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Abstract: X-ray images are an important industrial non-destructive testing method. However, the
contrast of some weld seam images is low, and the shapes and sizes of defects vary greatly, which
makes it very difficult to detect defects in weld seams. In this paper, we propose a gray value curve
enhancement (GCE) module and a model specifically designed for weld defect detection, namely
WD-YOLO. The GCE module can improve image contrast to make detection easier. WD-YOLO
adopts feature pyramid and path aggregation designs. In particular, we propose the NeXt backbone
for extraction and fusion of image features. In the YOLO head, we added a dual attention mechanism
to enable the model to better distinguish between foreground and background areas. Experimental
results show that our model achieves a satisfactory balance between performance and accuracy. Our
model achieved 92.6% mAP@0.5 with 98 frames per second.

Keywords: YOLO; weld defects detection; attention mechanism

1. Introduction

Defect detection in weld seams has always been one of the key research issues in the
industry. Whether it is manual welding or robotic automatic welding, welding defects
will inevitably occur. To solve this problem, people have adopted various methods to
detect the quality of steel pipes. X-ray image defect detection is an important method of
non-destructive testing (NDT) [1,2]. It is widely used in the quality inspection of steel pipe
welds due to its low cost and high speed compared to other methods, such as computed
tomography (CT) [3]. Figure 1 shows the equipment for taking X-ray images of steel pipe
welds. Each steel pipe is sent into the shooting room by an electric wheel and sent out of
the shooting room by an electric wheel after the shooting is completed. The process of
taking X-ray images no longer requires manual work, but the evaluation of X-ray images
still relies on manual labor [4].

This method is not only time-consuming and labor-intensive, but also subject to the
subjective judgment and work experience of the radiologist, resulting in unreliable results.
Long working hours can cause workers to lose concentration, resulting in some defects
not being detected. Steel pipes used to transport oil or natural gas over long distances
often have harsh working conditions, are difficult to maintain, and are always under high
pressure. The weld is the weakest area of the steel pipe. If there are untreated defects
in the weld, it may cause the steel pipe to leak. The leaked oil and natural gas will not
only bring the risk of combustion and explosion, but also cause irreparable damage to the
environment. Therefore, it is crucial to propose a weld defect detection model.

There are already some weld defect detection models based on convolutional neural
networks, but they often do not consider the image quality of the weld. In practical
production, the contrast of the weld seam image can vary significantly. The weld seam
in Figure 2a has a thicker seam due to a thinner steel pipe thickness, resulting in a clear
boundary between the seam area and other background areas, which is easy to separate.
The shape of the weld seam investigated in this paper is depicted in Figure 3. The exterior
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and interior of the steel pipe have been polished, and the weld seam has the same wall
thickness as the steel pipe itself. This results in a low contrast X-ray image, and such
low-contrast images can make defect detection extremely difficult.

Figure 1. X-ray equipment. The transport device can automatically transport the steel pipes to the
shooting room and automatically transport them out after the shooting is completed.

Figure 2. Images of the weld seam: (a) the inside of the weld; (b) the outside of the weld; (c) the
cross-section of the steel pipe and the weld.

Moreover, the background of the weld images is complex, there is no clear boundary
between the defects and the background, and there are many types of welds with large size
differences. The above factors bring great challenges to weld defect detection.

At present, many models based on convolutional neural networks have been applied
to weld defect detection and have achieved certain results. However, most of these models
only use advanced target detection models and do not consider the characteristics of weld
defects. It often cannot achieve good results when detecting defects with blurred edges
and unclear features.

In this paper, we propose a gray value curve enhancement (GCE) module to improve
the image’s contrast. Second, we propose a high-precision target detection model called
WD-YOLO for detecting defects in weld images. The backbone can preserve fine-grained
information in weld images, extracting and fusing information in images more effectively.
Finally, we propose a dual attention mechanism for the YOLO head. We use different
attention modules for different defect sizes, which improves the model’s ability to segment
the foreground from the background while accounting for the model’s computational
requirements. We tested our object detection model on a self-built weld dataset and
achieved good results. In summary, our contributions are as follows:

(1) A simple and novel image enhancement module named GCE is proposed. It can
remove bad pixels in the image and can enhance the contrast of the image based on
the gray value curve. Moreover, this module can be very easily applied to other weld
defect detection models.
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(2) We propose an efficient backbone that adopts a high-performance feature extraction
module and many lightweight designs, making the model in this article have both
high speed and high performance.

(3) We design a dual attention mechanism tailored to different types of defect charac-
teristics and the actual needs of industrial production. Different attention modules
are designed for different defect sizes to balance model accuracy and speed, and to
significantly improve model recall rate.

Figure 3. X-ray images of the weld seam: (a) high-contrast X-ray image; (b) low-contrast X-ray image.

The organization of this paper is as follows. Section 1 reviews related work on X-
ray defect detection in weld seams. Section 2 introduces the process of the GCE module.
Section 3 introduces the proposed NeXt backbone, dual attention, and WD-YOLO weld
seam defect detection model. Section 4 presents comparative experiments as well as the
ablation results of the model. Finally, Section 5 provides a summary and discussion of
the paper.

2. Related Work

In the field of weld defect detection, there have been many traditional machine vision-
based methods. Shao et al. [5] proposed a method based on low-threshold segmentation
and Hough transform, which can detect weld defects with high certainty and avoid false
positives caused by noise. Zou et al. [6] used Kalman filtering to detect the continuity of
defect trajectories in image motion sequences, achieving real-time detection while avoiding
false alarms and demonstrating good robustness. Sun et al. [7] proposed a method based
on Gaussian mixture models to extract defect feature regions. They designed detection
and classification algorithms based on region features and determined the classifier’s
parameters through testing in actual production, achieving favorable results. Sun et al. [8]
used fuzzy pattern recognition to automatically detect various defects based on the variance
and contrast near the defects. Their detection method is simple and fast, enabling real-time
detection. Malarvel et al. [9] presented a weld defect detection and classification method
based on a multi-class support vector machine (MSVM), which can actively detect weld
defects. Chen et al. [10] employed fast independent component reconstruction for images
with defects and used a global threshold to segment porosity defects from difference images,
enabling the detection of various porosity defects without manual labeling. Li et al. [11]
used fast discrete curvelet transform and the maximum between-class variance method to
denoise the image and extract the weld area, followed by fitting the grayscale curve with a
third-order Fourier curve to segment the defect area. Dang et al. [12] proposed a method
that calculates the peak–valley index and the defect index from the grayscale curve of the
region of interest, determining the presence of defects through comparison.

With the advancement of deep learning technology, deep learning has been applied to
solve various problems [13–18], and more researchers have been exploring the application
of deep learning techniques to weld seam X-ray image defect detection. Jocher et al. [19]
proposed the YOLOv5 model, which has been iterated to version 7.0 in 2022. Due to its
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excellent detection performance, YOLOv5 is currently used in many tasks [20]. YOLOv8 is
the latest YOLO series model proposed by Ultralytics. YOLOv8 has higher model perfor-
mance than YOLOv5. Chen et al. [21] proposed an AF-RCNN with attention mechanisms
and combined ResNet with Feature Pyramid Network (FPN), achieving better accuracy
and lower training loss compared to Faster-RCNN. Tao et al. [22] used an attention multi-
hierarchical feature fusion network (AMHNet) to recognize defects and achieved excellent
performance on the NPU-DRD dataset. Li et al. [23] introduced a novel Trident Net, utiliz-
ing dilated convolutions to significantly improve model performance without additional
parameters and computational cost. Dong et al. [24] introduced an unsupervised local
deep feature learning method, achieving results comparable to supervised learning by
generating pseudo-labels through alternating feature clustering and training CNN using
these labels. Kumar et al. [25] proposed a fully automated weld seam detection framework
(W-VIF). Zhang et al. [26] presented a convolutional neural network-based defect detection
method, capable of effectively identifying circular defects in weld seams, even in images
with a wide range of grayscale values. Cheng et al. [27] introduced GhostBottleneck
modules and attention mechanisms in YOLOv5, significantly reducing model parameters,
making it suitable for embedded devices. Liu et al. [28] proposed an improved model
based on YOLOv3, using the EFE module and RMF module to make the model lightweight
while also improving performance. Yang et al. [29] proposed a YOLO-Xweld based on
YOLOv3-tiny. This model added the SPP module to the backbone and reduced the number
of detection heads, greatly lightening the model, allowing the model to be deployed on
embedded devices.

The aforementioned works focus primarily on images with relatively high contrast and
do not address the issue of low contrast weld seam images that are frequently encountered
in actual production. In images with low contrast, the aforementioned methods cannot
complete training and detection. YOLOv5-Ghost uses 1 × 1 convolution to generate half of
the feature maps, which greatly speeds up inference. However, because half of the feature
maps are not obtained by convolution from the upper feature map, the model accuracy
will decrease. YOLO-Xweld reduces the number of detection heads of YOLOv3 from 3 to
2, improving the computing speed and enabling it to be deployed in embedded devices.
However, due to the removal of the detection heads, the model’s large target detection
performance is insufficient. The aforementioned model’s excessive emphasis on enhancing
speed leads to a decline in its overall performance. YOLO-Xweld improves model speed
by sacrificing detection capabilities for large targets. However, there are many large defects
in weld images, and the focus of weld inspection is the performance of the model rather
than the inspection speed of the model. To address these concerns, we propose an effective
weld seam image enhancement algorithm for low-contrast images, stabilizing the quality
of images input into the YOLO model. Furthermore, we improved the YOLOv5 model by
replacing the backbone with a NeXt backbone specifically designed for weld seam defect
detection tasks and by adding dual attention mechanisms in the head. Experimental results
demonstrate that our model outperforms mainstream detection models and existing weld
seam defect detection methods, showing promising advantages.

3. Adaptive Enhancement

Due to the low contrast of X-ray images and the presence of image noise, some images
cannot be directly used for training and detection. To the best of our knowledge, no
one has proposed a solution to this problem. Therefore, we propose a gray value curve
enhancement (GCE) module for image enhancement and image noise removal. Noise can
impact the overall gray values of an image, resulting in ineffective results when gray value
stretching algorithms are applied. The noise in the image is mainly divided into salt and
pepper noise and Gaussian noise, but the number of noise points is very small. Therefore,
supplying the entire image to methods such as median filtering or Gaussian filtering may
result in the loss of edge information, leading to blurred and indistinguishable flaws. We



Sensors 2023, 23, 8677 5 of 16

propose a gray value curve improvement (GCE) module to improve the X-ray images. The
processing workflow is illustrated in Figure 4.

Figure 4. Adaptive contrast enhancement algorithm.

Firstly, due to the highly automated process of capturing weld seam images, the
position of the weld seam fluctuates only within a small range. Therefore, we can directly
determine the position of the weld seam and crop it into small patches of 320 × 320 pixels
(as shown in Figure 5a). Next, we analyze the histogram of the image, as it effectively
reflects the distribution of pixels in the image. We use the histogram to find the location
of the suspicious noise point and determine whether it is a noise point through its 8-field
information. We set the value of the noise point to the average of the point values of its
eight neighbors to remove the noise point. After removing bad pixels, the grayscale values
of the image pixel values will be concentrated in a smaller range, and we remap this part
of the pixel values to the range of 0–255. To reflect the differences between points with
the same pixel value in different areas, we adopt a pixel value calculation method that
combines four neighborhoods. The formula for remapping is as follows:

P′ = 255× 0.7P + 0.3Q
MAX−MIN

, (1)

where P′ is the final mapping result, P is the original pixel value of the point, Q is the
average of the four neighborhood pixels, MAX is the maximum pixel value in the original
image, and MIN is the minimum pixel value in the original image.

This mapping method distinguishes points with the same pixel value, and the pixel
values can be distributed as disparately as possible over a larger range, greatly enriching
the information of the image.

C = average(∑
δ

δ(i, j)2) (2)

where δ(i, j) = |i− j| is value interpolation between adjacent pixel values, and the term
average is for averaging.

If the C of the image is above the threshold, it indicates that the preprocessing is
complete, and we output the image for training and detection. If the C of the image is
below the set threshold, the above operations are repeated. Figure 5a is the image before
enhancement, with a C value of 19.9. We set the threshold to 70, and the enhanced image
is shown in Figure 5b. By comparing Figure 5a,b, we can easily observe that the image’s
contrast is greatly enhanced with the GCE module. Usually, image enhancement can be
completed in one iteration. For a small number of images, image enhancement can be
completed in two iterations. The defects in the red frame have clear areas of high brightness,
and this clear feature will significantly lessen the challenge of further detection.

The comparison diagram between the GCE module and other image processing meth-
ods is shown in Figure 6, in which all input images are processed by an image smoothing
algorithm. It can be seen from the figure that the processing results of Gaussian filtering
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and median filtering have almost no effect on the weld seam image. The histogram equal-
ization achieves effects similar to the GCE module. However, the image after histogram
equalization will lose much of the gray value information in the image. Comparing the
red boxes in Figure 6d,e, the image processed by the GCE module retains the light and
dark relationship inside the weld, while the center of the weld in the image after histogram
equalization has become completely black. Comparing the blue boxes of the two pictures,
we can find that there are more differences in the pixel values of the images processed by
the GCE module. Finally, histogram equalization can also cause bad pixels to reappear in
the image. In summary, the GCE module we proposed can greatly enhance the contrast of
the image while retaining the greatest extent of image information.

Figure 5. Images before and after enhancement: (a) original image, cropped from Figure 2b; (b) en-
hanced image. The red box in the image is the position of the defect.

Figure 6. Images processed by different methods: (a) the original image; (b) image after Gaussian
filtering; (c) image after median filtering; (d) image after histogram equalization; (e) image enhanced
by GCE module.
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To ensure the fairness of the experiment, all experiments use enhanced images for
training and testing, except for the comparison experiment of the GCE module.

4. Proposed Method
4.1. WD-YOLO

We propose the WD-YOLO model for weld defect detection, and the structure of
WD-YOLO is shown in Figure 7. The original weld image is processed by the stem layer
for down-sampling and initial feature extraction. Then we use three stacked NeXt blocks to
extract and fuse feature information in the feature map. Each NeXt block will halve the size
of the feature map, and the final feature map output from the NeXt backbone is 1/32 of the
original input weld image. In the YOLO head, we retained the feature pyramid network
(FPN) and path aggregation network (PAN) structure from YOLOv5. This structure can
combine feature maps of different sizes, enabling the model to detect targets of different
scales. Additionally, we added dual attention methods for various levels of the feature
pyramid. We created the C3_CBAM layer by adding the CBAM attention mechanism [30]
to the C3 layer to detect larger objects. Further, we added the BRA attention module [31] to
the lower-level layers to improve the model’s ability to effectively recognize small objects.
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Figure 7. Structure of WD-YOLO. WD-YOLO adopts a new backbone and embeds a dual attention
mechanism in the head while retaining the feature pyramid and path aggregation network structure.

4.2. Stem Layer

The stem layer is used to remove redundant information in the original image, reduce
the resolution of the image, and extract the initial features of the image. YOLOv5 down-
samples the original image using a 6 × 6 convolution with a stride of 2. However, such a
large convolution kernel will result in the loss of detailed information, which is crucial for
the detection of weld defects. In WD-YOLO, inspired by the patchify stem in Vit [32], we
propose the stem layer, which consists of non-overlapping convolution kernels of small
convolution kernels and layer normalization (LN) layers. The structure of the stem layer is
shown in Figure 6.

The non-overlapping convolutional layer is a convolution operation in which the stride
and convolution kernel size are identical. Because some defects have the characteristics of
small size and blurred boundaries, using large kernel convolution in the first layer of the
input will lose a lot of important fine-grained information. Therefore, in the stem layer, we
use 2 × 2 non-overlapping convolutions with a stride of 2, and the output feature map size
is the same as a 6 × 6 convolution with a stride of 2.



Sensors 2023, 23, 8677 8 of 16

Batch normalization (BN) is a prevalent strategy for training convolutional neural
networks that can effectively address the gradient problem and accelerate the model’s
convergence. However, an improper batch size configuration will diminish the performance
of the model. Therefore, in WD-YOLO, we replace the BN layer with the LN layer. The LN
layer normalize all features of each sample, which eliminates the impact of the batch size
on the model performance and is more friendly to the training equipment.

4.3. NeXt Block

In this paper, we propose the NeXt block for feature extraction and fusion. We integrate
some design concepts from Transformer in the NeXt block to enhance the performance of the
model. The NeXt block consists of several NeXt-Conv layers and one down-sample layer.

The NeXt-Conv layer aims to increase the network’s ability to extract features by
increasing its depth. As illustrated in Figure 8, the NeXt-Conv layer is composed of a
layer of group convolution, a channel shuffle layer, and two pointwise (PW) convolution
layers. Group convolution groups the input feature maps, convolves each group with a
distinct convolution kernel, and then merges the resulting feature maps. This operation
can considerably reduce the number of parameters and accelerate the model’s inference
speed. We refer to the design of ConvNeXt [33], using a 7 × 7 convolution.

Figure 8. Structure of the NeXt-Conv layer.

Due to the grouped convolution dividing feature maps into several small groups,
all computations are performed within each group, resulting in a decrease in the feature
correlation between different groups and ultimately leading to a drop in model accuracy.
Therefore, we employed a combination of channel shuffle and PW convolution to address
this issue. Channel shuffle, initially introduced in ShuffleNet [34], is used to increase
channel interaction between different groups in grouped convolutions, and the process is
illustrated in Figure 9. This operation recombines several sets of feature maps obtained from
GConv1 into new groups. Specifically, it first rearranges G groups of N-dimensional feature
maps into a G × N 2-dimensional matrix and then transposes the matrix. Subsequently,
the transposed matrix is reconverted back into G groups of N-dimensional feature maps.
Channel shuffling requires only a small amount of calculation to eliminate the barriers
between different convolution groups, which significantly improves the expressive ability
of the model.

Then, we utilize two pointwise (PW) convolutions to extract deep features. The
channel design of these two PW convolution layers differs from the traditional bottleneck
layer, with inspiration drawn from the concept of channel expansion first introduced in
MobileNetV2. The first PW convolution layer is referred to as the expansion layer, where
the channel expansion factor is determined by the expansion factor, set to four in our model.
After passing through the first PW convolution layer, the number of channels becomes four
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times the original. The second PW convolution layer is called the extraction layer, aiming
to extract features from the feature maps.

Figure 9. Channel shuffle with two stacked group convolutions: (a) two stacked convolution layers
with the same number of groups. Each output channel only relates to the input channel within the
group; (b) input and output channels are fully related when GConv2 takes data from different groups
after GConv1; (c) an equivalent implementation to (b) using channel shuffle.

In traditional bottleneck layers, feature maps are mapped to a lower dimension and
then restored to the original dimension. During this dimension transformation process,
some loss inevitably occurs due to the inability of the low-dimensional features to fully
represent the high-dimensional features, thus affecting the model’s accuracy. The NeXt
layer transforms the input feature map into a higher dimension. The higher dimension
makes the feature information richer and has more parameters for learning.

The down-sampling layer compresses the extracted features and expands the model’s
receptive field. YOLOv5 uses a 3× 3 convolution with a stride of 2 to extract the information
of the input feature map and halve the size of the feature map. Since the input here is the
feature map extracted by the network, which contains much less redundant information
compared to the original image, we use the non-overlapping convolution for this operation.
The structure of the down-sampling layer is like the stem layer, comprising an LN layer
and a 2 × 2 convolution with a stride of 2.

The type and number of activation functions significantly impact the model’s perfor-
mance. Activation functions often have very small gradients in the negative region, leading
to the death of some neurons and information loss. Therefore, having fewer activation
functions helps the model retain critical features. We added only the SiLU activation
function in between the two PW convolution layers.

4.4. Dual Attention Mechanisms

The attention mechanism has been widely used in deep learning. In the task of
X-ray weld defect detection, employing attention mechanisms can help the model better
distinguish foreground and background [35], thus improving detection accuracy. This
paper proposes a dual attention mechanism. Specifically, we design different attention
mechanisms for different levels to improve the performance of the model while saving
computation.

We incorporate the Convolutional Block Attention Module (CBAM) attention mech-
anism [30] into the C3 module in the large and the mid object detection layer, namely,
C3_CBAM (Figure 10). CBAM consists of two independent sub-modules, namely the
Channel Attention Module (CAM) and the Spatial Attention Module (SAM), as illustrated
in Figure 11.
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Figure 10. Structure of C3_CBAM and bottleneck_CBAM.

Figure 11. The overview of CBAM.

The CAM (Figure 12) first applies max-pooling and average-pooling operations to
the input feature map F, which helps remove redundant information and compress the
features. The pooled results are then fed into a shared multi-layer perceptron (MLP) for
further compression. The compressed feature maps are added together and passed through
a sigmoid activation function to obtain the final channel attention weight Mc. Finally, the
channel attention weight Mc is multiplied with the input feature map F to obtain the output
feature map F’ (channel-refined feature F’).

Figure 12. Diagram of each attention sub-module.

The SAM (Figure 12) focuses on the positional information in the image and takes
the output feature map F’ from the channel attention as its input. The SAM first performs
max-pooling and average-pooling operations along the channel dimension of F’ and then
combines the pooled feature maps. The combined feature map is then compressed using a
convolutional layer with a kernel size of 7 × 7. The compressed single-channel feature map
is passed through a sigmoid activation function to generate the spatial attention weight
Ms. Finally, Ms is multiplied with F’ to obtain the final output feature map with spatial
attention F”.

In a model without an attention mechanism, the weight of all feature maps and each
feature vector obtained by convolution is the same. These include defect features we need
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to detect and irrelevant background features. The CBAM attention mechanism can learn to
give different weights to different feature maps and feature vectors, which can help the
model better distinguish between the foreground and the background.

We utilize the Bi-Level Routing Attention (BRA) mechanism [31] in the small object
detection layer to enhance the model’s ability to detect minute defects. BRA divides the
self-attention calculation into two stages. In the first stage, BRA divides the input feature
map into large patches and calculates the relationship matrix between large patches through
self-attention. In the second stage, BRA will subdivide the large patch into smaller patches
and only calculate the attention between related patches according to the relationship
matrix calculated in the first stage. BRA is a lightweight self-attention mechanism based on
sparse sampling, which has good results in small target detection.

5. Experiments
5.1. Experiment Environment

This experiment was conducted using the Windows 11 operating system, with an
AMD Ryzen 9 5900X CPU and an NVIDIA RTX4090 GPU. The deep learning framework
used is PyTorch 2.0.1, and the CUDA version is 12.1. The learning rate is 0.001, and the
momentum factor is 0.937. The input image size is 320 × 320, and the batch size is 16. The
model was trained for 300 epochs. Our model was trained for a total of 42 h.

5.2. Dataset

This experiment used a self-built dataset of welding seam defects, and the X-ray
images were sourced from the small welding pipe workshop of Zhejiang Jiuli Hi-Tech
Metals Co., Ltd., Huzhou, China. The dataset contains a total of 3153 weld defect images,
including 724 pit images, 421 plate-hole images, 874 plate-injury images, 557 misalignment
images, 217 inclusion images, 357 porosity images, and 363 undercut images. The images
were divided into training and testing sets in an 8:2 ratio. Except for experiments that
demonstrate the effectiveness of the GCE module, all images input to the model use the
GCE module for adaptive contrast enhancement.

5.3. Evaluation Indicators

We use precision, recall mAP@0.5, and FPS as metrics. The precision indicates the
proportion of real defects among all detected defects; higher precision corresponds to a
lower false detection rate. It is calculated as shown in Equation (3):

precision =
TP

TP + FP
. (3)

The recall rate indicates the proportion of detected defects to all defects; higher recall
corresponds to a lower miss detection rate. It is calculated as shown in Equation (4)

precision =
TP

TP + FN
. (4)

The mAP@0.5 indicates the average precision rate of all detection results with an
intersection ratio greater than 0.5; mAP@0.5 is an important indicator to measure the overall
performance of the model. We use GFLOPs and Params to measure the computational
complexity of the model. Then, we use FPS to measure the speed of the model during
inference. The higher the FPS, the faster the model.

Miss detection will treat unqualified steel pipes as qualified steel pipes. Unqualified
steel pipes are at risk of rupture. Whether a pipe rupture occurs in a factory or in a
residential building, it can cause huge economic losses and safety risks. False detection will
cause the steel pipes to enter the repair assembly line, and the losses caused by incorrect
inspections are much smaller than missed inspections. Therefore, the recall of the model is
more important than the precision of the model.
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5.4. Comparative Experiment

We compared our model with YOLOv8, YOLOv5, YOLOv5-Ghost [27], LF-YOLO [28],
and YOLO-Xweld [29] on the self-built dataset to prove the superiority of WD-YOLO.
YOLOv8 is the latest model of the current YOLO series. YOLOv5 is currently a model that
is widely used in actual production. Yang [36] and others applied YOLOv5 to detect weld
defects. YOLOv5-Ghost is a lightweight model of YOLOv5. LF-YOLO and YOLO-Xweld
are two improved models based on YOLOv3.

The experimental results are presented in Table 1.

Table 1. Comparison with defect detection methods.

Method Precision Recall F1 mAP@0.5 FPS GFLOPs Params (M)

YOLOv8-L 0.857 0.775 0.814 0.902 87 165.2 43.7
YOLOv5-L 0.812 0.809 0.810 0.854 91 109.6 46.5

YOLOv5-Ghost 0.773 0.772 0.773 0.853 212 11.4 5.3
LF-YOLO 0.825 0.904 0.863 0.914 178 1.8 1.1

YOLO-Xweld 0.763 0.806 0.784 0.883 164 3.6 4.6
WD-YOLO (Ours) 0.834 0.923 0.876 0.926 98 94 38.8

YOLOv8 has the highest accuracy rate, which is 2.3% higher than WD-YOLO, but the
recall rate of YOLOv8 is 14.8% lower than that of WD-YOLO, and the inference speed of
YOLOv8 is also slower than our model. The accuracy of YOLOv5 is lower than YOLOv8,
but the recall rate is higher than YOLOv8; however, all indicators are lower than WD-
YOLO. LF-YOLO also showed excellent performance on our self-built dataset. The recall
rate of LF-YOLO reached 0.904, which is only 1.9% lower than WD-YOLO. The mAP@0.5 of
LF-YOLO is only 1.2% lower than WD-YOLO. Due to the lightweight design of LF-YOLO,
the inference speed of LF-YOLO is much faster than that of WD-YOLO, reaching 178 FPS.
YOLO-Xweld is mainly used to detect small targets and deletes the detection head for
detecting large targets. It performs poorly on our dataset, with a precision 7.1% lower than
our model and a recall rate 12.3% lower than our model. Additionally, mAP@0.5 is 4.3%
lower than our model. However, due to its lightweight design, the model’s inference speed
is also much faster than our model.

In terms of model inference speed, our model is inferior to various lightweight models.
However, because our model also adopts a lightweight design, the overall inference speed
is better than the original YOLOv5 and YOLOv8 models. The primary limiting factor in the
efficiency of weld quality inspection during actual production is predominantly attributed
to the speed at which X-ray pictures are captured. Therefore, the inference speed of our
model can still meet the requirements.

Figure 13 presents representative experimental results of the YOLO series models and
other advanced weld defect detection models.

The characteristic of injury is that it often appears densely. As can be seen from
Figure 13, only YOLO-Xweld and WD-YOLO detected three defects. Misalignment is a
large-sized defect that usually spans several X-ray images. YOLO-Xweld does not detect
this defect because it deletes the detection head of the large target. The shapes of porosity
and pit are very similar, and the original YOLO series models both experienced false
detections. In the detection of undercut defects, YOLOv5-L missed one defect, and LF-
YOLO merged the two defects into one.

In actual production, the detection of defects does not mean that the entire steel
pipe will be discarded. Workers will assign defective steel pipes to different maintenance
lines based on the test results. Missing detection of defects will cause the steel pipe to
be regarded as a qualified steel pipe, causing hidden dangers for future use. Incorrectly
detecting defects will cause steel pipes to be assigned to the wrong maintenance lines,
wasting time and human resources. Most of the defects detected by X-ray images are not
visible on the surface, and workers need to repair the steel pipe based on the inspection
results of the model. If the location of the detected defects is inaccurate or if multiple
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defects are merged into one defect, it will mislead workers and lead to incomplete repairs,
causing safety hazards.

Figure 13. Detection results: (a) results of YOLOv5; (b) results of YOLOv8; (c) results of YOLOv5-
Ghost; (d) results of YOLO-Xweld; (e) results of LF-YOLO; (f) results of WD-YOLO.

Based on the above analysis, we can conclude that WD-YOLO outperforms other
state-of-the art models on our dataset.

5.5. Ablation Experiment

To validate the effectiveness of the proposed improvements, comparative ablation
experiments were conducted using YOLOv5-L as the baseline model. Specifically, the NeXt
backbone and the dual attention mechanism were separately tested as validation modules.
The training outcomes are presented in Table 2.

Table 2. Ablation experiment.

Method Precision Recall mAP@0.5

YOLOv5-L with CBAM and BRA 0.795 0.872 0.885
WD-YOLO (no attention) 0.894 0.805 0.909

WD-YOLO with BRA 0.709 0.865 0.773
WD-YOLO with CBAM 0.901 0.772 0.875

WD-YOLO (Ours) 0.834 0.923 0.926

It can be observed that directly applying the dual attention mechanism of this paper
on YOLOv5-L has increased the recall rate by 6.3%; the accuracy rate has decreased by 1.7%;
the mAP0.5 has increased by 3.1%; and the overall performance of the model has increased
slightly. Using only the BRA attention mechanism will greatly reduce the accuracy of the
model, indicating that BRA is not suitable for use alone in the task of weld detection. Using
only the CBAM attention mechanism will improve the accuracy of the model, reaching
90.1%, which is also the structure with the highest accuracy among various improved
models. However, the recall rate of the WD-YOLO network using only CBAM is low,
and the model’s mAP@0.5 is also lower than WD-YOLO without an attention mechanism.
According to the above experimental results, we can conclude that the single attention
mechanism does not improve the model significantly, and the performance of the model
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even declines; however, the dual attention module can effectively improve the performance
of the model.

Compared with the YOLOv5 with a double attention mechanism, the model pro-
posed in this paper has a 3.9% increase in accuracy, a 5.1% increase in recall rate, and a
4.1% increase in mAP@0.5, indicating that the NeXt backbone is more suitable for weld
detection tasks.

5.6. Batch Norm and Layer Norm Experiment

We also conducted comparative experiments on the improvement proposed earlier,
which involves replacing BN with LN. As discussed earlier, BN normalization is performed
per batch, thus being influenced by batch size, whereas LN normalization is performed
across all features of each individual sample. This means that the model’s performance
will not be affected by batch size, allowing for the use of smaller batches during training.
Smaller batches, in turn, require less memory and GPU memory, making them more
resource-friendly for training devices.

In the comparative experiments, we applied WD-YOLO with both BN and LN in
the backbone, using different batch sizes for comparison. The experimental results are
shown in Table 3. It can be observed that the WD-YOLO model with LN shows only a
1.6% difference in mAP@0.5 across various batch sizes, indicating relatively consistent
performance. The slight performance decrease could be due to the continued use of BN in
the C3 module and convolutional blocks in the head section. On the other hand, the model
with BN in the backbone is more significantly affected by batch size, and it is apparent that,
as the batch size increases, the model’s performance gradually improves.

Table 3. Batch size experiment.

Method Precision Recall mAP@0.5

WD-YOLO BN (bs = 2) 0.776 0.792 0.831
WD-YOLO BN (bs = 16) 0.808 0.906 0.874
WD-YOLO LN (bs = 2) 0.831 0.840 0.91

WD-YOLO LN (bs = 16) 0.834 0.923 0.926

5.7. GCE Module Experiment

We use a comparative experiment to prove the effectiveness of the GCE module. In
this experiment, we use the image before enhancement and the image after enhancement,
respectively.

Table 4 shows the experimental results of the GCE module experiment. Whether it is
YOLOv5 or WD-YOLO, if the GCE module is not added to enhance the input image, it is
almost impossible to detect defects normally.

Table 4. GCE module experiment.

Method Precision Recall mAP@0.5

YOLOv5-L without GCE 0.187 0.334 0.216
YOLOv5-L 0.812 0.809 0.854

WD-YOLO without GCE 0.152 0.270 0.174
WD-YOLO 0.834 0.923 0.926

6. Conclusions

This paper presents an enhancement algorithm for low-contrast X-ray images and an
improved YOLOv5 network for weld defect detection. We adaptively remove image arti-
facts based on pixel distribution and image resolution, followed by an adaptive grayscale
stretching based on the grayscale curve of the artifact-removed image to achieve image
enhancement. WD-YOLO is our proposed enhanced network, where we design a new back-
bone for weld defect detection tasks. This backbone employs group convolutions, channel
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shuffling, and inverted bottleneck layers. Additionally, in the head part of WD-YOLO,
we introduce an attention mechanism to adapt the model to small objects and complex
imaging environments. Compared to models of similar scale like YOLOv5-L, our model
exhibits superior detection performance and faster inference speed. While our detection
model is slightly slower than lightweight models in terms of detection speed, its accuracy
surpasses that of lightweight models. We deployed the model to analyze the weld quality
inspection line of Jiuli Co., Ltd. In actual tests, the detection speed of our model is faster
than the speed of taking X-ray images, which fully meets the speed requirements in actual
production. However, Jiuli Co., Ltd. employees told us that there are still some very rare
defects that are not included in our dataset, so our model does not have the ability to detect
such defects. In future work, we will continue to improve our dataset so that our model
can detect more types of defects.
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