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Abstract: The aim of this scoping review is to evaluate and summarize the existing literature that
considers the validity and/or reliability of smartphone accelerometer applications when compared
to ‘gold standard’ kinematic data collection (for example, motion capture). An electronic keyword
search was performed on three databases to identify appropriate research. This research was then
examined for details of measures and methodology and general study characteristics to identify
related themes. No restrictions were placed on the date of publication, type of smartphone, or
participant demographics. In total, 21 papers were reviewed to synthesize themes and approaches
used and to identify future research priorities. The validity and reliability of smartphone-based
accelerometry data have been assessed against motion capture, pressure walkways, and IMUs as
‘gold standard’ technology and they have been found to be accurate and reliable. This suggests
that smartphone accelerometers can provide a cheap and accurate alternative to gather kinematic
data, which can be used in ecologically valid environments to potentially increase diversity in
research participation. However, some studies suggest that body placement may affect the accuracy
of the result, and that position data correlate better than actual acceleration values, which should
be considered in any future implementation of smartphone technology. Future research comparing
different capture frequencies and resulting noise, and different walking surfaces, would be useful.

Keywords: smartphone; gait; walk; reliability; validity; review

1. Introduction

As smartphone technology becomes more ubiquitous, using the sensors of the phones
in our pockets becomes a cheap and convenient method to gather gait data. The use of
mobile phones to evaluate human movement and diagnose and track pathological gait
becomes an effective way for practitioners to gather and evaluate data, but a key concern
for use in clinical practice would be the accuracy of these data. Despite the increasing use
of mobile phone technology within our daily lives, the development of apps to exploit the
sensors available within these devices appears more limited, which may be due to concerns
about the accuracy of these data when compared to the existing methods of data collection,
such as motion capture or inertial movement units used in a laboratory setting.

Whereas previous studies have reviewed wearable technology in gait more gener-
ally [1–3] or when wearables are used to evaluate a specific clinical pathology [4–7], it is
important to remember that smartphones are simply not designed for gait analysis, unlike
other wearable technology. Therefore, these devices may be considered as less accurate
and more prone to error due to accelerometer data capture not being their primary use.
To evaluate the accuracy of these devices in measuring kinematic data, it is important to
compare smartphones to other gold-standard technology such as motion capture, force
plates, or research-standard accelerometers, and evaluate the concurrent validity and/or
inter-method reliability of each measure [8]. As smartphone use is so widespread, evalu-
ating the reliability and validity of this technology allows us to conclude whether simple
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smartphone apps can be use in gait analysis to capture kinematic parameters, and the
issues and protocols that need to be considered to ensure that these data are consistent
and valuable.

This scoping review was conducted to systematically evaluate research quantifying
concurrent validity and/or inter-method reliability comparing smartphone accelerometers
to gold-standard measures. This will allow the identification of key themes and approaches
used and the identification of any gaps in that research to inform future work in this area.

2. Methods
2.1. Protocol

This study follows the methodology for scoping reviews established in Arksey and
O’Malley [9] and extended by Levac et al. [10]. In addition, the approach and execution
of this review have been informed by the updated guidance issued by the Joanna Briggs
Institute Scoping Review Methodology Group [11]. The preferred reporting Items for sys-
tematic reviews and meta-Analyses (PRISMA) statement extension for scoping reviews [12]
has been followed to structure the reporting of this review, and a completed PRISMA-ScR
checklist can be found in Appendix A.

2.2. Eligibility Criteria

Studies were considered eligible if they evaluated the concurrent validity or inter-
method reliability of smartphone accelerometer data. There were no restrictions based on
publication date; but as the search considered smartphone data, this was expected to be
limited to studies since approximately 2000 due to the evolution and uptake of smartphone
use. Reviews and conference papers were excluded, but these were manually checked to en-
sure that any relevant citations were included in the review. Papers published in languages
other than English were included assuming English translations were also available.

Studies were excluded if they considered balance rather than gait parameters, or
assessed static rather than dynamic movement. Further, studies were excluded unless they
compared the accelerometer data (from a smartphone) with another method of objective
kinematic data collection; for example, motion capture or inertial measurement units.
Where studies only considered distance or time walked, such as the 6-min walk test, or total
minutes of physical activity, these were excluded as no kinematic gait characteristics were
evaluated. Where studies included a mixture of both gait and balance tasks, such as the
timed up and go test, these were only included if the walking section of the trial was used
to evaluate kinematic data such as stride time or step length. There were no restrictions
placed on the operating system or type of smartphone used.

2.3. Information Sources

An electronic search of three databases was performed (PubMed, SportDiscus, and
Web of Science) to identify relevant papers for inclusion. The search strategy was developed
by three authors (C.S., M.A.T., A.M.) and refined via discussion. Google Scholar was used
to check for any additional grey literature to identify unpublished studies and reduce
publication bias. The final search results were exported into RefWorks. The literature search
was performed between 23 and 24 September 2023.

2.4. Search

The search strategy included the following keywords:
(gait OR walk* OR ambul*)
AND (smartphone OR phone OR android)
AND (valid* OR reliab* OR accur*)
No further refinement or restriction was placed on the search to ensure the maximum

number of studies were returned for consideration and to maximise recall.
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2.5. Selection of Sources of Evidence

Studies were selected following abstract and keywords review and subsequent full text
screening. To ensure consistency, one author (C.S.) performed the screening and applied
the exclusion criteria, and this was validated by other authors (M.A.T., A.M.). Any paper
considered valid for inclusion was then full-text screened and studies were included based
on a consensus between all authors.

2.6. Data Charting

The data charting form was based on a previous scoping review conducted by this
research group [13] and refined via discussion based on the scope of this review. Data
charting was initially conducted in Excel (Microsoft 365, version 2309) by one author (CS)
and then reviewed for accuracy (M.A.T., A.M.). Revisions to the data charting form were
made iteratively via ongoing discussion as different themes emerged from the studies
under review.

2.7. Data Items

The data extracted from each study included the demographic information for the par-
ticipants and the pathological condition considered (if any). We also extracted information
on the methods, including the comparator, the app name being evaluated (if provided),
capture frequencies compared, the location(s) of the phone during the trials, and the nature
of the trial (overground, laboratory walkway, treadmill). The duration and speeds of each
trial were extracted, and the gait characteristic(s) under analysis. In addition, the method
of assessing validity and/or reliability, including any sample size considerations, were
extracted to allow the synthesis of approaches.

In common with other scoping reviews, an overall measurement of study quality has
not been performed, but relevant study characteristics relating to methodological quality
have been extracted for synthesis to gain an understanding of the development of the study
protocols and the potential gaps in methodology [14,15].

2.8. Synthesis of Results

Studies were grouped based on the gait characteristics considered, the comparison
to the type of laboratory kinematic data collected, and the method of evaluating validity
and/or reliability. Any systematic reviews resulting from the search were reviewed to
ensure any relevant citations were also included in the studies, as appropriate.

3. Results
3.1. Study Selection

The screening and exclusion of papers is shown in Figure 1, following PRISMA
reporting guidelines [16].

After duplicates were removed, 3056 studies were considered valid for screening. A
total of 2427 studies were excluded from this review as they did not evaluate kinematic data
relating to gait, 141 did not use the smartphone as the primary method of data collection,
and 72 used sensors other than the accelerometer (for example, video capture). In total,
72 studies did not specifically assess agreement, concurrent validity, or inter-method
reliability, and 41 were excluded due to not including a comparison to a gold-standard
method (for example, only evaluating the test–retest reliability of the smartphone). A total
of 124 papers were excluded as these presented reviews, study protocols, and conference
papers. The remaining papers were considered eligible for review.
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3.2. Study Characteristics

The basic demographic information for each of the studies included is shown in Table 1
below, the mean and standard deviation are shown unless specified, and left blank if these
values were not provided in the paper reviewed. Ages and mass have been rounded to
1 decimal place, and heights to 2 decimal places, if supplied at a higher precision, and stated
as-is if provided at the lower precision. The studies are presented in reverse chronological
order to show changes in reporting/methods over time.

Table 1. Basic sample characteristics.

Study Journal Location Participants Age (Years) Height
(m)

Mass
(kg) BMI (kg·m−2)

Di Bacco et al.
(2023) [17] J. Biomech. Canada 9M 8F 24.7 ± 3.7 1.73 ± 0.1 73.1 ± 14.2

Olson et al.
(2023) [18] Gait Posture New

Zealand 14M 20F 42–92 25.3 (median)

Grouios et al.
(2022) [19] Sensors Greece 1M 29 1.78 72

Christensen et al.
(2022) [20]

J. Orthop.
Surg. Res. USA 8M 12F healthy; 7M 5F

TKA/THA
42.3 ± 19.7
58.7 ± 6.5 1.63 ± 0.24 77.0 ± 17.4

Kelly et al.
(2022) [21] Measurement USA 10M 13F 21 ± 2 90.0 ± 15.5

Shema-
Shiratzky et al.

(2022) [22]
Gait Posture Israel

35M 37F
Knee OA (49)

Ankle/hip OA (11)
Low back pain (12)

57.2 ± 1.9

Rashid et al.
(2021) [23] Sensors New

Zealand 5M 15F 46 ± 27 1.67 ± 0.17 76 ± 19

Shahar et al.
(2021) [24] Sensors Israel 60 37.2 ± 13.4 1.71 ± 0.10
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Table 1. Cont.

Study Journal Location Participants Age (Years) Height
(m)

Mass
(kg) BMI (kg·m−2)

Alberto et al.
(2021) [25] BMC Neurol. Portugal 12M 7F PD 62 ± 12.3

Lugade et al.
(2021) [26]

J. Aging Phy.
Act.

8M 13F
7M 14F non-faller older

3M 18F faller older

22.9 ± 2.2
71.8 ± 4.5
72.9 ± 5.3

1.64 ± 0.08
1.56 ± 0.07
1.56 ± 0.07

56.1 ± 9.1
57.6 ± 5.5
56.7 ± 7.5

Su et al. (2021)
[27]

JMIR Mhealth
Uhealth China 33M 19F PD 63 ± 10 1.7 ± 0.9 70 ± 21

Kuntapun et al.
(2020) [28]

Frontiers in
Sports and

Active Living

3M 9F
young
3M 9F
older

23.4 ± 2.2
75.6 ± 5.6

1.63 ± 0.07
1.60 ± 0.09

58.3 ± 9.9
58.0 ± 6.6

Silsupadol et al.
(2020) [29]

IEEE J.
Biomed.

4M 8F young
0M 12F older

21.4 ± 1.2
72.4 ± 6.1

Howell et al.
(2020) [30]

Phys.
Sportsmed USA 6M 14F 22.2 ± 2.1 1.70 ± 0.08

Tchelet et al.
(2019) [31] Sensors Israel 4 33.5 ± 3.9

Silsupadol et al.
(2017) [32] Gait Posture 1M 11F younger

7M 15F older
22.7 ± 0.9
73.9 ± 5.6

21.2 ± 4.1
23.7 ± 3.6

Pepa et al.
(2017) [33] Gait Posture Italy 8M 3F 22–30

Ellis et al.
(2015) [34] PLoS One Singapore 7M 5F PD

8M 4F controls
65.0 ± 8.4
63.1 ± 7.8

Furrer et al.
(2015) [35] Gait Posture Switzerland 10M 12F 27.4 ± 3.9 1.74 ± 0.08 65.5 ± 10.2

Steins et al.
(2014) [36] J. Biomech. UK 10 25.6 ± 3.5 1.73 ± 0.17 73.0 ± 17.1

Nishiguchi et al.
(2012) [37]

Telemed. J.
E.Health Japan 17M 13F 20.9 ± 2.1 1.67 ± 0.08 60.4 ± 7.7

Notes: PD = Parkinson’s disease; TKA = total knee arthroscopy; THA = total hip arthroscopy; OA = osteoarthritis.

Three studies did not include information about the biological sex of the partici-
pants [24,31,36]. Overall, the studies reviewed have recruited more females (n = 296) than
males (n = 226), so this is not fully representative of the average population. Further, it
is recognised that gait is affected by biological sex in both healthy adults [38] and within
a pathological population [39]. As these studies are all comparing two measures when
evaluating the same individual’s gait, then any difference in biological sex may not be
considered important, as long as variety is represented, but this is not explicitly discussed.

The study location has been determined from the methods sections, or the author
affiliations if not stated. In four studies [26,28,29,32], it has not been possible to determine
the location of the data collection, with the authors being affiliated with both Thailand and
the USA.

Many studies focus on healthy participants, but pathological populations are also
represented, in particular Parkinson’s disease. A broad range of ages are represented
in these papers, which suggests that the research conducted is generalisable to a wider
sample. The mass of the participants in each sample is infrequently reported, and none
of the studies had exclusion criteria relating to mass or BMI, which may suggest that the
researchers do not consider this a confounding variable when assessing gait characteristics
despite the potential accuracy issues due to soft tissue artefacts [40].

3.3. Results of Individual Sources of Evidence

Details of ‘gold standard’ comparator and smartphone information and walking
protocols are presented in Tables 2 and 3 below.
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Table 2. Results from individual sources of evidence—equipment.

Study Comparator Smartphone

Equipment Markers SF App/Phone (OS) SF Location

Di Bacco et al.
(2023) [17]

Motion capture (7
camera Vicon)

Heel of right
shoe. 100 -

Google (Android) 100
Front right

pocket
Delsys footswitch

sensor Right heel 296

Olson et al.
(2023) [18]

Motion capture (12
camera Qualisys)

Marker in
centre of phone

screen, plus
posterior

calcaneus and
head of the fifth

metatarsal
bilaterally

Gait&Balance
iPhone (iOS) L5/S1

Grouios et al.
(2022) [19]

Motion capture (10
camera Vicon)

16 markers,
lower body. 15

Accelerometer
iPhone (iOS)

Accelerometer
Acceleration Log

Samsung/Huawei
(Android)

15 Lumbar spine

Christensen et al.
(2022) [20]

Motion capture (10
camera Vicon) 53 markers. 200 OneStep

iPhone (iOS) 100 2 phones,
anterior thigh.

Kelly et al.
(2022) [21]

Tekscan Strideway
pressure sensitive

walkway
30 Gait Analyzer

LGK40 (Android) 95–105 L5

Shema-
Shiratzky et al.

(2022) [22]

Protokinetics Zeno
pressure sensitive

walkway

OneStep
Samsung (Android) 100 Upper left and

right thigh.

Rashid et al.
(2021) [23]

Motion capture (7
camera Vicon)

One marker on
the centre of the

smartphone,
and

two were
placed on each

foot, at the
posterior

calcaneus and
lateral fifth
metatarsal.

200 Gait&Balance
iPhone (iOS) 100 L5/S1

Shahar et al.
(2021) [24] APDM mobility lab 3 IMUs, on both

feet and L5 128 OneStep
(Android) 100 Front pocket

Alberto et al.
(2021) [25]

Motion capture (10
camera Qualisys)

48 markers,
plus clusters. 120 Kinetikos

Nokia (Android) 100
Both sides front

pocket

15 × Xsens IMU

Head, thorax,
scapulae, upper

arms,
forearms,

hands, sacrum,
thighs, shanks,

and feet.

120

Lugade et al.
(2021) [26]

Video (gait events
identified) 30 Gait Analyzer

(Android) 50 Right hip

Su et al. (2021)
[27] APDM mobility lab 3 IMUs, on both

feet and L5 100 -
iPhone (iOS) 100 Front pocket

Kuntapun et al.
(2020) [28]

Motion capture (9
camera BTS) 28 markers 120 Gait Analyzer

Samsung (Android) 50 L3,
bag
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Table 2. Cont.

Study Comparator Smartphone

Equipment Markers SF App/Phone (OS) SF Location

Silsupadol et al.
(2020) [29]

Motion capture (9
camera BTS) 28 markers. 120

SensorData
Samsung and Asus

(Android)
100

L3,
L5,
bag

Video (gait events
identified)

Howell et al.
(2020) [30] 3 × Opal IMU

Feet and
lumbosacral

junction.
128 Gait Analyzer

Samsung (Android) 50 Lumbar spine

Tchelet et al.
(2019) [31]

Motion capture (10
camera Qualisys)

8 markers
(shoulders,

sternum, back,
inside/outside

feet).

Enchephalog
Android and
iPhone (iOS)

Sternum

1 × Opal IMU Sternum 128

Silsupadol et al.
(2017) [32]

GAITrite pressure
sensitive walkway 80 SensorData

vivo (Android) 95–105

L3,
bag near right

hip,
front pocket

(both vertical
and horizontal

orientation),
handheld (as if

speaking)

Pepa et al.
(2017) [33]

Motion capture (6
cameras BTS)

9 markers on
ASISx2, mid

PSIS, heel, 1st,
5th metatarsal.

100 AccOrient
iPhone (iOS) 100 L3.

Lateral pelvis.

Ellis et al.
(2015) [34]

Footswitch,
sensor mat,

GAITrite pressure
sensitive walkway

Footswitch on
heel pad.

SmartMove
iPod Touch (iOS) 100 Navel

Furrer et al.
(2015) [35]

Motion capture (8
camera Vicon) 34 markers. 200 -

Android 50 L3

Steins et al.
(2014) [36]

Motion capture (6
camera Qualisys) L3 100 -

iPod Touch (iOS) 100 L3
1 × Xsens IMU L3 100

Nishiguchi et al.
(2012) [37]

1 × WAA-006
accelerometer L3 33.3 -

Android 33.3 L3

Notes: SF = sample frequency, IMU = inertial measurement unit.
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Table 3. Results from individual sources of evidence—walking protocols.

Study Environment Speed Duration

Di Bacco et al. (2023) [17] Treadmill PWS 3 × 8 min

Olson et al. (2023) [18] PWS,
PWS + dual task 4 × 6 s

Grouios et al. (2022) [19] 6 m walkway PWS 9 × 6 steps

Christensen et al. (2022) [20] Treadmill, indoor home
environment

Treadmill: PWS,
0.8 ms−2,
2 ms−2,

PWS + dual task

Treadmill: 15 steps
Home: 30 s.

Kelly et al. (2022) [21] 10 m walkway PWS 6 × 20 m
Shema-Shiratzky et al.

(2022) [22] 10 m walkway PWS 4 × 10 m

Rashid et al. (2021) [23] PWS,
PWS + dual task 4 × 6 s

Shahar et al. (2021) [24] 10 m walkway

PWS,
‘as fast as you can’,

‘as if the floor was slippery’,
PWS + dual task

2 min

Alberto et al. (2021) [25] Walkway PWS 3 × 10 m
Lugade et al. (2021) [26] Lab overground, circular PWS 2 × 2 min

Su et al. (2021) [27] 10 m hallway (turns removed
in analysis)

PWS,
PWS + dual task 2 × 20 m

Kuntapun et al. (2020) [28] Walkway
Outdoor area.

PWS.
Indoors and outdoors, level,
irregular, obstacle crossing

10 m

Silsupadol et al. (2020) [29] Walkway
Outdoor area.

Speed changes and turns in
separate trials.

Slow = ‘as slow as they can’
Fast = ‘as fast as

they can without running’

10 m

Howell et al. (2020) [30] Walkway
PWS.

Turns included.
Dual task.

5 min,
5 × 20 m (with turn).

Tchelet et al. (2019) [31] Walkway Various—not specified what. 3 m/5 m

Silsupadol et al. (2017) [32] Walkway

PWS,
slow,
fast

(actual values not specified)

10 m

Pepa et al. (2017) [33] Walkway
PWS,

higher, lower
(actual values not specified)

10 m platform.
Back and forth.

Ellis et al. (2015) [34] Walkway
PWS,

cued PWS,
cued PWS + 10%

26 m path, turn halfway

Furrer et al. (2015) [35] Walkway PWS 10 × 10 m
Steins et al. (2014) [36] Walkway PWS 4 × 10 m

Nishiguchi et al. (2012) [37] Walkway PWS 3 × 20 m

Notes: PWS = preferred walking speed.

3.4. Synthesis of Results
3.4.1. Equipment

Studies use different methods of data capture for the comparator technology, but
twelve studies use motion capture to determine changes in marker position. Some studies
also include additional technology such as footswitches [17], IMU [25,31,36] or video [29].
Other equipment types used as the comparator were based on IMUs [24,27,30], accelerome-
ters [37], or pressure-sensitive walkways [21,22,32,34], and one study captured video and
identified gait events from this for comparison with the smartphone data [26].



Sensors 2023, 23, 8615 9 of 19

3.4.2. Capture Frequency

The capture frequencies used for the smartphones varied from 15 Hz to 100 Hz. Four
studies [21,29,32,37] document using the Android SENSOR_DELAY_FASTEST setting [41],
which uses the fastest possible available capture rate, which has increased over time as
smartphone technology has improved.

The capture frequencies for the comparator are often matched to the smartphone
capture frequency or set to a larger value and then resampled to the same time points.

3.4.3. Location of Markers and Phone

The number of markers used with the motion capture technology varied from a single
marker to a full-body 53 marker set. Markers were often placed on or near the smart-
phone [18,23,36,37]. In seven studies, the smartphone was placed in an appropriate place
that would replicate day-to-day use, for example, a front pocket [17,24–27], or in different
locations to evaluate whether a change in body position affected the reliability [28,29,32].
Placement of the smartphone on the lumbar spine was also used [18,19,21,23,29,30,33,35–37],
as this is often used as the standard placement for accelerometers to evaluate movement
and determine lower body gait events [42]. In addition, one study placed the smartphone
on the sternum [31] and one on the navel [34].

3.4.4. Walking Protocols

Studies mostly use preferred walking speed, although the protocol for determining
these speeds is often lacking in the method description. The protocol for determining
the preferred walking speed is stated explicitly in two studies [17,20] and the cues used
to initiate the participants are stated in two studies [24,29]. Some studies vary the speed
to evaluate if this affects the accuracy of comparison between the smartphone and ‘gold
standard’ device—in one study [20] a fixed speed is used which is specified numerically, one
uses metronome cueing to fix the average speed and increases this by 10% [34], another [24]
specifies the verbal cues used to obtain a fast or slow speed, whereas other studies that
consider speed changes do not clearly explain the protocol to determine this [29,31–33].

The majority of the studies were conducted indoors, with one study [29] also using
an outdoor level pedestrian walkway, and a further study considering outdoor walking
and obstacle crossing [28]. Two studies used a treadmill due to the need to control the data
captured or to fix speeds [17,20], and one used corridors [27], but the majority of the other
studies used laboratory-based hard floor walkways [19,21,22,24–26,29–37]. One study also
used the participants’ indoor home environment in addition to the treadmill [20]. The
surface used in the trials was not reported in two studies [18,23].

Dual task trials are included in six studies [18,20,23,24,27,30]. Different protocols are
used, with some studies dual task consisting of the participants turning their head from
side to side while walking [18,23], or a cognitive task such as the ‘serial seven’ or ‘serial
threes’ test [20,24,27], or a combination of both numerical and verbal cognitive tasks [30].

The duration of each trial varies, and is expressed in either distance or walking time.
As one trial considers a non-linear analysis of the data [17], this requires a longer time
series to fully capture the nature of the temporal gait changes and should exceed 500 stride
intervals for fractal analysis [43] or 200 strides for entropy analysis [44]. The remaining
studies consider linear measures such as means and coefficient of variation, and so do
not have the same requirement for a long time series, and these vary from 6 steps [19]
or 6 s [18,23] to 120 s of walking data [24,26]. A justification of trial length in the studies
concerning linear measures has not been included in any of the papers reviewed.

Turns are included in trials in five studies [24,26,29,30,33], and are included in the trial
but excluded from the subsequent analysis in four studies [20,22,27,34]. Subjects walked
barefoot in five studies [18,22,25,32,35], without shoes in one study [34] and in normal shoes
in five studies [17,24,27,29,37], otherwise this was not stated. Obstacle crossing and uneven
surfaces were considered in one study [28]. Inclines and steps have not been included.



Sensors 2023, 23, 8615 10 of 19

3.4.5. Analysis

The signal processing, analysis, gait events identified, and reliability measures are
summarised in Table 4 below.

Sample size calculations are explicitly included in five studies [17,18,20,24,26], and
one further study states the calculated sample size but not the values or methods used to
obtain it [34]. Studies that evaluate the required sample size either base the calculation
on attaining an intraclass correlation coefficient (ICC) of ≥0.8 [18,20], based on the results
of previous studies [17,26], or one study [24] uses the recommendations from Bujang and
Baharum [45].

Table 4. Processing and analysis.

Study Filtered Resampled Sample Size
Calculation

Gait
Characteristics

Determination
of

Characteristic

Reliability/Validity
Measure

Di Bacco et al.
(2023) [17]

For linear
analysis only Y Y

Stride time
DFA

Entropy
As [46] ICC

B/A

Olson et al.
(2023) [18] N N Y

Step length
Step time

Periodicity
As [23] ICC

B/A

Grouios et al.
(2022) [19] N N N Raw

acceleration N/A ICC
Pearson

Christensen et al.
(2022) [20] N N Y

Stance time
Step length

Cadence
Stride length
Swing time

Identified by
researcher

ICC
B/A

Kelly et al.
(2022) [21] Y Y N Cadence

Positive peaks
from the AP

direction were
identified as
heel strikes

Pearson

Shema-
Shiratzky et al.,

2022) [22]
N N N

Step length
Cadence

Single/double
support %

PearsonB/A

Rashid et al.
(2021) [23] N N N

Step length
Step time

Periodicity

A
wavelet-based

step-event
detection

algorithm and a
double-

pendulum gait
model

ICC
B/A

Pearson

Shahar et al.
(2021) [24] N N Y

Cadence
Step length
Gait stance

phase %
Swing phase %

Not stated ICC
B/A

Alberto et al.
(2021) [25] Y Y N

Stride duration
Stance phase

duration
Stride length

Cadence

As [46] B/A
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Table 4. Cont.

Study Filtered Resampled Sample Size
Calculation

Gait
Characteristics

Determination
of

Characteristic

Reliability/Validity
Measure

Lugade et al.
(2021) [26] Y N Y Step time

Cadence

Video-based
concurrently

with
accelerometer

capture

B/A
Pearson

Su et al.
(2021) [27] Y N N

Stride time
Stride time
variability

As [46] Pearson

Silsupadol et al.
(2020) [29] Y N N

Step time
Step length

Cadence

Positive peaks
in the filtered
AP direction

were identified
as heel strikes

B/A
Pearson

Howell et al.
(2020) [30] Y N N Stride length

Cadence

Positive peaks
in the filtered
AP direction

were identified
as heel strikes

ICC
Pearson

Kuntapun et al.
(2020) [28] Y N N

Step time
Step length

Cadence
COM

displacement

Positive peaks
in the filtered
AP direction

were identified
as heel strikes

COM identified
via double

integration of
the acceleration

time series

Pearson
B/A

Tchelet et al.
(2019) [31] N Y N Step length

Cadence B/A

Silsupadol et al.
(2017) [32] Y Y N

Step length
Step time
Cadence

Positive peaks
in the filtered
AP direction

were identified
as

heel strikes

ICC
B/A

Pepa et al.
(2017) [33] N N Y Step period

Step length

Various
algorithms to
identify heel

strike compared

B/A
Pearson

Ellis et al.
(2015) [34] N Y Y Step time

Step length
Peaks in AP

signal
ANOVA and effect

sizes

Furrer et al.
(2015) [35] Y N N

Step length.
COM

displacement.

Double
integration of
accelerations

B/A
Pearson

Steins et al.
(2014) [36] Y Y N

COM position.
COM

acceleration.

Integration of
acceleration

ICC
B/A

Nishiguchi et al.
(2012) [37] Y Y N Peak frequency

Peak frequency
calculated from

smoothed
acceleration

data

Pearson

Notes: ICC = intraclass correlation coefficient; B/A = Bland Altman limits of agreement; AP = anterior-posterior.
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One study [17] uses non-linear analysis when evaluating reliability, specifically de-
trended fluctuation analysis, approximate entropy, and sample entropy of a time series
without filtering/smoothing. When linear measures are considered in the same study, the
data are filtered prior to analysis. In other studies that include filtering, the cut off fre-
quencies range from 2 Hz to 20 Hz, with some studies [21,28,30,32] also adding additional
filtering of the anterio-posterior signal based on previous work by Zijlstra and Hof [47].

The actual acceleration values are used in the reliability analysis in two studies [19,36],
whereas the majority of the other papers consider discrete events that can be derived from
the original time series (e.g., stride time).

The majority of studies included in this review use ICCs to evaluate inter-method
reliability, and also include Bland Altman limits of agreement or Pearson correlation coeffi-
cients to evaluate concurrent validity in addition to this. However, when interpreting the
ICC value, different ranges have been used to quantify the result. The majority of papers re-
viewed that implement ICCs [17,19,20,24] use the ranges specified by Koo and Li [8]; that is,
<0.5 poor, 0.5–0.75 moderate, 0.75–0.90 good, >0.90 excellent. However, two papers [18,23]
use ranges specified by Munro [48]: <0.50 poor, 0.50–0.69 moderate, 0.70–0.89 high, >0.90
excellent; two studies [28,32] use ranges recommended by Cicchetti [49], <0.40 poor,
0.40–0.60 fair, 0.60–0.75 good, >0.75 excellent; one study [36] uses ranges recommended by
Shrout and Fleiss [50]: <0.40 poor, 0.40–0.75 fair to good, >0.75 excellent; and one study [30]
uses an uncited set of ranges: ≤0.59 low, 0.60–0.69 marginal, 0.70–0.79 adequate, 0.80–0.89
high, >0.90 very high. The discrepancy between these ranges is shown in Figure 2 below.
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Figure 2. Ranges used when classifying ICC, ranging from ‘poor’/’low’ to ‘excellent’/’very
high’ [8,48–50].

3.4.6. Findings

Many papers reported an excellent correlation either via the ICC [17], Pearson correla-
tion coefficient [26–28,33,37], or Bland Altman limits of agreement [25,31]. Olson et al. [18]
concluded that step time had an excellent reliability, whereas step length was good. Other
papers achieved good to excellent reliability [24,29,30,35]. Kuntapun et al. [28] evaluated
both level walking, irregular, and obstacle crossing, and found high to very high corre-
lations for gait characteristics but low to high correlations for the COM displacement.
Steins et al. [36] found the position data to be excellent, but the actual acceleration to only
be good (>0.54). Grouios et al. [19] conclude that smartphones are a valid and reliable
alternative to motion capture technology, but their results include ICC values from −0.348
to 0.796 and Pearson correlation coefficients of −0.464 to 0.460 which do not seem to
support this.
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Shema-Shiratzky et al. [22] evaluated both left and right sides and concluded that
smartphones have an excellent validity compared with a pressure-sensitive walkway for
cadence but only achieved an adequate correlation for single limb support, double limb
support, and stance phase. Kelly et al. [21] also found a strong correlation between the
smartphone and the walkway for cadence. When considering different body positions,
Silsupadol et al. [32] found phone placement may be important, with body and belt
placement resulting in an excellent reliability when compared to the gold standard, whereas
bag, hand, and pocket are good.

4. Discussion
4.1. Summary of Evidence

The choice of the gold standard equipment to use to evaluate the validity and reliability
of the smartphone data capture is not justified in any of the studies, so this may relate to
convenience or previous studies conducted by the research groups. In particular, there are
research groups and co-authors common in several papers, which may suggest that later
papers develop earlier research, which could imply methodological bias. However, this
also means that limitations identified in earlier papers can be further developed in later
research studies, such as the lack of turns identified in the protocol for Silsupadol et al. [32],
which is addressed in the 2020 paper [29].

The choice of capture frequency is important to ensure that the quickest system
changes are captured, with 24 Hz suggested as the minimum for walking trials [51] due
to the Nyquist sampling theorem. One study has a sampling rate (15 Hz) that may not
capture all the required data [19], although low sampling rates (12.5 Hz) have been used
successfully to capture data about cadence in older people with osteoarthritis [52]. However,
high sampling frequencies may increase the chance of noise in the data, so clear justification
of the choice of sampling frequency is needed to reduce the risk of oversampling and
associated error, which may affect the evaluation of reliability if there is error present in
one sample and not the other.

There is a range of different-length trials present in the reviewed papers, but this is
not justified other than when discussing non-linear analysis and the requirement for many
data points [17]. The trial length should also be considered in conjunction with the capture
frequency to establish the number of data points available for analysis in each case—this
varies in the studies reviewed from approximately 600 data points [18,23] to 12,000 captured
data points [24,26] which is a considerable difference. As some of the studies include an
older or pathological population, the trial length should be considered further to ensure
that fatigue does not affect the gait pattern or increase the risk of adverse events.

The protocol for determining preferred walking speed is often missing from method
descriptions, and this has been found to be problematic, with speed being a potential con-
founding variable in gait analysis with recommendations that this should be standardised
to avoid ambiguity [53]. In particular, the use of specific cues can affect the speed selected
by the participant [54] and result in a preferred speed that is not optimal. The protocol for
choosing a self-selected speed has been specified in two studies [17,20], and the cue used in
another [24], and this is important to ensure that studies are repeatable and methods are
rigorously reported.

4.1.1. Ecological Validity

Many studies attempt to replicate laboratory-based testing when deciding the place-
ment of the smartphone, such as placing it strapped to the lower back or sternum. While
this makes sense in terms of being a robust way of checking reliability versus gold standard
technology, which may be applied in the same area, this does imply a lack of ecological
validity, as this is not where research participants will be carrying their smartphone in a
real-world situation. The placement of the smartphone during testing has taken this into
account, with more focus on actual body positions that the smartphone may be used, such
as the front pocket, or close to one hip. Further studies [28,32] have validated different body
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positions for the smartphone which may be used in recommendations for research partici-
pants in terms of where to keep their device during walking trials to maximise accuracy.
There is limited research on smartphone location while walking, but a study of younger
women (aged 15–40 years) found that the preferred smartphone locations also included
hanging around the neck, or tucked into their bra [55], so further analysis on smartphone
body locations and the effect of these on the reliability of kinematic data is warranted.

Similarly, walking barefoot in some trials lacks ecological validity if smartphone
accelerometry data are to be used in a real-world setting. The location of the trials conducted
in the reviewed studies often used laboratory walkways, with only two studies using an
outdoor setting [28,29], which would replicate a real-world data collection. Various studies
included in this review also included dual task components to replicate real-world data
collection; however, these often involve cognitive or motor tasks that do not replicate
what the participant may experience when walking in real life. Thus, rather than simply
walking and talking, the dual task components include mathematical tasks or head-turning
tasks, which are perhaps unrealistic. The studies reviewed suggest that dual tasking when
captured via smartphone or gold standard is comparable, accurate, and reliable, which
would also suggest that simpler dual task components may also have good reliability.

Turns are not dealt with consistently in the studies reviewed, with some deliberately
excluding these as they disrupt stride timing [46]. In other studies, turns are included as
these represent real-world gait more accurately due to the quantity of turns experienced
in activities of daily living [56] and can be accurately identified within a time series [57].
As the papers reviewed are considering validity and reliability of smartphones when
compared to gold standard systems, it could be argued that turns should be included as
representative of usual gait, and that the two systems should handle these in the same way
if we were to conclude that the smartphone was a reliable alternative measure. It should
also be considered that some of the studies reviewed focused on Parkinson’s disease or
older adult fallers, and turns are considered to be a contributory factor in negative events
such as freezing of gait [58] or increased falls risk [59], so capturing kinematic data during
turning may be particularly useful in these populations.

4.1.2. Analysis

The raw acceleration data are often resampled, as smartphones do not sample at
reliable time intervals and so need to be interpolated to ensure that the data points represent
the same capture point. Many studies reviewed have reported the need to resample or
interpolate the data, and this could be a potential cause of poor results if studies did not
deal with this issue, as this would introduce lags into the time series. Various algorithms
have been used to determine specific gait events, but the need to identify specific gait
events rather than consistent features in the time signal has not been clearly explained. For
evaluating stride time, for example, looking at peaks/troughs in the signal as the same
consistent point, even though these may not correspond to a specific gait event, could
be potentially as valid as identifying heel strikes to calculate this value, which has been
employed as a strategy in some of the studies reviewed.

It should be noted that the Grouios et al. [19] paper attempts to test the reliability of
each acceleration value gathered, whereas most other papers reviewed reduce the sample
data points by extracting discrete data such as stride length to use in their reliability
analysis. Steins et al. [36] also consider acceleration data directly and find that the actual
raw accelerations have a fair to excellent reliability, whereas the position data obtained by
double integration of the acceleration series had a higher reliability. This suggests that the
analysis of data derived from discrete gait events, such as stride length or step time, may
be more valid than using the accelerations more directly, suggesting that the accelerations
may include more noise and potential error in the signal.

Sample size calculations are included in later studies, which may relate to increasing
rigour in reporting over time with published articles having more defined reporting stan-
dards to adhere to [60]. The wide range of ranges used to determine whether reliability is
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‘good’ or ‘excellent’ is not consistent in the studies reviewed, but most studies also report
the numerical value of the ICC to allow comparison between studies.

There are a ranges of approaches adopted in the studies reviewed, with agreement
analysed via Bland Altman, concurrent validity analysed via correlation, and inter-method
reliability analysed using ICC. In some cases, the language used could be more precise to
explain the choices to assess concurrent validity rather than inter-method reliability, for
example, rather than more ambiguous terms such as ‘feasibility’ and ‘accuracy’. When
studies use Bland Altman plots or Pearson correlations rather than ICC, this is often
not justified, and one study uses an analysis of variance (ANOVA) which is much more
limited in use than ICC for determining reliability [61]. Pearson correlations alone may
be misleading, as these do not measure reliability or agreement between methods [62],
which may be why several studies considered multiple methods of determining validity
and/or reliability.

4.2. Limitations

A scoping review approach has been used here to evaluate the breadth and depth of
research in a specific area, and to identify the approaches used to inform future research.
Although we searched grey literature, it is possible that publication bias may have affected
the studies included in this review. In particular, pilot or preliminary studies may not
have been published in peer-reviewed journals due to small sample sizes or lack of signifi-
cance [63]. As is standard with scoping reviews, an evaluation of the quality of each study
has not been performed [14,15], but we have extracted key themes and approaches to allow
readers to assess their methodological quality and rigour.

5. Conclusions

A range of different smartphone makes and models have been considered in the
studies reviewed, as have differing speeds and dual task components. The reliability of
smartphone-based accelerometry data has been assessed against motion capture, pressure
walkways, and IMUs as ‘gold standard’ technology and has been found to be accurate
and reliable. A range of different methods have been used to identify gait events, to
process and analyse the data, and to evaluate the reliability. This suggests that smartphone
accelerometers can provide a cheap and accurate alternative to gather kinematic data,
which can be used in ecologically valid environments to potentially increase diversity in
research participation.

Recommendations for Future Research

The studies reviewed cover a range of capture frequencies but no study explicitly
compared different capture frequencies to see if this affects the reliability. As smartphones
are not designed to capture accelerometry data for gait analysis, then it is feasible that
increasing capture frequency could add noise to the signal; thus, it would be important
to consider the optimal capture frequency for smartphone use, rather than just try and
capture the maximum frequency possible. In addition, a consideration of different walking
surfaces would increase the generalisability of the research and how this relates to the
data collection in the real world and dissemination of smartphone-based data capture ‘in
the wild’.
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