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Abstract: Depressive disorder (DD) has become one of the most common mental diseases, seriously
endangering both the affected person’s psychological and physical health. Nowadays, a DD diagnosis
mainly relies on the experience of clinical psychiatrists and subjective scales, lacking objective,
accurate, practical, and automatic diagnosis technologies. Recently, electroencephalogram (EEG)
signals have been widely applied for DD diagnosis, but mainly with high-density EEG, which can
severely limit the efficiency of the EEG data acquisition and reduce the practicability of diagnostic
techniques. The current study attempts to achieve accurate and practical DD diagnoses based on
combining frontal six-channel electroencephalogram (EEG) signals and deep learning models. To
this end, 10 min clinical resting-state EEG signals were collected from 41 DD patients and 34 healthy
controls (HCs). Two deep learning models, multi-resolution convolutional neural network (MRCNN)
combined with long short-term memory (LSTM) (named MRCNN-LSTM) and MRCNN combined
with residual squeeze and excitation (RSE) (named MRCNN-RSE), were proposed for DD recognition.
The results of this study showed that the higher EEG frequency band obtained the better classification
performance for DD diagnosis. The MRCNN-RSE model achieved the highest classification accuracy
of 98.48 ± 0.22% with 8–30 Hz EEG signals. These findings indicated that the proposed analytical
framework can provide an accurate and practical strategy for DD diagnosis, as well as essential
theoretical and technical support for the treatment and efficacy evaluation of DD.

Keywords: depressive disorder (DD); electroencephalogram (EEG); beta rhythm; convolutional
neural network (CNN); long short-term memory (LSTM); deep learning

1. Introduction

Depressive disorder (DD) is characterized by depressed mood, lack of interest, and loss
of pleasure, accompanied by corresponding changes in thinking and behavior [1–3]. It is
estimated that DD affects more than 300 million people worldwide and covers a wide range
of people [4]. According to the World Health Organization, DD is the largest single factor
of global disability [5]. As a common mental disease, DD substantially jeopardizes people’s
regular life, family, and daily work [6–8]. A report in The Lancet claimed that the ratio of
DD increased from 9.7% in 2019 to 19.8% in 2020 [9]. The onset of DD is related to a variety
of factors, including genetics, environment, individual experience, physiological factors,
and gender differences. Previous studies have reported a consistently higher incidence of
DD for females than for males [10,11]. Patients with DD lack self-cognition. It is difficult for
them to realize that they are suffering from complex psychiatric disorders like DD and may
engage in risky behaviors as a result. However, if DD is diagnosed in time and correctly,
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patients can receive treatment and obtain good curative effects [12]. To sum up, the accurate
and practical diagnosis of DD is crucial for patients.

The majority of current diagnostic techniques of DD rely on subjective scale assess-
ments and the clinical expertise of professional psychiatrists according to the diagnostic
criteria of DD, such as the Diagnostic and Statistical Manual of Mental Disorders (DSM-5).
Psychiatrists can understand the symptoms and manifestations of patients with DD [13,14],
including psychological, emotional, and behavioral changes, through these subjective
assessment methods. It is well known that different psychiatrists may have different di-
agnostic results for the same patient with DD, and the diagnostic accuracy varies greatly
and is highly subjective [15,16]. To make the diagnosis process of DD more objective and
accurate, intelligent diagnostic technology has become a research hotspot [17,18].

Neuroimaging techniques have been widely used to explore the alterations in brain
functions in recent years, such as electroencephalogram (EEG) [19], magnetoencephalogram
(MEG) [20], functional magnetic resonance imaging (fMRI) [21], etc. These brain imaging
techniques have also been applied to understanding the neuromechanisms and realizing
the automated intelligent diagnosis of mental disorders [22–24]. Due to the advantages of
being non-invasive, economical, and easy to operate, the EEG technique has high research
and application values in brain-science-related studies [25,26]. It has been reported that
EEG signals have apparent changes in different frequency bands and regions in patients
with DD [27–29]. Based on our brain functional mechanism of DD [19], it has been found
that the important neuro-electrophysiological characteristics of DD are mainly distributed
in the frontal region of the brain. Meanwhile, the response effects of antidepressant drugs
are also related to the dynamic change in EEG power in the frontal region [30,31]. To sum
up, this study attempted to achieve high DD recognition accuracy using frontal six-channel
EEG signals in combination with deep learning algorithms to improve the practicability of
DD diagnosis [32].

Deep learning algorithms are evolving rapidly and are widely used in various fields.
A deep learning framework can automatically extract features from EEG signals and
eliminate the constraints of artificial features. Deep learning can effectively improve
the generalization ability of classifiers, which have been widely used in DD diagnosis
research [33,34]. Among them, a convolutional neural network (CNN) can learn and extract
feature representations that are robust to input data [35], which is the core of the current
best architecture for processing data. Acharya et al. [36] used a CNN to detect DD with
EEG features and obtained high accuracy. The long short-term memory network (LSTM) is
another commonly used deep learning algorithm which has shown excellent performance
with many time series data. Combining these two types of networks for EEG signals, Betul
et al. developed a deep hybrid model based on CNN-LSTM architecture to classify the
EEG signals of left and right hemispheres and obtained accuracies of 99.12% and 97.66%,
respectively [37]. In brief, deep learning algorithms have a good application prospect in
DD recognition research.

This study attempted to achieve a high-accuracy and practical model for DD diagnosis
with frontal six-channel EEG data. Based on prior research, two deep learning models,
multi-resolution CNN (MRCNN) combined with LSTM (named MRCNN-LSTM) and
MRCNN combined with residual squeeze and excitation (RSE) (named MRCNN-RSE),
were proposed for comparison. Both of these models involved MRCNN to extract the
time–frequency domain aspects of EEG features, but two different strategies were used for
further extraction and the processing of the extracted features. In addition, the classification
performance of each rhythm is also discussed in this study to verify the significant change
in beta rhythm in DD patients.

2. Materials and Methods
2.1. Subjects

All DD patients, excluding those with depressive episodes due to bipolar disorder,
were collected from the designated hospital for psychosis, and the HCs were selected from
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the local community after a professional screening. We randomly recruited 41 patients with
DD (10 males and 31 females, respectively). This is consistent with the existing reports that
the prevalence of depression is higher in females than in males. Meanwhile, in order to
retain this original imbalance the in control group, we randomly selected 34 HCs (11 males
and 23 females, respectively). All participants completed the Hamilton Depression scale
(HAMD) before EEG data collection. All the HCs had a HAMD score of less than 7, while
DD patients had a HAMD score of more than 17. All included subjects were right-handed
and prohibited from drinking alcohol and taking psychotropic drugs for 8 h before EEG
recording. The age of patients with DD ranged from 19 to 61 years old, with an average age
of 45.22 ± 11.80 years old. The age of the HCs ranged from 21 to 57 years, with a mean age
of 40.18 ± 11.67 years. There was no significant difference in age between the DD group
and the HC group, and there was a significant difference in HAMD-17 scores, as shown in
Figure 1 for basic information. The experiment was approved by the Ethics Committee of
Zhejiang Normal University, and all participants signed a written informed consent form
before the experiment.
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2.2. Data Acquisition and Preprocessing

In the study, we collected 10 min of resting-state 16-channel EEG data from each
subject. The EEG acquisition device used in this study was an EEG TS215605 from Nicolet
Company. The EEG channels’ names and positions are shown in Figure 2. The subjects
were asked to sit in a chair in a comfortable sitting position with their eyes closed and their
attention focused on their breathing. Data acquisition was arranged in the professional
EEG lab. The whole EEG collection was implemented in a quiet environment. As is well
known, the installation time for EEG recording is highly related to the number of electrodes,
especially for non-specialists. An increase in the number of electrodes will naturally lead to
high test complexity, high analysis difficulty, and high time and economic costs, which can
constrain the practical applications of EEG-related products and systems, particularly to the
detriment of large-scale DD early-screening applications in schools and communities. Based
on our previous research on DD and the consideration of the accuracy and practicability
of the algorithm, this study selected six frontal EEG electrodes (shown in Figure 2) for
DD diagnosis.
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During the acquisition of EEG signals, it is easy to be disturbed by various factors such
as the environment, self-physiologies, and body movements. These noises can negatively
affect the signal quality. Preprocessing is a very important step in EEG data analysis which
can effectively improve the signal-to-noise ratio of the EEG signal and provide a reliable
basis for subsequent analysis and interpretation. The specific steps of EEG preprocessing
in this study are as follows:

(1) Downsampling

Downsampling refers to a reduction in the high sampling rate to a lower sampling
rate for the EEG signal, which mainly aims to reduce the amount of data and improve
computational efficiency. In this study, the original EEG signal sampling rate was reduced
from 250 Hz to 125 Hz.

(2) Baseline Correction

The main purpose of baseline correction is to eliminate the direct current (DC) offset
generated by the recorded signal, which affects the accuracy and comparability of the
signals. The baseline correction performed on the EEG signal can remove the DC offset to
make the mean of the signal become zero.

(3) Artifact Removal

The purpose of artifact removal is to improve the signal-to-noise ratio and to better
reveal the information contained in the EEG signal. The common artifacts in EEG signals
include electromyography artifacts, electrocardiograph artifacts, eye movement artifacts,
head movement artifacts, etc. In this study, independent component analysis (ICA) was
used to remove the artifacts.
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(4) Data segmentation

In this study, 4 s continuous EEG data were selected as the sample without data
superposition, resulting in 9354 samples for the DD group and 7443 samples for the
HC group.

(5) Filtering

Bandpass filtering is used to remove unwanted frequency components from the signal,
preserving the signal in a specific frequency range. By setting the cut-off frequency, the
bandpass filter filters out the signals below or above the frequency, and only the signals
within the range are retained. In this study, a 4-order Butterworth bandpass filter was
applied to the EEG data to extract the specific frequency range, such as theta (4–8 Hz),
alpha1 (8–10 Hz), alpha2 (10–13 Hz), beta (13–30 Hz), 4–30 Hz, 8–30 Hz, and 10–30 Hz.

After the above five preprocessing procedures, the extracted 4 s continuous EEG data
were set as the inputs of the proposed deep learning models to explore the DD diagnosis
accuracies of the different frequency ranges. Particularly, among these frequency ranges,
the 4–30 HZ EEG signals were called the original data because they included all rhythms in
this frequency range.

2.3. Deep Learning Model Framework

In this current study, two deep learning models, MRCNN-LSTM and MRCNN-RSE,
were proposed for DD diagnosis. These two models were improved and derived from the
reports of previous studies that CNN-LSTM and CNN are the most commonly used basic
model frameworks in the DD detection field. In order to make the results more persuasive,
we selected four representative deep learning models according to the recent references
and applied them to our EEG data. These four models did not change their structures; they
only changed their parameters to fit our data. The specific descriptions of these models are
as follows.

2.3.1. MRCNN-LSTM Model Framework

The MRCNN-LSTM model structure is shown in Figure 3, and it mainly includes two
parts: MRCNN and LSTM. The first part of MRCNN uses three branches with different
convolution kernel sizes in parallel to extract EEG features with the CNN model. Each
branch uses a convolution kernel with different sizes to extract features with different
scales, and uses the ReLU activation function for nonlinear transformation to enhance
feature expressiveness. In the second part of LSTM, the features are spliced and input
into an LSTM layer to extract the timing information from the EEG features. The LSTM
layer remembers the previous state through a long short-term memory unit with a gating
mechanism and updates the state according to the new information input to capture the
temporal dependence of the data. The output of the LSTM layer is fed into a fully connected
layer and a Dropout layer to improve the generalization ability of the model and suppress
overfitting. Finally, binary classification is implemented by a softmax classifier to predict
the labels of the inputs.
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2.3.2. MRCNN-RSE Model Framework

In accordance with the existing research results, a CNN model with multi-resolution
convolution kernels (MRCNN) is proposed in this study. As shown in Figure 4, the MRCNN
model contains two branches with two different convolution kernels. Three convolutional
layers and two maximum pooling layers are used in each branch. The convolution kernels
used in the first branch are set as 4, 3, and 3, respectively. The convolution kernels of the
second branch are set as 10, 3, and 3, respectively. In addition, each convolutional layer
includes a normalization layer for normalizing the input data, and a Gaussian error linear
unit (GELU) is used as the activation function; it is smoother than the traditional ReLU
activation function and can better deal with nonlinear features.
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To improve the learning performance of the MRCNN model, a calibration module was
designed for the features extracted by the convolutional layer to model the interdependence
between the features. The residual squeeze-and-excitation (RSE) block was used in the
MRCNN model, which is named MRCNN-RSE for short, to adaptively select the most
discriminative features. Specifically, the RSE block adaptively selects and readjusts features,
helping the model to better utilize contextual information in its local sensory field. In the
calibration module, two convolutional layers with a kernel and step size of 1 are used
to further extract features, the adaptive pooling layer is used to compress the features,
and then two fully connected layers are used to aggregate the information. The first layer
uses the ReLU activation function to reduce the dimension, and the second layer uses the
sigmoid activation function to increase the dimension. The specific structure for the RSE
block is shown in Figure 5.
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To extract the interdependence between the extracted features in the MRCNN-RSE
model [38], the widely used self-attention mechanism is included in the model, which can
adaptively weigh the features of each position for the input data. Specifically, features
from each location interact with features from other locations to extract more global context
information. In this way, the model can better capture key features for the input data to
improve the model performance by assigning higher weights to regions of interest and
lower weights to regions of less interest. There are two Add and Normalize layers after the
features are weighted by the self-attention mechanism. Finally, the softmax layer is used as
the decision function.

2.3.3. Other Model Frameworks

(1) EEGNet

EEGNet is a compact convolutional neural network for EEG analysis. The EEGNet
algorithm has better generalization ability and higher performance with limited training
data. Liu et al. applied this deep learning framework, EEGNet, to depression diagnosis [39].
The framework consists of four main blocks: convolution, depthwise convolution, separable
convolution, and classification. In the convolution block, batch normalization is added. In
the depthwise convolutional block and separable convolutional block, batch normalization,
activation, average pooling, and Dropout are added. Finally, in the classification block,
the two categories, the DD group and the HC group, are identified directly using a fully
connected layer.

(2) DeprNet

Ayan Seal et al. proposed a deep learning model based on the convolutional neural
network, named DeprNet, for DD detection with EEG signals [40]. The DeprNet model
consists of five convolutional layers, five batch normalization layers, five max pooling
layers, and three fully connected layers. The softmax activation function is used in the last
fully connected layer and the leaky rectified linear unit (LeakyReLU) activation function
is used in all other layers, and finally, the classification is conducted using three fully
connected layers.

(3) 1DCNN-LSTM

Mumtaz et al. proposed a deep learning model combining one-dimensional CNN
(1DCNN) with LSTM (named as 1DCNN-LSTM) to detect depression [34]. The model of
1DCNN-LSTM is a cascaded formation of three 1D convolutional layers and two LSTM
layers. Max pooling and Dropout are embedded under each convolutional layer, and finally,
classification is performed using a fully connected layer.

(4) 2DCNN-LSTM

Zhang et al. proposed a 2DCNN-LSTM model to analyze the 128-channel EEG signals
for DD detection [35]. The model consists of four 2D convolutional layers and one LSTM
layer, with an activation function (Tanh) added after each 2D convolutional layer. Max
pooling is accessed after the second 2D convolutional layer for dimensionality reduction.
Dropout is accessed after the LSTM, and finally, the classification is performed using a fully
connected layer. Compared with the 1D convolutional layer, the 2D convolutional layer
can extract features in the spatiotemporal dimension, making it more capable for feature
extraction.

2.4. Model Evaluation

The confusion matrix is a matrix used to evaluate the performance of a classification
model, where each row represents the predicted class and each column represents the
actual class, as shown in Table 1. Each cell in the confusion matrix contains the number of
samples for the actual and predicted categories that are likely to be classified correctly (true
positive, TP; true negative, TN) or incorrectly (false positive, FP; false negative, FN). More
precisely, TP represents the number of samples that are positive and correctly predicted to
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be positive; FP represents the number of samples that are negative but incorrectly predicted
to be positive; FN represents the number of samples that are positive but incorrectly
predicted to be negative; TN represents the number of samples that are negative and
correctly predicted to be negative. Based on the confusion matrix, a series of evaluation
indices can be calculated, namely accuracy, precision, recall, and F1_score. As shown in
Formulas (1)–(4), accuracy refers to the proportion of correctly classified samples in the
total samples; precision refers to the proportion of correctly predicted positive samples in
all predicted positive samples; recall refers to the proportion of correctly predicted positive
samples in all positive samples; and F1_score is the harmonic average of the accuracy rate
and the recall rate.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2TP

2TP + FP + FN
(4)

Table 1. Confusion matrix.

Predicted Class
Actual Class

HC DD

HC TP FN
DD FP TN

In addition, for the training parameters of all deep learning models in this study,
batch_size was set as 32 and the maximum number of epochs was set as 200. A warmup
learning rate strategy was used, with an initial learning rate strategy of 5e-5, reaching 1e-3
after 20 rounds, and then gradually decaying to 5e-4, and the weight_decay was set as
0.001. Additionally, five cross-validations were used for all models to reduce the risk of
model overfitting and improve the generalization ability of the model.

3. Results
3.1. The Results of DD Classification Based on the MRCNN-LSTM Model

The results of DD classification based on the MRCNN-LSTM model are shown in
Table 2. The average accuracy rate of five cross-validation results is 95.34 ± 0.41%. Mean-
while, the accuracy of the theta rhythm, alpha1 rhythm, alpha2 rhythm, and beta rhythm
are 76.14 ± 0.81%, 76.90 ± 0.41%, 80.28 ± 0.66%, and 92.03 ± 0.37%, respectively. These
results indicate that a higher frequency band has a higher accuracy for DD recognition.

Table 2. The results of DD identification among four rhythms and the original data based on the
MRCNN-LSTM model.

Data Accuracy F1_Score Precision Recall

Theta 76.14 ± 0.81% 78.29 ± 1.16% 79.14 ± 1.45% 77.59 ± 3.28%
Alpha1 76.90 ± 0.41% 79.33 ± 0.37% 78.82 ±1.97% 79.98 ± 2.48%
Alpha2 80.28 ± 0.66% 82.56 ± 0.45% 80.98 ± 0.96% 84.21 ± 0.65%

Beta 92.03 ± 0.37% 92.78 ± 0.34% 93.27 ± 1.33% 92.33 ± 1.29%
Original Data 95.34 ± 0.41% 95.79 ± 0.33% 96.03 ± 1.44% 95.57 ± 1.10%

3.2. The Results of DD Classification Based on the MRCNN-RSE Model

As shown in Table 3 and Figure 6, the classification results based on the MRCNN-RSE
model have an accuracy of 98.47 ± 0.38% in DD recognition. Compared with the MRCNN-
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LSTM model in Table 2, the accuracies of the MRCNN-RSE are significantly improved
among all EEG rhythms and original EEG data. In addition, the DD recognition accuracy
of the beta rhythm is also higher than those of the other rhythms. As shown in Figure 6, the
results based on the MRCNN-RSE model have very smooth classification performances
after 100 epochs.

Table 3. DD identification results for the four rhythms and original data based on the MRCNN-RSE
model.

Data Accuracy F1_Score Precision Recall

Theta 80.75 ± 0.78% 82.64 ± 0.62% 83.17 ± 1.63% 82.18 ± 1.82%
Alpha1 79.15 ± 1.07% 81.31 ± 1.19% 81.24 ± 0.67% 81.42 ± 2.45%
Alpha2 83.27 ± 0.53% 84.73 ± 0.59% 85.92 ± 1.38% 83.63 ± 2.12%

Beta 97.13 ± 0.49% 97.36 ± 0.49% 98.30 ± 0.33% 96.44 ± 0.89%
Original Data 98.47 ± 0.38% 98.65 ± 0.36% 98.63 ± 0.46% 98.66 ± 0.51%
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depressive disorder.

3.3. Classification Performances for DD Diagnosis with Different Frequency Bands Based on
MRCNN-RSE Model

The results of the classification performances for DD diagnosis with 4–30 Hz, 8–30 Hz,
10–30 Hz, and 13–30 Hz EEG signals are shown in Table 4 and Figure 7. It is shown that
8–30 Hz obtained slightly better classification performances for DD diagnosis compared
with 4–30 Hz, with higher Accuracy and a lower standard deviation. In addition, the desired
classification performance was also obtained for 10–30 Hz, which was not statistically
different from the 4–30 Hz results. However, the 10–30 Hz classification performance was
significantly lower. The above results show that we can use higher-frequency bands in
the DD automatic diagnostic system, which can effectively improve the efficiency of EEG
signal preprocessing.
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Table 4. DD identification results with different frequency bands based on MRCNN-RSE model.

Frequency Band Accuracy F1_Score Precision Recall

13–30 Hz 97.13 ± 0.49% 97.36 ± 0.49% 98.30 ± 0.33% 96.44 ± 0.89%
10–30 Hz 98.07 ± 0.22% 98.15 ± 0.21% 98.43 ± 0.59% 97.87 ± 0.58%
8–30 Hz 98.48 ± 0.22% 98.58 ± 0.17% 99.08 ± 0.33% 98.08 ± 0.34%
4–30 Hz 98.47 ± 0.38% 98.65 ± 0.36% 98.63 ± 0.46% 98.66 ± 0.51%
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DD diagnosis based on MRCNN-RSE model. * represents p < 0.05, and ns represents no statistical
difference between the two groups.

3.4. Classification Performances for DD Diagnosis with Different Models Using 8–30 Hz
EEG Signals

It has been shown that 8–30 Hz EEG signals obtained the best classification perfor-
mances based on the MRCNN-RSE model. In this section, the performances of the EEGNet
model, the DeprNet model, the 1DCNN-LSTM model, the 2DCNN-LSTM model, and the
MRCNN-LSTM model are compared with that of the MRCNN-RSE model on the same
8–30 HZ EEG dataset. These models had the same training settings. The results of the
classification performances for DD diagnosis with these models are shown in Table 5. It is
shown that the average Accuracy of the EEGNet model, the DeprNet model, the 1DCNN-
LSTM model, the 2DCNN-LSTM model, the MRCNN-LSTM model, and the MRCNN-RSE
model on the same dataset is 90.07 ± 0.81%, 75.31 ± 0.45%, 87.37 ± 0.65%, 89.75 ± 0.29%,
95.38 ± 0.21%, and 98.47 ± 0.3%, respectively. The MRCNN-RES model still has the best
performance among these deep learning models.
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Table 5. The results of classification performances for DD diagnosis with different models using
8–30 Hz EEG signals.

Model Accuracy F1_Score Precision Recall

EEGNet [39] 90.07 ± 0.81% 90.65 ± 0.90% 90.55 ± 1.48% 90.83 ± 2.62%
DeprNet [40] 75.31 ± 0.45% 77.16 ± 1.66% 78.70 ± 2.73% 76.09 ± 5.47%

1DCNN-LSTM [34] 87.37 ± 0.65% 88.54 ± 0.48% 87.59 ± 2.75% 89.72 ± 3.21%
2DCNN-LSTM [35] 89.75 ± 0.29% 90.43 ± 1.53% 90.35 ± 0.80% 90.37 ± 0.41%

MRCNN-LSTM 95.38 ± 0.21% 95.66 ± 0.24% 95.49 ± 0.31% 95.84 ± 0.46%
MRCNN-RSE 98.47 ± 0.38% 98.65 ± 0.36% 98.63 ± 0.46% 98.66 ± 0.51%

4. Discussion

Previous research indicated that individuals with DD have altered functional con-
nectivity in the frontal cortex [19]. Based on the findings of our preceding research, this
study proposed to use frontal six-channel EEG signals in conjunction with a deep learn-
ing algorithm to diagnose DD, which considerably simplifies data collection efforts and
improves the practicability of DD screening. It was discovered that the beta rhythm has a
greater accuracy than theta, alpha1, and alpha2 rhythms, which indicated that beta had
a significant alteration in patients with DD. Simultaneously, MRCNN-RSE achieved the
highest accuracy of 98.48 ± 0.22% with 8–30 Hz EEG signals. A detailed discussion is
presented below.

4.1. Frontal Six-Channel EEG Signals Combined with Deep Learning Show an Excellent
Performance for DD Diagnosis

DD is highly related to abnormal brain functions and has dramatically altered func-
tional connectivity in the frontal area of the brain [41–44]. The frontal cortex is known to
play an important role in emotional cognition and working memory [45]. Bludau et al.
reported that patients with DD had a significantly smaller medial frontal pole compared
with HCs, which was significantly negatively correlated with the severity and course of
DD [43]. Coryell et al. evaluated the volume of the left side of the frontal cortex in 10 DD
patients and 10 HCs and concluded that patients with severe depressive disorder were
more likely to have an increase in the posterior frontal cortex [46]. There is rising evidence
that functional connections in the frontal regions of DD are dramatically altered [19]. There-
fore, this study advocated for DD diagnosis using the brain’s six frontal EEG channels in
conjunction with a current sophisticated deep learning algorithm to attain high accuracy
and practicability.

Recently, deep learning has had better predictive performance compared to traditional
machine learning for diagnosing depression [33,47]. Qu et al. [48] performed DD identifica-
tion on a dataset of 2546 veterans using deep learning and five other traditional machine
learning algorithms. The results showed that deep learning is more accurate in identifying
DD and its risk factors compared to traditional machine learning by ranking the key factors
of veterans and capturing the hidden pattern multilayer network structure in the data
to obtain better classification performances. Kour et al. [49] combined feature extraction
techniques and a hybrid deep learning model of CNN-LSTM for depression classification
and compared it with four traditional machine learning models for efficiency comparison,
and showed that the recognition accuracy on the benchmark dataset reached 96.78%, which
is better than the state-of-the-art traditional machine learning techniques. Deep learning,
with its technological advantages, has a stronger predictive ability in DD diagnosis [50];
therefore, this study advocates for the use of deep learning algorithms for the automatic
diagnosis of DD.

A previous study has demonstrated that more EEG channels for deep learning can
achieve high accuracy and few EEG channels may significantly reduce the accuracy of
DD diagnosis. It has been reported that Zhu et al. collected the resting state of 128 EEG
channels of 27 DD patients and 28 HCs, and finally achieved an accuracy of 96.50% for
DD and HC classification with their proposed CNN model [51]. Yang et al. proposed
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a gated temporal-separable attention network for EEG-based DD recognition, and the
classification accuracy on the EDRA dataset with 62 EEG channels and MODMA dataset
with 128 EEG channels was 98.33% and 97.56%, respectively [52]. Wei Liu et al. used a CNN
combined with gate-controlled loop units to extract sequence features and obtained an
accuracy of 89.63% on the publicly available dataset with 128 EEG channels [53]. In general,
more interaction information can be extracted for higher accuracy using high-density EEG.
However, high-density EEG (for example, 128 channels) can severely limit the efficiency
of data acquisition and reduce the practicability of the model. Some researchers have
attempted to detect DD with several EEG channels. For example, Cai et al. employed
a three-channel EEG collection system to gather EEG data from the FP1, FP2, and FPz
electrodes; nonetheless, the accuracy was only 78.24% [54]. In this study, a deep learning
model of MRCNN-RSE that performs well was proposed to identify DD with the frontal
six-channel EEG signals, and the accuracy was 98.47 ± 0.01%, which is close to those results
of high-density EEG, indicating that the strategy in this study has apparent advantages in
classifying DD.

4.2. Beta Rhythm Is Significantly Alerted in DD

EEG signals can be divided into different rhythms according to their frequency and
amplitude [55], such as delta, theta, alpha, beta, and gamma, which is an effective approach
for psychiatric diseases in EEG-related studies [56]. Studies have shown that EEG signals
change significantly with increasing levels of depression [57]. Henriques et al. [58] collected
EEG signals from 15 clinically depressed patients and 13 healthy individuals in resting state
with eyes closed and found that the activity in the left frontal lobe of depressed patients
was significantly lower than that of healthy individuals. Omel et al. found that the activity
of the left frontal lobe was significantly lower than that of healthy individuals by examining
EEG data [59]. It was found that the regional differences between the anterior and posterior
subdivisions of the brain in DD were reduced, and the difference in activity in the left
hemisphere relative to the right hemisphere was significant, while the possession attribute
of the EEG in depressed patients significantly reduced the relative strength of alpha and
beta rhythmic activity. Meanwhile, Knott et al. collected EEG signals from 70 depressed
patients and 23 healthy individuals and found that DD patients had relatively reduced
overall left hemisphere activity and generally lower delta, theta, alpha, and beta coherence
indices. They achieved a classification accuracy of 91.3% for patients and controls [60].
There are significant differences in EEG signals between DD patients and HCs, and brain
activity is affected by depression throughout the cerebral cortex.

The results of this study showed that the accuracy obtained in beta rhythm was
significantly higher than those in theta rhythm, alpha1 rhythm, and alpha2 rhythm for
DD recognition, which revealed that beta rhythm was significantly changed in patients
with DD. It is well known that beta rhythms are commonly associated with brain alertness,
attentional states, and emotions [19,61]. It has been found that beta EEG power is increased
in DD patients compared to HCs and plays an important role in the pathogenesis of DD [62].
Our previous study also found significant changes in the EEG features of power spectral
density, fuzzy entropy, and phase lag index of beta rhythms among DD patients, and
concluded that the characteristics of beta rhythms play a crucial role in identifying DD [19].
This study further revealed the significant changes in beta rhythms of DD patients through
deep learning algorithms, which provided additional important technical support for the
diagnosis, treatment, and efficacy assessment of DD.

4.3. Practical High-Frequency EEG Signals for DD Diagnosis: Evidence from Deep Learning

In the current study, we attempted to explore the effect of different EEG frequency
bands on the classification performances of DD diagnosis. It was discovered that 8–30 Hz
EEG signals obtained superior accuracy in DD diagnosis compared to 4–30 Hz EEG data.
High-frequency bands yielded good classification performance in a cognitive impairment
diagnostic study [63], with higher accuracy than full-frequency bands. Shalini Mahato et al.
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reported that the accuracy of DD diagnosis can be improved by using different frequency
combinations [64]. The results of previous studies have showed that frequency has a large
impact on DD classification performance [19]. Our results further confirm this conclusion
and extended that high- and wide-frequency EEG signals are better for DD classification.
More meaningfully, the use of high-frequency-band EEG data can effectively improve the
signal-to-noise ratio and reduce the preprocessing time of EEG data. The findings of this
study are of great significance for the development of automatic DD diagnosis.

4.4. Limitations

In this study, we achieved exciting DD recognition performance using only a few
frontal EEG signals and accelerated practical application of DD automated diagnostics,
but this study still has one shortcoming. This research included a limited number of
participants, with 41 individuals for the DD group and 34 individuals for the HC group,
which may be unable to accurately assess the generalization performance of the MRCNN-
RSE model. In future studies, we will continue to gather samples to promote the practical
implementation of the classification approach used in this work.

5. Conclusions

In this study, we proposed a technology framework for DD precision recognition
based on frontal six-channel EEG data and deep learning models. The MRCNN-RSE model
achieved a high accuracy of 98.48 ± 0.22% with 8–30 Hz EEG signals and was significantly
more accurate than other deep learning models, which is consistent with our previous
study using 16-channel EEG signals, indicating that this framework based on frontal EEG
signals combined with the MRCNN-RSE model for DD diagnosis is accurate and practical.
Our findings can provide a basic theory and technological support and greatly promote the
practicality and accuracy of DD diagnosis and efficacy evaluation.
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