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Abstract: The electroretinogram (ERG) is a clinical test that records the retina’s electrical response
to light. Analysis of the ERG signal offers a promising way to study different retinal diseases and
disorders. Machine learning-based methods are expected to play a pivotal role in achieving the goals
of retinal diagnostics and treatment control. This study aims to improve the classification accuracy
of the previous work using the combination of three optimal mother wavelet functions. We apply
Continuous Wavelet Transform (CWT) on a dataset of mixed pediatric and adult ERG signals and
show the possibility of simultaneous analysis of the signals. The modern Visual Transformer-based
architectures are tested on a time-frequency representation of the signals. The method provides
88% classification accuracy for Maximum 2.0 ERG, 85% for Scotopic 2.0, and 91% for Photopic 2.0
protocols, which on average improves the result by 7.6% compared to previous work.

Keywords: biomedical research; classification; deep learning; wavelet analysis; electroretinography;
electroretinogram; ERG

1. Introduction

The electroretinogram (ERG) technique has tremendous potential for early disease
detection, diagnosis, and interventions in the field of ophthalmology. The ERG signal
is an electrophysiological signal that represents the retina’s electrical response [1]. In
ophthalmology, ERG testing can be a valuable tool because it is noninvasive and relatively
simple [2]. The significance of ERG research lies in its ability to understand better how the
retina works and make identifying and tracking diseases easier.

Manual ERG analysis is highly dependent on the clinician’s experience and other
human factors, as a misdiagnosis might mean that the patient misses the optimal time for
treatment [3]. On the other hand, automated ERG signals analysis uses machine learning
(ML) methods [4]. It is a so-called data-based approach that requires a large amount of
data. ML algorithms allow us to diagnose certain diseases or conditions based on the
retinal activity patterns detected in ERG data. It is believed that this will assist clinicians in
making more accurate diagnoses and developing more effective treatment plans [5]. An
ML algorithm can use the analysis of large datasets of ERG data to identify patterns and
relationships between variables that can be used to predict disease progression, treatment
response, and other outcomes [6]. Developing new treatment options is another application
of ML that is becoming increasingly important in ERG research. In order to identify specific
patterns of retinal activity associated with a positive response to treatment, ML algorithms
can analyze ERG data from patients who have responded well to specific treatments. With
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the help of this information, new treatments can be developed that are specifically targeted
toward these particular patterns of cellular activity [4,7,8].

Illustrations of the ERG signals of healthy and unhealthy subjects, along with the
designation of the parameters that clinicians analyze, are shown in Figure 1. The clinician
parameters of the ERG waveform, the amplitudes (Va, Vb) and latency of the so-called
a-wave and b-wave (Ta, Tb), are leveraged to identify abnormalities and diagnose a range
of retinal disorders [9–13].

(a) Maximum

(b) Scotopic

(c) Photopic

Figure 1. Illustration of Maximum (a), Scotopic (b), and Photopic (c) ERG signals: green and red
lines represent healthy and unhealthy subjects; solid and dashed lines represent adult and pediatric
signals, respectively.
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Figure 1 shows the temporal representation of the ERG signal. Both cases for healthy
and unhealthy typically exhibit distinct and recognizable waveforms. However, the shape
of the ERG signal in temporal representation can vary depending on the underlying
pathology [14]. Severe dysfunction or loss of photoreceptor and bipolar cell activity can
result in significant reduction or absence of the a-wave and b-wave in certain cases [15]. A
severe form of macular degeneration or advanced retinitis pigmentosa can result in this
type of vision loss.

The ERG waveform may be selectively affected by certain diseases rather than the
whole waveform. There is an indication that the b-wave may be reduced or absent in
some cases of congenital stationary night blindness, whereas the a-wave remains relatively
normal, indicating a defect in bipolar cell function [16,17].

Consequently, ERG signals may provide useful information about retinal cells’ in-
tegrity and function and aid in the diagnosis of various retinal diseases and disorders. An
effective method of obtaining disease information is to search for the most presentable data
representation in the database [18]. To avoid reliability issues, extensive efforts must be
made to extract and select features. In order to achieve this, it is necessary to first search
for informative representations of data and then apply clustering to the new features to
select them.

As was shown in [7,19,20], the wavelet representation of ERG signals allows one to
obtain highly reliable features to increase the accuracy of automated doctor assistance.
During these studies, it was noticed that some of the tested mother wavelet selections
may lead to slightly different representations of ERG signals. Thus, it can be assumed
that using each wavelet decomposition approach may restrict the number of features and
extracted information. Then, searching for the best wavelet combination can be suggested
to overcome this problem. The suggested approach can be thought of as some ensemble
at the preprocessing stage. Let us also note that the previous paper’s analysis shows that
most of the research in the field has proposed different wavelets as optimal for different
cases [20]. Thus, the proposed idea can be a suggestion of some generalized system.

This paper aims to investigate the best combination of deep learning (DL) models
with images of wavelet scalograms and their combination (stack) as input. The paper’s
contribution consists of showing the benefits of wavelet combination as input to the
classifier of ERG signals. In order to address the applications, a decision method based on
wavelet combinations and an architecture of DL convolution neural networks is proposed
and tested. For the collected and balanced database, the possibility of simultaneous analysis
of adult and pediatric signals is also shown.

2. Related Works

Nowadays, studies that explore the potential of artificial intelligence algorithms for
accurately classifying eye diseases and recognize their role as supportive tools for medical
specialists are becoming more widespread. For physicians to play a vital role in delivering
comprehensive and holistic medical care, they must realize the complexity of human health,
the significance of empathetic care, and their unmatched decision-making abilities.

In medical practice, the conventional manual ERG analysis is based on a four-component
evaluation [9–13,21]. In some cases, Discrete Wavelet Transform (DWT) is also applied. That
provides more accurate signal descriptions than time-domain data [22]. For instance, according
to the study results [23], waveforms of transient pattern electroretinograms (PERGs) are more
easily separated when they are represented as DWT coefficients for full-time domain signals
rather than in traditional peak-based feature spaces based on peak detection.

Similar wavelet-based methods were leveraged to evaluate the ERG waveform in
autistic spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) [3].
ERG analysis has been demonstrated to be more comprehensive when using the continu-
ous wavelet transform instead of the conventional conventional approaches. The Morlet
wavelet transform was suggested in [19] to quantify the frequency, peak time, and power
spectrum of the oscillatory potentials components of the adults’ ERG, which provided
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more information than did other wavelet transforms used earlier in the study. In [24], the
Gaussian wavelet was chosen for its convenience in semi-automatic parameter extraction
for pediatric and adult ERGs and for its superior time domain properties.

The study [25] compares mother wavelets to analyze normal adults’ ERG waveforms
by minimizing scatter in the results. The use of this approach improved the data analysis
and level of accuracy. The study demonstrated that different wavelets emphasize different
signal features, making choosing the most appropriate mother wavelet crucial. In [26],
researchers conducted a preliminary analysis and found that ERG waveforms shaped by
Ricker were the best matched to their expected waveforms. In work [27], the Morlet wavelet
was also suggested for adult ERG analysis.

The paper [28] shows the Ricker wavelet exhibiting superior median accuracy values
for ERG wavelet scalogram classification, potentially due to several factors. The distinctive
characteristics of the Ricker wavelet, including its shape and frequency attributes, align
favorably with the features observed in ERG wavelet scalograms. As a result, using
the Ricker wavelet leads to improved classification accuracy compared to other wavelet
types. This enhanced accuracy can be attributed to the wavelet’s superior time-frequency
localization properties, which enhance its ability to differentiate between various ERG
responses. According to the mentioned articles, the classification problem was successfully
addressed, and frequency pattern estimates for ERGs were presented [18]. However, the
problem of best wavelet selection has not been solved yet.

As shown above, the selection of an appropriate wavelet for ERG signal analysis
depends on the waveform’s characteristics. Different wavelets exhibit varying frequencies
and temporal resolutions. It can be assumed that for the achievement of accurate results, an
optimal wavelet should possess effective noise suppression capabilities, accurately capture
both transient and sustained components of the ERG signal, and provide interpretable
coefficients for feature identification [26]. Computational efficiency is crucial for handling
large datasets and real-time applications. Furthermore, the expertise of the researcher or
clinician in interpreting specific wavelets plays a significant role in enhancing accuracy and
efficiency. Therefore, careful wavelet selection is essential to ensure reliable and meaningful
results in both clinical and research settings [25].

The ERG analysis based on only four parameters may be insufficient for precise
diagnosis. Then, augmenting the feature space through continuous wavelet transform
in the frequency-time domain becomes imperative. By incorporating this approach, the
classification of ERG responses can be enhanced by capturing additional information
encoded in the frequency-time characteristics of the signal [29]. In the Transformer model,
for instance, the accuracy distribution is wide [30]. Even so, as the training dataset grows,
this variability will decrease. Furthermore, testing data must be divided and preserved
according to the distribution observed in real-world scenarios without modification. This
division affected the quantity of available training data.

3. Dataset Investigation

The original dataset consists of 1975 signals acquired from 323 patients, encompassing
both adults and children [31]. The signals comprise five distinct types: Scotopic 2.0 ERG
response, Photopic 2.0 ERG response, Maximum 2.0 ERG response, Photopic 2.0 EGR
Flicker response, and Scotopic 2.0 ERG Oscillatory Potentials. This investigation primarily
focuses on the utilization and detailed analysis of the Scotopic 2.0 ERG response, Photopic
2.0 ERG response, and Maximum 2.0 ERG response as described in a comprehensive
study [32], which includes statistical examination. The dataset was obtained through
electrophysiological studies conducted at the IRTC Eye Microsurgery Yekaterinburg Center
utilizing the EP-1000 computerized electrophysiological workstation developed by Tomey
GmbH, Nuremberg, Germany. The Tomey EP-1000 is a medical device for performing
electrophysiological tests and incorporates an integrated database for storing patient data.
However, the Tomey EP-1000 does not enable easy access to test results. To extract the data
from the Tomey EP-1000, specialized software [33] was employed.
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The t-SNE-based visualization of the utilized dataset is shown in Figure 2. Figure 2a
shows a visualization of three types of signals represented by different colors: blue for
Maximum ERG Response, red for Scotopic ERG Response, and gray for Photopic ERG Re-
sponse. Figure 2b shows healthy and unhealthy subjects, with healthy subjects represented
by blue and unhealthy subjects represented by red.

(a) Protocols (b) Diagnosis/Age

Figure 2. Visualization of the dataset: (a) Protocols: Maximum ERG Response (blue), Scotopic ERG
Response (red), and Photopic ERG Response (gray); (b) healthy (green and red) and unhealthy (pink
and blue) subjects for both pediatric (triangle) and adult (circle) cases.

The results in Figure 2b show that the adult and pediatric signals could be considered
to be processed together due to the high mixing among them in each signal type. According
to the distribution shown in Figure 2, the intragroup scatter of parameters matches the
intergroup scatter between pediatric and adults. As a result of this reasoning, it is possible to
conduct a joint analysis of healthy and unhealthy subjects belonging to different age groups.

The collected dataset shows the high unbalancing of the data classes. The balancing
was performed using an under-sampling approach. The under-sampling was employed
using the AllKNN function from the Imbalanced-learn package AIIKNN [34]. The Al-
lKNN function employs the nearest neighbor algorithm to detect instances that exhibit
inconsistencies within their local neighborhood.

In our study, we utilized the classical significant features of ERG signals as input
for this function. AllKNN method has a hyperparameter that affects the results of the
under-sampling procedure: setting it too low or too high could lead to either removing
too much of the data or removing too few data. The goal of the under-sampling in this
study is to ensure a balance between healthy and unhealthy groups. For that, an array of
possible numbers was selected. In this case, for Maximum and Photopic signals, we have
chosen empirically to use 13 as the number of nearest neighbors to achieve the desired class
balance. It is worth mentioning that the Scotopic signals were inherently balanced and did
not necessitate any under-sampling technique to maintain class equilibrium.

Table 1 presents the distribution of healthy and unhealthy subjects within a balanced
dataset. In this work, we balanced the dataset for the training experiments. For the testing,
we keep the “real-world scenario” distribution of the healthy and unhealthy patients, as
the number of patients with eye diseases is always higher on the clinic tests.
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Table 1. Dataset entries before and after balancing for adult, pediatric, and merged signals sets.

Pediatric Adult Merged

Unbalanced Dataset Balanced Dataset Unbalanced Dataset Balanced Dataset Balanced Dataset

healthy unhealthy healthy unhealthy healthy unhealthy healthy unhealthy healthy unhealthy
Maximum 2.0 ERG Response

143 60 62 60 148 66 102 66 164 126
Scotopic 2.0 ERG Response

52 48 52 48 104 33 51 33 103 81
Photopic 2.0 ERG Response

171 68 68 63 228 86 134 86 202 149

4. Methods
4.1. Experiment

Figure 3 shows the pipeline of the experiments. In the study, a five-fold cross-validation
approach was applied to assess the performance of the proposed methodology. Within
this process, the test subset was segregated based on the actual distributions observed in
clinical patients who were classified as healthy or unhealthy for each type of ERG response.
Initially, CWT transform was applied. Subsequently, the remaining shuffled training subset
was divided into five folds. One fold was assigned for validation, while the remaining four
folds were utilized for training. This cycle was repeated five times, ensuring that each fold
was used for the validation set once.

Figure 3. Pipeline of the experiments.

ADAM optimization with an initial learning rate of 0.001 was employed during
training. Each model was trained until convergence using early stopping criteria based
on the validation loss. A batch size of 16 was used, and training was performed on a
single NVIDIA V100 graphics processing unit on a machine with two Intel Xeon Gold
6134 3.2 GHz and 96 GB RAM. The commonly utilized Cross-entropy loss function for
classification tasks was employed to train the network models.

Data augmentation techniques were employed to augment the dataset. Specifically, ge-
ometric transformations such as random cropping, vertical flipping, and image translation
were exclusively utilized on the images under consideration.

4.2. Continuous Wavelet Transform

Continuous Wavelet Transform (CWT) stands as a potent mathematical instrument
that provides an overcomplete representation of a signal by letting the translation and
scale parameter of the wavelets vary continuously. CWT of a function x(t) at a scale
(a > 0) ∈ R+∗ and translational value b ∈ R is expressed by the following integral (1),
where ψ(t) is a continuous function called the mother wavelet, and the overline represents
the operation of complex conjugate [35]. The primary objective of the mother wavelet is to
serve as a foundational function for generating daughter wavelets, which are simply the
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translated and scaled versions of the mother wavelet. The output of the CWT consists of a
two-dimensional time-scale representation of the signal.

Xw(a, b) =
1
|a|1/2

∫ ∞

−∞
x(t)ψ

(
t− b

a

)
dt (1)

The wavelet transformation was carried out using PyWavelets library [36]. The mother
wavelet functions leveraged in this study were the commonly used ones, namely, Mexican
Hat, Morlet, Gaussian Derivative, Complex Gaussian Derivative, Ricker, and Shannon.
Using the method [18], we determined the three most optimal mother functions for our
data: for all ERG protocols, we performed CWT transform for all signals using the above
mother functions. We calculated the balanced classification accuracies on the test subsets
and got the top three functions for the new concatenated pediatric with adult dataset:
Ricker, Gaussian, and Morlet.

To increase the efficiency [37], we use a stack of three wavelets as a 3-dimensional input
image. This principle is illustrated in Figure 4. The stack can be thought of as allowing
networks to extract features from different signal representations since the features can be
clearly expressed for one or another continuous function.

Figure 4. Illustration of stack of the optimal wavelet combination.

4.3. Visual Transformer

Transformers have emerged as one of the most preferred models in image classification
tasks, which can be primarily attributed to their computational efficiency and scalability.
Figure 5 illustrates a model architecture that processes 2D wavelet data by transforming it
into sequences of flattened 2D patches. These patches undergo a trainable linear projection
to map them into a constant latent vector size. Before processing the patches through
the encoder, a learnable embedding is added at the beginning of the sequence. It is then
passed through a classification head so that fine-tuning can be conducted on the image
representation before it is used for classification. In order to maintain positional information,
position embeddings are used, and the sequence of embedded vectors is used as input
to the Transformer encoder. The Transformer encoder comprises interleaved layers of
multiheaded self-attention and multilayer perceptron blocks [38].

Figure 5. Illustration of the ViT general structure.
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In the current work, we use two ResNet-ViT hybrid image classification models which
differ in the number of parameters and computational efficiency: ViT Small (ViT_small_
r26_s32_224) and Vit Tiny (Vit_tiny_r_s16_p8_224) [39–41]. Both models are available at
the HuggingFace “transformers” repository [42]. We chose these models based on their
popularity and the expected balance between computational complexity and effectiveness
in image classification. They are commonly used in a variety of computer vision tasks, and
their performance has been extensively tested on benchmark datasets like ImageNet [43].
The selected models differ mainly in the number of parameters. This work compares these
two models and tests the relevance of using a heavier model to improve the metrics. Model
parameters are shown in Table 2.

Table 2. Model properties.

ViT Small ViT Tiny

GFLOPS 3.5 0.4
parameter number (M) 36.4 10.4

activations (M) 9.4 1.9
image size 224 × 224 224 × 224
backbone ResNet ResNet

embed_dim 384 192
num_heads 6 3

depth 12 12
pretrain ImageNet-21k ImageNet-21k

4.4. Metrics

Several metrics, including Precision, Recall, and F1 Score, were calculated to analyze
the model’s performance. These metrics provide a comprehensive understanding of the
model’s accuracy and effectiveness:

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1 Score =
2× Precision× Recall

Precision + Recall
, (4)

where

• TP = True Positive,
• FP = False Positive,
• FN = False Negative.

Since the test subset reflects the real-world distribution and is not balanced, we should
consider Balanced Accuracy:

Balanced Accuracy =
Sensitivity + Speci f icity

2
, (5)

where
Sensitivity = Recall =

TP
TP + FN

, (6)

Speci f icity =
TN

TN + FP
. (7)

5. Results

The experiment results are shown in Table 3 and Figure 6. Table 3 shows measures
of model performance for all tested cases. The performance was measured as Balanced
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Accuracy (BACC), F1 Score, Precision (P), and Recall (R). Figure 6 shows the accuracy of
the analyzed cases as box plots. Each box was taken for five folds. Figure 6 is related to the
ViT small model; Figure 6b is related to the ViT Tiny model. The accuracy of both models
is shown for the tested wavelet stack, and each mother functions independently. Figure 6
corresponds to the Maximum, Scotopic, and Photopic protocols.

Table 3. Experiment results.

ViT Small ViT Tiny

Wavelet prt BACC F1 R P BACC F1 R P

stack Maximum 0.88 0.87 0.84 0.89 0.87 0.86 0.83 0.88
morl 0.82 0.79 0.79 0.81 0.80 0.78 0.77 0.79
gaus8 0.83 0.82 0.79 0.85 0.83 0.81 0.79 0.84
mexh 0.85 0.83 0.84 0.82 0.84 0.82 0.83 0.81

stack Scotopic 0.85 0.80 0.83 0.77 0.83 0.77 0.81 0.75
morl 0.79 0.74 0.69 0.81 0.79 0.75 0.70 0.81
gaus8 0.81 0.77 0.73 0.81 0.77 0.73 0.69 0.77
mexh 0.82 0.79 0.76 0.83 0.80 0.76 0.72 0.80

stack Photopic 0.91 0.90 0.91 0.88 0.90 0.88 0.90 0.87
morl 0.84 0.83 0.81 0.85 0.83 0.81 0.79 0.83
gaus8 0.85 0.83 0.84 0.82 0.84 0.82 0.83 0.81
mexh 0.88 0.87 0.86 0.88 0.88 0.86 0.85 0.87

Table 3 and Figure 6 illustrate the advantages of employing a combination of wavelets
in comparison to using individual wavelets alone. On average, the proposed method ex-
hibits a 7.6% higher accuracy compared to the cases where only single wavelets are utilized.

However, it is essential to acknowledge that the precision measure for Scotopic signals
is lower than that achieved using individual wavelets. This phenomenon can be attributed
to the fact that the Scotopic sample is the smallest, so less precision gives an estimate of more
false positives. This is not so critical because we err toward the presumably sick group.

The ViT Small model demonstrates a mere 1% increase in accuracy compared to
the ViT Tiny model. However, the Tiny model possesses fewer parameters (10.4 against
36.4 million) and incurs less GMAC (0.4 against 3.4). The model’s executions were tested
on a local machine with AMD Ryzen 9 5900 hx × 16 processors. The execution time of ViT
Small is 61.4 ms, and the execution time of ViT Tiny is 20.4 ms, which is three times faster.
Hence, it is recommended as the primary solution for future research applications.

(a)

Figure 6. Cont.
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(b)

Figure 6. Accuracy box plots of the analyzed models for ViT Small (a) and ViT Tiny (b) mod-
els. The accuracy of both models is shown for the tested wavelet stack, and each mother
functions independently.

6. Discussion

ViT Tiny model is one suitable for real-time scale applications on terminal devices for
doctors. As some justification for this state, the comparison with ViT Small model suggests
that the model provides just a 1% increase in accuracy compared to the ViT Tiny model with
more parameters (36.4 million against 10.4 million) and greater GFLOPS (3.4 against 0.4).

This research shows the ability to keep pediatric and adult sets together for analysis.
This can help to increase the accuracy in pediatric cases where the sample size, as usual, is
dramatically smaller than for adult patients.

The results demonstrate that the proposed method achieves an 88% classification
accuracy for Maximum 2.0 ERG signals, 85% for Scotopic 2.0 ERG signals, and 91% for
Photopic 2.0 ERG signals. These accuracy levels represent an average improvement of 7.6%
compared to previous work. By combining wavelets as input to the neural network decision-
making systems, the authors observe an enhanced performance in accurately classifying
ERG signals, surpassing the results obtained through individual wavelets independently.

Let us also denote that the motivation of the current research lies in the two obser-
vations taken from our previous research. The first is the lack of difference in the results
for pediatric and adult cases. The second is that different wavelet functions may lead to
highlighting different parts of the signal. As the study shows, these notations influence
the results. Also, the achievements in DL decision-making systems allow us to increase
the accuracy while having computation demands small enough. The study shows that
combining these factors can be applied to the considered task.

However, the limitations of the work can be found in restrictions of the selected CWT
mother functions and neural network families. As was mentioned above, the selected
wavelets were chosen to provide the best performance according to the previous research.

Furthermore, the study addresses the importance of wavelet selection in achieving
accurate results in ERG signal analysis. The authors recommend using ViT architecture in
conjunction with the Ricker, Gauss, and Mexican Hat wavelet functions for forthcoming
applications. We specifically suggest employing the ViT Tiny model due to its comparable
accuracy and lower computational complexity compared to the ViT Small model.

The current study also highlights the necessity for balanced datasets in achieving
reliable results. To address the issue of dataset imbalance, we employed under-sampling
techniques to balance the highly unbalanced ERG signal dataset used in the study. This
ensures a fair representation of both healthy and unhealthy subjects in the dataset.
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Future research combining wavelet analysis and DL models should explore a broader
array of wavelet functions and neural network architectures. This paper focused on
the Ricker, Gauss, and Mexican Hat functions in conjunction with the ViT architecture.
However, further investigations may reveal other beneficial combinations. Moreover, as the
research was conducted using ERG signals from a particular dataset, testing the proposed
method with different datasets or real-world clinical data could help assess its robustness
and generalizability.

ERG signals have already proven effective in diagnosing various conditions affecting
the retina, including inherited or acquired eye diseases. The use of AI is not new in
ophthalmology, and its application to full-field ERGs is already explored. Study [44]
demonstrates the applicability of ML directly to full-field ERG analysis in Stargardt disease-
a genetic disorder that affects the retina. Study [45] proposes a framework for the early
detection of glaucoma using an ML algorithm capable of leveraging medically relevant
information that ERG signals contain.

Moreover, the central nervous system (CNS) and its function can be readily accessed
through the ERG [23]. By analyzing the ERG waveform, potential biomarkers can be
identified for the early detection of ADHD and bipolar disorder. Researchers have applied
signal analysis techniques, such as wavelets and variable frequency complex demodulation,
to studies in ASD [3] and ADHD [46] to fully leverage the potential of ERG in classifying
or detecting CNS disorders at an earlier stage. These initial studies have identified the
potential for identifying features extracted from signal analysis to improve ML classification
models. DL approaches could further enhance the accuracy of ERG signal classification,
leading to improved quality of ASD detection in its early stages and better long-term
outcomes for individuals with ASD.

The studies mentioned above claim accuracy ranging from 85% to 92%, and we believe
that the new results of further studies should strive for these values. However, it should
be noted that the performance of the models strongly depends on the dataset, and for an
objective comparison of the models, they should be tested on the same data. It should also
be noted that using ML and DL models is currently considered only as an aid, and the final
diagnosis will still be made by medics.

7. Conclusions

The currently obtained results continue the previously published studies in the medical
assistance system of eye disease determination project based on the ERG signals. The
main idea of wavelet combining as input for neural network decision-making systems is
proposed and tested for the main ERG protocols: Maximum 2.0, Scotoic 2.0, and Photopic.

Among analyzed cases, it is proposed to use Ricker, Gauss, and Mexican Hat mother
wavelets functions with ViT architecture for the following research applications. The
method provides 88% accuracy for Maximum 2.0 ERG, 85% accuracy for Scotopic 2.0, and
91% accuracy for Photopic 2.0 ERG signals and a balanced database. The obtained results
are 7.6% more accurate than for each considered independent wavelet.

To conclude, the research paper has made significant contributions to the advancement
of the field of ophthalmology through the innovative application of wavelet analysis
combined with DL techniques for more accurate classification of ERG signals. Developing
an optimal decision system based on these methods is a notable contribution with essential
implications for more effective diagnosis and treatment of retinal diseases. Thus, the
findings of this study provide valuable insights not only for the discipline of ophthalmology
but also for implementing such analytical approaches in other electrophysiological domains
that warrant precise signal classification.
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M.K. and A.D.; validation, M.K., A.Z. and A.M.; formal analysis, M.K.; investigation, A.D.; writing-
original draft preparation, V.B. and M.R.; writing—review and editing, V.B. and M.R.; visualization,
M.K. and A.D.; supervision, A.M.; project administration, A.Z.; funding acquisition, A.Z. All authors
have read and agreed to the published version of the manuscript.



Sensors 2023, 23, 8727 12 of 14

Funding: The research funding from the Ministry of Science and Higher Education of the Russian
Federation (Ural Federal University Program of Development within the Priority—2030 Program) is
gratefully acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Zhdanov, A.E.; Dolganov, A.Y.; Borisov, V.I.; Lucian, E.; Bao, X.; Kazai-
jkin, V.N.; Ponomarev, V.O.; Lizunov, A.V.; Ivliev, S.A. 355 OculusGraphy: Pediatric and Adults Elec-
troretinograms Database, 2020. https://doi.org/10.21227/y0fh-5v04, accessed on 19 September 2023.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Knave, B.; Møller, A.; Persson, H. A component analysis of the electroretinogram. Vis. Res. 1972, 12, 1669–1684. [CrossRef]
2. Yeh, S.; Levy-Clarke, G.; Nussenblatt, R. Albert & Jakobiec’s Principles & Practice of Ophthalmology; Saunders: Philadelphia, PA,

USA, 2008.
3. Manjur, S.M.; Hossain, M.B.; Constable, P.A.; Thompson, D.A.; Marmolejo-Ramos, F.; Lee, I.O.; Skuse, D.H.; Posada-Quintero, H.F.

Detecting autism spectrum disorder using spectral analysis of electroretinogram and machine learning: Preliminary results. In
Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),
Glasgow, Scotland, UK, 11–15 July 2022 ; pp. 3435–3438.

4. Behbahani, S.; Ahmadieh, H.; Rajan, S. Feature Extraction Methods for Electroretinogram Signal Analysis: A Review. IEEE Access
2021, 9, 116879–116897. [CrossRef]

5. Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunović, H. Artificial intelligence in retina. Prog. Retin.
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