 1.7426

SmaAt-UNet [28] 56.39 1.3403
TransUNet [17] 60.66 4.8945

CFANet 61.82 1.2252

4.5. Efficiency Comparison

In this section, we conduct a comprehensive comparison of our model’s parameters
and FLOPs (Floating Point Operations per Second) with respect to different architectures.
Model parameters and FLOPs are critical metrics, influencing both the computational
efficiency and memory requirements of a neural network.

The comparison results in Table 5 demonstrate that CFANet excels in terms of compu-
tational requirements (measured in FLOPs) compared to other models, indicating its fast
inference speed. High computational demands often lead to prolonged inference times, ren-
dering a model unsuitable for clinical applications. Although CFANet does not achieve the
best result in terms of model parameters, it ranked third among most methods, showcasing
a lightweight model complexity. In summary, CFANet combines higher computational
efficiency with a lightweight parameter structure, making it an exceptionally appealing
solution for small target segmentation in clinical medical images.

Table 5. Efficiency comparison results of different methods.

Methods Params(M) FLOPs(G)

U-Net [3] 17 159.95
UNet++ [24] 9 137.96

Attention U-Net [12] 35 265.73
ResUNet [25] 52 82.99

SmaAt-UNet [28] 4 78.05
TransUNet [17] 66 85.64

CFANet 30 59.24

4.6. Ablation Study

In this experiment, we analyze the impact of the absence of key components on the
network segmentation performance to verify the effectiveness of these modules. We ablate
the CFF module and ECSA module in CFANet separately and apply them to these four
datasets: ADAM, LUNA16, Thoracic OAR, and WORD, using DSC as an assessment metric.

We remove the proposed module and modify the architecture. From the Table 6, it
can be observed that adding both modules to the proposed architecture performs better
than adding only one module. In the absence of the CFF module, the poor correlation
between different layers of features makes it difficult to understand the contextual infor-
mation of small targets, which proves the importance of CFF module. In the absence of
the ECSA module, the details and edge information of segmented targets are blurred,
which proves the importance of the ECSA module. Thus, we verify that each module is
effective in improving the segmentation performance of the baseline against small targets
in medical images.
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Table 6. Segmentation results of ablation experiments.

Dataset Methods DSC(%)

ADAM

Baseline 58.00
Baseline + CFF 59.26

Baseline + ECSA 58.56
CFANet 60.74

LUNA16

Baseline 64.17
Baseline + CFF 64.25

Baseline + ECSA 64.51
CFANet 65.24

Thoracic OAR

Baseline 86.24
Baseline + CFF 86.37

Baseline + ECSA 87.26
CFANet 87.51

WORD

Baseline 59.28
Baseline + CFF 59.65

Baseline + ECSA 59.70
CFANet 61.82

5. Conclusions

In this paper, we introduce the CFF and ECSA modules to modify the existing archi-
tecture and propose CFANet, a small target segmentation network. These modifications
enable our proposed model to achieve significant performance improvements in the small
target segmentation task.

By introducing the CFF module, we successfully improve information transfer and
fusion. This fusion mechanism allows our model to better understand the contextual
information of the small target, thus improving the accuracy and consistency of the seg-
mentation results. The ECSA module is also introduced, and can better capture the details
and edge information of the target, which is especially important for the small target
segmentation task.

On the surface of the segmentation results of small targets in four medical image
datasets, our proposed CFANet network outperforms the state-of-the-art networks, indi-
cating the effectiveness and generality of our method in the field of medical image small
target segmentation.
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