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Abstract: This study presents the concept of a computationally efficient machine learning (ML) model
for diagnosing and monitoring Parkinson’s disease (PD) using rest-state EEG signals (rs-EEG) from
20 PD subjects and 20 normal control (NC) subjects at a sampling rate of 128 Hz. Based on the
comparative analysis of the effectiveness of entropy calculation methods, fuzzy entropy showed the
best results in diagnosing and monitoring PD using rs-EEG, with classification accuracy (ARKF) of
~99.9%. The most important frequency range of rs-EEG for PD-based diagnostics lies in the range of
0–4 Hz, and the most informative signals were mainly received from the right hemisphere of the head.
It was also found that ARKF significantly decreased as the length of rs-EEG segments decreased from
1000 to 150 samples. Using a procedure for selecting the most informative features, it was possible to
reduce the computational costs of classification by 11 times, while maintaining an ARKF ~99.9%. The
proposed method can be used in the healthcare internet of things (H-IoT), where low-performance
edge devices can implement ML sensors to enhance human resilience to PD.

Keywords: Parkinson’s disease; EEG; diagnosis; entropy; machine learning; monitoring; smart IoT
environment; edge device; human resilience

1. Introduction

By 2030, experts predict that every sixth person on Earth will be over 60 years of
age due to an increasing life expectancy [1]. It is estimated that 1.4 billion people will
be over 60 by 2050. Age-related neurodegenerative diseases are a major risk factor for
mortality and morbidity caused by neurodegenerative diseases [2–4]. The symptoms of
neurodegenerative disease may begin as early as middle age [5], followed by overt signs
and symptoms. By diagnosing and treating patients early, irreversible damage to the
nervous system can be reduced, improving their quality of life and length of life.

In addition to diagnostics, a personalized approach to neurodegenerative disease
treatment using IoT-enabled environments is essential to improving patients’ quality of
life [5–7], such as smart homes and healthcare [8], smart spaces for mHealth applications [9],
and smart healthcare [8]. The healthcare IoT (H-IoT) [10] is also known as IoMT [11] and is
one of the most efficient tools for this purpose. The key point is that a sensor (within an IoT
edge device) participates in making the device smart. In particular, machine learning (ML)
methods can be used to analyze the sensed data for diagnosis, e.g., see our concept of an
ML sensor for diagnosing COVID-19 [12]. The problem is that IoT edge devices are of low
performance, and new effective ML algorithms are required.
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Presently, some methods are available for detecting neurodegenerative diseases. Us-
ing data collected from question assessments [13], blood biomarkers [14], eye-tracking
parameters [15], kinematic gait parameters [16], electroencephalograms (EEG) [17], and
other tests, conclusions are drawn regarding the presence or high risk of developing PD.

Among the disease indicators presented, EEG is one of the most promising because of
its non-invasive nature, wide distribution, low cost, and ability to be integrated into the
internet of things (IoT) [18]. In addition to diagnosing diseases, the use of portable personal
devices for recording EEG can be used to continuously monitor the patient’s current
condition and the effectiveness of the selected treatment method outside of the medical
institution through the development of intelligent devices with IoT technology. Usually,
EEG signals can be analyzed in time, frequency, and time–frequency domains [19]. A
time–frequency analysis can be performed by applying a short-time Fourier transform [20]
and wavelet transform [21] to examine the local temporal effects that occur under specific
bands of EEG frequencies. Generally, five different frequency bands are investigated in
EEG signals depending on their application. These bands are delta (0–4 Hz), theta (4–8 Hz),
alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–49 Hz) [22].

Electrical signals from the brain are highly non-stationary and complex. They are
susceptible to disturbances caused by external and internal noises. To characterize EEG
signal behavior in each class, different types of features are needed, such as statistical,
spectral, and entropy characteristics [23–25]. Various machine learning methods are then
used to determine the presence and type of neurodegenerative diseases [26–31]: artificial
neural network (ANN), probabilistic neural network (PNN), support vector machine (SVM),
neural network (NN) including deep learning neural network (DNN), decision tree (DT),
random forest (RF), Bayesian model (NB), k-nearest neighbor method (KNN), etc.

Rest-state EEG signals can be used to detect a variety of neurodegenerative diseases,
including Alzheimer’s disease [32], Parkinson’s disease (PD) [28–31,33–35], frontotemporal
dementia [36], dementia with Lewy bodies [37], and epilepsy [38]. In the field of neurodegen-
erative diseases, Parkinson’s disease is one of the most studied. As a result of Parkinson’s
disease, a person will have impaired motor functions (slowness of movement, tremors, rigidity,
and loss of balance) and impaired non-motor functions (decreased cognitive functions, mental
disorders, sleep disturbances, pain, and sensory problems) [39]. As part of PD diagnostics, the
EEG signal of the patient is compared to the EEG signal of a healthy control group. Depending
on the metric, changes can be determined either by comparing signals directly [34] or by quan-
tifying them using entropy metrics, spectral power metrics, cross-correlation metrics, statistical
values, etc., [28–31,33,35]. In [34], convolutional neural networks are used to classify PD using
a deep learning approach, in which the elements of the filtered signal are fed into the neural
network as input. A classification accuracy of 88.2% was achieved by this approach. However,
using calculated features usually yields better results. A principal component analysis of the
filtered signal, correlation coefficients, and linear predictive coefficients is used to calculate
features for the SVM classifier [35] that achieved a maximum mean classification rate of 99.1%
in diagnosing PD. Due to the fact that EEG changes can occur at certain frequency ranges
(corresponding to alpha, beta, gamma, theta, and delta waves), translating the signal from the
time domain (Fourier transform) or frequency–time domain (wavelet transform) is a common
method of analyzing EEG signals. In [30], spectral features (such as wavelet coherence and
relative wavelet energy) were used to detect PD-related dementia, AD, and a control group.
Spectral energy differences were found between the control group and the rest of the patients
at both low and high frequencies. They were able to determine PD with an accuracy of 79.1%
and AD with an accuracy of 81.2% using linear discriminant analysis. By using the tunable
Q wavelet transform, statistical signal metrics were extracted from the frequency subbands
of the rest-state EEG signal (minimum, Hurst exponent, Higuchi fractal dimension, Hjorth
complexity, mobility). There are four types of classifiers used to distinguish PD from healthy
controls (ANN, SVM, KNN, and RF) based on the above-mentioned statistical features. As a
result, the mean classification accuracy for healthy controls and PD patients (with or without
medical treatment) was 96.1% and 97.7%, respectively.
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Several works have focused on the differences in the entropy of signals in different
frequency ranges between patients with PD and the control group [28,31,33]. In [33], relative
spectral powers and wavelet packet entropy were used to identify PD. Although entropy
features allow for better separation of two classes, relative spectral power (especially in
the beta band) can also be useful. Higher-order spectral features, like bispectral entropies
and mean magnitude, were used for PD diagnosis [28] based on five different types of
classification algorithms such as DT, KNN, NB, PNN, and SVM. The SVM classifier reported
a maximum mean accuracy of 99.6% compared to other classifiers in diagnosing PD. The
authors of [31] used the KNN and SVM classifiers to diagnose PD based on energy and
entropy features extracted from reconstructed wavelet signals. Accordingly, KNN and
SVM classifiers achieved 99.5% and 99.9% mean accuracy, respectively.

Although the presented results prove a high classification accuracy (more than 99%),
most of the approaches used to calculate features are limited. Also, the hyperparameters
used when calculating entropy can significantly affect the calculation result. To obtain high
accuracy, a number of studies have used many features [30,31,33,34], which complicates the
implementation of these methods in low-performance IoT devices. This paper attempts to
address these deficiencies by comparing various entropy methods, carefully selecting their
parameters, and analyzing EEG signal frequency ranges for diagnosing PD. By analyzing
EEG data collected from normal control (NC) and Parkinson’s disease (PD) patients using
wireless Emotiv EPOC headsets, we have developed a novel method for detecting PD
which can be used in a smart IoT environment to enhance human resilience to PD.

The major contributions of this paper are:

• A comparative analysis of the effectiveness of various methods for calculating entropy
for identifying PD was carried out;

• The most significant frequency ranges and EEG channels were identified, as well as
their combinations;

• A study was conducted to reduce computational costs by selecting the most significant
features and reducing the length of the EEG segments analyzed;

• A method of monitoring a patient’s condition based on entropy values was developed;
• We propose a machine learning model for monitoring the health status of Parkinson’s

patients using an IoT environment based on low-performance sensors.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the datasets, proposed methods, and performance evaluation. Section 3 presents a
comparison of classification accuracy using different EEG channels and frequency bands.
Section 4 describes options for optimizing the classification model by reducing the length
of the EEG segment and the number of features. Section 5 outlines our further research on
the smart IoT environment concept for patient health monitoring and enhancing human
resilience. Section 6 summarizes the key findings and limitations of our study.

2. Materials and Methods
2.1. Dataset

This study was conducted using an EEG dataset consisting of 20 patients with Parkin-
son’s disease and 20 age-matched normal control subjects without a history of psychological
disorders or neurological disorders. This dataset was collected at the Hospital Universiti
Kebangsaan Malaysia in Malaysia. The entire data acquisition protocol at the Hospital
Universiti Kebangsaan Malaysia was approved by the Institutional Ethical Review Board
Committee as part of the hospital’s ethical review process. An Emotiv EPOC wireless head-
set with a total of 14 channels (Figure 1a) was used for recording EEG signals from both
NCs and PDs in the rest-state condition with the eyes closed for a period of 5 min during
this study. In accordance with the international standard 10–20 system, the 14 channels
(AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) were placed on the subject’s
scalp (Figure 1b). With a sampling rate of 128 Hz, the data collected for each of the channels
were converted into digital signals. Using the Hoehn and Yahr scales, a total of seven
patients were classified as having Parkinson’s disease stage III, eleven patients as having
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Parkinson’s disease stage II, and two patients as having Parkinson’s disease stage I. A
complete description of the dataset, acquisition, and preprocessing of the dataset can be
found in [40–42].

Sensors 2023, 23, 8609 4 of 20 

versiti Kebangsaan Malaysia in Malaysia. The entire data acquisition protocol at the Hos-
pital Universiti Kebangsaan Malaysia was approved by the Institutional Ethical Review 
Board Committee as part of the hospital’s ethical review process. An Emotiv EPOC wire-
less headset with a total of 14 channels (Figure 1a) was used for recording EEG signals 
from both NCs and PDs in the rest-state condition with the eyes closed for a period of 5 
min during this study. In accordance with the international standard 10–20 system, the 14 
channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) were placed on the 
subject’s scalp (Figure 1b). With a sampling rate of 128 Hz, the data collected for each of 
the channels were converted into digital signals. Using the Hoehn and Yahr scales, a total 
of seven patients were classified as having Parkinson’s disease stage III, eleven patients as 
having Parkinson’s disease stage II, and two patients as having Parkinson’s disease stage 
I. A complete description of the dataset, acquisition, and preprocessing of the dataset can
be found in [40–42].

Figure 2 shows the workflow diagram of the proposed classification method. It con-
sists of three separate steps: signal preprocessing (Section 2.2), feature generation (Section 
2.3) and classification (Section 2.4). 

(a)         (b) 

Figure 1. Emotiv EPOC wireless headset (a). Location of the electrodes on the head (b) 

[43]. 

Figure 2. The workflow diagram of the proposed classification method. 

Figure 1. Emotiv EPOC wireless headset (a). Location of the electrodes on the head (b) [43].

Figure 2 shows the workflow diagram of the proposed classification method. It consists
of three separate steps: signal preprocessing (Section 2.2), feature generation (Section 2.3)
and classification (Section 2.4).
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2.2. Signal Preprocessing

Considering the wide spectral range of EEG signals (0–64 Hz) and the fact that most
brain activity information is contained in relatively narrow frequency subranges [44,45], it
is possible that the entropy of the original signal gives a poor indication of its separation
capability. Filtering the initial data and decomposing the signal into separate frequencies
using the wavelet transform can increase EEG signals’ information content. A fifth-order
Butterworth filter with a cut-off frequency of 0.5–32 Hz was applied to all acquired signals
to remove low- and high-frequency noise, while amplitude thresholding of ±85 µV was
applied to remove artifacts (eye blinking, eyeball rotation, and eye movements) during the
acquisition process. Since the number of patients was relatively small, each EEG record
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was divided into 5 non-overlapping segments, each of which represented an independent
observation within the framework of this study. The duration of all segments was the
same and varied from 150 (~1.2 s) to 1000 (~7.8 s) samples. A discrete wavelet transform
(DWT) was performed on the signal using the db4 wavelet [46]. After decomposing into
wavelet approximation coefficients (A1–A4) and details (D1–D4), each of them was utilized
to reconstruct the signals, with each signal (cA1–cA4 and cD1–cD4) being reconstructed
with only one of the coefficients. A similar method was used in [31]; however, a different
frequency band was chosen.

Using the original dataset, 9 variants of different signal types were obtained:

• Original (O) signal; frequency ranges: (0–64 Hz);
• Signals reconstructed based on approximation coefficients (cA1–cA4); frequency

ranges: (cA1 (0–32 Hz), cA2 (0–16 Hz), cA3 (0–8 Hz), cA4 (0–4 Hz));
• Signals reconstructed based on detail coefficients (cD1–cD4); frequency ranges: (cD1

(32–64 Hz), cD2 (16–32 Hz), cD3 (8–16 Hz), cD4 (4–8 Hz)).

2.3. Feature Generation

Entropy features were calculated from EEG signals after applying DWT and concate-
nated to form the feature vector for each class (NC and PD). Later, these feature vectors were
used in classifying patients using different machine learning methods. This entropy model
comprises several features such as singular value decomposition entropy (SVDEn) [47],
permutation entropy (PermEn) [48], sample entropy (SampEn) [49], cosine similarity en-
tropy (CoSiEn) [50], fuzzy entropy (FuzzyEn) [51], phase entropy (PhaseEn) [52], and
attention entropy (AttnEn) [53]. A method for calculating entropy was implemented using
the EntropyHub (version 0.2) [54] software package, except for SVDEn and PermEn. The
Antropy (version 0.1.6) [55] software package was used to calculate SVDEn and PermEn.
The range of hyperparameters used for computing each type of entropy is shown in Table 1.
There are no hyperparameters associated with AttnEn.

Table 1. Ranges of parameters used to create entropy features.

Entropy Name Parameter Range

SVDEn order m = 2. . .10, delay = 1

PermEn order m = 2. . .10, delay = 1

SampEn order m = 1. . .3, tolerance r = 0.05. . .0.5 × std

CoSiEn order m = 2. . .3, tolerance r = 0.05. . .0.5

FuzzyEn order m = 1. . .2, tolerance r = 0.05. . .0.5 × std,
exponent membership function of order r2 = 1. . .5

PhaseEn K = 2. . .10

AttnEn no parameters

Below are descriptions of these methods for calculating entropy (Sections 2.3.1–2.3.7).

2.3.1. SVDEn

To calculate SVDEn for a time series X = [x1, x2, . . . xi, . . . xN] of length N, an embedding
matrix A is created as follows:

a(i) = [xi, xi+delay, . . . , xi+(m−1)·delay]

A = [a(1), a(2), . . . , a(N − (m− 1) · delay)]T
(1)

where m—length of the embedding dimension and delay—time series sample bias.
Singular value decomposition is the factorization of matrix A into the product:

A = USVT (2)
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Matrix U contains the left singular vectors of A, and matrix V contains the right singu-
lar vectors. Matrix S is always diagonal, and its coefficients are non-negative real numbers
λ1, . . ., λk, located on the main diagonal of the matrix, which are called singular values.

The dispersion of singular values λk also provides an indication of the complexity of
signal dynamics [47]. Singular values can be normalized as:

λk =
λk

∑ λk
(3)

Singular value decomposition entropy is defined with the Shannon formula applied
to the elements of singular values of the matrix, and calculated as follows [47]:

SVDEn = −∑ λk · ln λk (4)

After that, the SVDEn values are normalized in the range from 0 to 1:

SVDEn =
SVDEn
log2 m

(5)

2.3.2. PermEn

PermEn is a complexity measure for time series based on the comparison of neighbor-
ing values. The permutation entropy PermEn of a one-dimensional data series X is:

PermEn = −∑ pi · log2 pi (6)

where pi—the frequency of occurrence of the i-th permutation in embedded matrix A,
which is defined in the same way as (1).

After that, PermEn values are normalized in the range from 0 to 1:

PermEn =
PermEn
log2 m!

(7)

2.3.3. SampEn

The SampEn calculation of time series X = [x1, x2, . . . xN] of length N contains several
stages. First, the series is divided into template vector Xm

i = [xi, xi+1, . . . xi+m−1] of length
m (m < N). Then, the number C (m, r) of pairs of vectors Xm

i and Xm
j (i 6= j) for which the

Chebyshev distance ChebDist[Xm
i , Xm

j ] does not exceed r is calculated.
SampEn for one-dimensional data series X is defined as:

SampEn = − ln(
C(m + 1, r)

C(m, r)
) (8)

2.3.4. CoSiEn

The CoSiEn calculation of time series X = [x1, x2, . . . xN] of length N contains several
stages. First, the series is divided into template vector Xm

i = [xi, xi+1, . . . xi+m−1] of length
m (m < N). Then, the number B (m, r) of pairs of vectors Xm

i and Xm
j (i 6= j) for which the

angular distance AngDist[Xm
i , Xm

j ] does not exceed r is calculated.
Angular distance between two vectors is calculated as follows:

AngDist =
1
π
· cos (

Xm
i · Xm

j∣∣∣Xm
i

∣∣∣∣∣∣Xm
j

∣∣∣ )
−1

(9)

CoSiEn for one-dimensional data series X is defined as:

CoSiEn = −[B(m, r) · log2 B(m, r) + (1− B(m, r)) · log2(1− B(m, r))] (10)
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2.3.5. FuzzyEn

For a vector of time series T of length N, it is possible to compose N – m + 1 vectors
Xm

i of length m, consisting of normalized successive segments of the original series T. The
normalization procedure consists of subtracting Tavg

i from each element of the series:

Xm
i = {xi, xi+1, . . . xi+m−1} = {Ti, Ti+1, . . . , Ti+m−1} − Tavg

i (11)

where i = 1. . .N – m + 1 and Tavg
i is calculated as follows:

Tavg
i =

1
m

m−1

∑
j=0

Ti+j (12)

For any pair of vectors Xm
i and Xm

i (i 6= j), one can determine the distance dm
ij between

them equal to the maximum absolute difference between the vector components:

dm
ij = max

k∈(0,m−1)

∣∣∣xi+k − xj+k

∣∣∣ (13)

The similarity between vectors is determined using the fuzzy function Dm
ij :

Dm
ij = exp(−

(dm
ij )

r2

r
) (14)

The FuzzyEn entropy value is calculated based on the average similarity of vectors.
For a finite series T it can be expressed as:

FuzzyEn = ln(φm)− ln(φm+1) (15)

where the function φm is expressed through:

φm =
1

N −m

N−m

∑
i

(
1

N −m− 1

N−m

∑
j=1,j 6=i

Dm
ij ) (16)

2.3.6. PhaseEn

In order to calculate PhaseEn of time series X = [x1, x2, . . . xN] of length N, it is
necessary to first construct vectors Y and W, which are the coordinates of the points on the
second-order difference plot, defined as follows:

Y = [x3 − x2, x4 − x3, . . . , xN − xN−1]
W = [x2 − x1, x3 − x2, . . . , xN−1 − xN−2]

(17)

Then, a vector containing the slope angles of each point (in the range of 0–2π) is
calculated as follows:

θ = tan−1(
Y
W

) (18)

Then, the entire range (2π) is divided into K equal sectors, for each of which the total
slope angle Si (i = 1. . .K) is calculated:

Si =
N

∑
j=1

θj, i f θj ∈
[
(i− 1) · 2π

K
,

i · 2π

K

]
(19)



Sensors 2023, 23, 8609 8 of 20

After that, probability distribution pi is calculated for each of the K sectors:

pi =
Si

K
∑

j=1
Sj

(20)

PhaseEn is computed as:

PhaseEn = − 1
log K

K

∑
i=1

pi · log pi (21)

2.3.7. AttnEn

The AttnEn calculation of time series X = [x1, x2, . . . xN] of length N contains several
stages. First, it is necessary to calculate the positions of local minima and maxima within
the time series. By local minimum, we mean point xi for which the inequalities xi < xi−1 and
xi < xi+1 hold, and by local maximum, we mean point xj for which the inequalities xj > xj−1
and xj > xj+1 hold. Then, the intervals between two successive peak points (minima and
maxima) are calculated. In this case, 4 variants of such intervals are considered: between
two maximums (Imax-max), between two minimums (Imin-min), between the maximum and
the subsequent minimum (Imax-min), between the minimum and the subsequent maximum
(Imin-max).

After calculating 4 sets of intervals (Imax-max, Imin-min, Imax-min, Imin-max) for each set,
the frequency of occurrence of each interval within the set is calculated, on the basis of
which Shannon entropy values are calculated (ShEnmax-max, ShEnmin-min, ShEnmax-min,
ShEnmin-max). The AttnEn value is the average of these entropies: AttnEn = (ShEnmax-max +
ShEnmin-min + ShEnmax-min + ShEnmin-max)/4.

2.4. Assessment of Classification Accuracy

The accuracy of the classifications was assessed using support vector classifiers (SVCs)
implemented using scikit-learn. Two stages were involved in the classification accuracy
assessment. In the first step, hyperparameters were selected by means of repeated K-fold
cross-validation (RKF) [56]. This was performed by dividing the estimated datasets into
K = 10 blocks in various ways, with N = 10. For each of the N variants of partitions, the
K-blocks were filled with different samples, resulting in a uniform distribution of classes.
Sets of samples were created based on K-blocks for training and validating the classifier,
with each K-block being validated once and the remaining K – 1 = 9 being used in training.

The classifier hyperparameters were then selected at the maximum average accuracy
achieved on the validation set. K-block cross-validation allows for the selection of hy-
perparameter values that do not require retraining the model because many training and
validation sets are used. Due to the optimization of hyperparameters on a fixed set of
samples, it is possible that the average cross-validation accuracy is too optimistic. Conse-
quently, after determining the optimal hyperparameters, the next step was taken. During
the second stage, optimal values of hyperparameters were used and cross-validation was
performed on other N = 30 partitions divided into K = 10 blocks, which was different from
the first stage. Classification accuracy was measured based on the average ARKF accuracy
across the new partitions.

3. Experimental Results and Discussion

In this section, we present the results of assessing classification accuracy using all
features, one signal type, all channels, one channel, and one feature.
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3.1. Classification Accuracy Using One Method for Calculating the Entropy

In both NC and PD, the entropy feature was computed using all nine types of input
EEG data (original signal and eight reconstructed signals based on detail and approxi-
mation coefficients) across 14 channels (126 features in total). A model was developed
to categorize NC and PD based on the features extracted from NC and PD pairs. Based
on PermEn, SampEn, CoSiEn, FuzzyEn, PhaseEn, BubbleEn, and SVDEn, Figure 3 shows
the classification accuracy (ARKF) of each entropy feature with different hyperparameters.
These entropy features were computed with varying hyperparameter values in this study.
Using five non-overlapping segments of 40 subjects (20 PDs and 20 NCs), we extracted
entropy features from 200 datasets. In this task, the optimal parameters for each of the
entropy calculations were determined.
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The best classification result ARKF = 99.9% was demonstrated for FuzzyEn with pa-
rameters (m = 1, r = 0.15 × std, r2 = 5). The influence of the r parameter in this case
is insignificant. It was observed that the ARKF value increases as the r2 parameter in-
creases from 1 to 5. The next most accurate entropy method was AttnEn (ARKF = 97.9%).
This method has no hyperparameters. Acceptable accuracy was achieved for PermEn
(ARKF = 95% for m = 5) and SVDEn (ARKF = 93.6% for m = 3). Both curves have a maximum
at intermediate values of the m parameter. The worst results were obtained using the
SampEn (ARKF = 91.5% for m = 2, r = 0.25 × std), PhaseEn (ARKF = 81.5% for K = 6), and
CoSiEn (ARKF = 81.3% for m = 3, r = 0.05) methods.

3.2. Classification Accuracy Using One Type of Signal

Furthermore, we wished to identify which type of EEG data is most effective among
the nine types of data, as described in Section 2.2, based on different entropy measures.
Through this investigation, the computational complexity (memory and computation time)
of the proposed PD diagnosis system can be reduced. This section presents the results
of calculating classification accuracy ARKF using each type of nine signals (O, cA1–cA4,
cD1–cD4) for each of the 14 channels (14 features in total). The values of the optimal entropy
parameters correspond to those presented in Section 3.1. Figure 4 shows the dependence of
ARKF on the type of signal.
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According to the experimental results, FuzzyEn has higher accuracy than other types
of entropy features for all types of signals. According to the presented data, it can be noted
that the use of only one type of signal (14 features) generally reduces the accuracy of the
ARKF classification compared to using all 126 features. When using FuzzyEn, the ARKF
value had high values for the following signals: cD2 (ARKF = 98.9%), cA3 (ARKF = 98.2%),
cA4(ARKF = 98%). For other entropies, high ARKF values were observed for signals O, cA1,
cA2, cA3, cA4. Perhaps this is due to the presence of a low-frequency component in the
range from 0 to 4 Hz in these signals, namely O (0–64 Hz), cA1 (0–32 Hz), cA2 (0–16 Hz),
cA3 (0–8 Hz), and cA4 (0–4 Hz), while cD1 (32–64 Hz), cD2 (16–32 Hz), cD3 (8–16 Hz), and
cD4 (4–8 Hz) signals contain higher frequency components. Low-frequency rhythms (delta
and theta) are usually prominent while the eye is closed and in a resting state compared
to waking and alert states (while the eye is open and focused). People with neurological
disorders, particularly those with delta and theta rhythms, tend to have these rhythms
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dominate more than healthy individuals. Due to this, low-frequency rhythms (alpha to
gamma) are more accurate in diagnosing Parkinson’s disease than high-frequency rhythms.

The decrease in accuracy when using only one type of signal is quite significant:
classification error ERKF = 1 − ARKF increased by 11 times compared to the result achieved
when using all features (Section 3.1). Thus, the use of one frequency range is not enough to
achieve maximum classification accuracy ARKF = 99.9%.

3.3. Classification Accuracy Using a Single Channel

In this section, we present the results of classification accuracy ARKF using all nine
signal types (nine features in total) corresponding to one of the 14 channels (AF3, F7, F3,
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4). The values of the optimal entropy parameters
are specified in Section 3.1. In Figure 5, ARKF is shown in relation to the channel number.
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Analyzing the results presented in Figure 5, it can be noted that the highest ARKF
value for most channels was obtained using FuzzyEn for the P8 (ARKF = 90.8%) and F8
(ARKF = 88.8%) channels. It is not possible to find pronounced dependencies that are
repeated for all entropies. The classification accuracy obtained when using one channel is
significantly reduced compared to the results achieved when using all channels: minimum
classification error ERKF increases by ~8 times when using one channel and one type of
signal (Section 3.2) and 92 times when using all signals and all channels (Section 3.1). This
suggests the need to use multichannel EEG measurement devices to maximize accuracy.

3.4. Classification Accuracy Using One Feature

In Sections 3.2 and 3.3, reduced datasets with fourteen (one signal type) and nine (one
channel) features were used; however, Figures 4 and 5 show that classification accuracy
varies significantly across different channels and signal types (frequency bands). At the
same time, when analyzing these two criteria, we cannot determine the most informative
combinations of channels and frequency ranges.

This section presents the results of using one feature (one type of signal for one
channel). In this case, the FuzzyEn method, which produced the best accuracy estimate
in Sections 3.2 and 3.3, will be used, with the parameters m = 1, r = 0.15 × std, r2 = 5. The
graphs are grouped by signal types and are divided into two groups:
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1. Group 1 consists of signals based on detail wavelet coefficients, as follows: cD1
(32–64 Hz), cD2 (16–32 Hz), cD3 (8–16 Hz), and cD4 (4–8 Hz);

2. Group 2 consists of the original signal and signals based on approximation wavelet
coefficients, as follows: O (0–64 Hz), cA1 (0–32 Hz), cA2 (0–16 Hz), cA3 (0–8 Hz), and
cA4 (0–4 Hz).

The most informative frequency range for the first group (Figure 6a) is cD4 (4–8 Hz),
for which the average value of ARKF (ARKF_mean) is equal to 67.1%, while for the rest of the
frequency ranges, ARKF_mean ~63%. Among the signals in the second group (Figure 6b),
the most informative is cA3 (0–8 Hz), with an average value of ARKF_mean = 71.4%, while
signals with the presence of higher-frequency components show lower values of ARKF_mean:
63.2% for O (0–64 Hz), 62.9% for cA1 (0–32 Hz), and 65.8% for cA2 (0–16 Hz). The lower
accuracy of ARKF_mean = 68.2% for cA4 (0–4 Hz) may indicate that the 4–8 Hz range is
needed to improve signal classification accuracy. The highest classification accuracy by one
feature was obtained for the T8 channel and the cA3 signal: ARKF = 79.5%.
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To determine the most informative combinations of channels and frequency ranges,
Table 2 was compile. It contains 15 combinations of channel and signal type with the
highest ARKF value from those presented in Figure 6a,b. It can be noted that for most of the
channels presented in the table (T8, O2, FC6, F3, AF4), only the low-frequency components
of the original signal are the most informative, namely cA3 (0–8 Hz), cA4 (0–4 Hz), and
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cD4 (4–8 Hz), while for channels F8 and O1, signals with high-frequency components are
also informative: O (0–64 Hz) and cD1 (32–64 Hz). It is also worth noting that most of the
channels that give the best results were located in the right hemisphere of the head.

Table 2. Combinations of channels and signal type that give the highest ARKF value.

Channel Signal Type ARKF, %

T8 cA3 79.5

O1 cA4 77.1

FC6 cA4 76.9

O2 cA3 76.5

FC6 cA3 76.2

F8 cA2 74.9

T8 cA4 74.2

F3 cA3 74.2

F8 O 73.4

F8 cD1 73.4

O1 cA3 72.4

F8 cA3 72.3

AF4 cA3 72.1

O1 O 71.9

AF4 cD4 71.6

According to our knowledge, there are no earlier studies that examine the impact
of specific regions or specific hemispheres on PD diagnosis using rest-state EEG signals.
As a result of the proposed entropy-based PD diagnosis methodology, right hemisphere
channels showed a significant difference compared to left hemisphere channels in terms of
the following criteria: (a) limited number of PD subject data, clinical history of the patients,
and progression of PD in the subjects; (b) limited number of channels (14 channels); and
(c) proposed methodology of entropy features and machine learning-based diagnosis. No
specific region in the brain has been studied in the literature on diagnosing PD due to the
lack of valid scientific evidence. By conducting the experiment on another PD dataset with
a larger number of subjects with a higher number of EEG channels, we could justify or test
our proposed conclusion in the future.

4. Model Optimization

Section 3.4 showed that different types of signals perform best on different channels.
A high classification accuracy can be achieved with a minimum number of features, which
appears to be an interesting goal. We examined how the accuracy of ARKF changes with the
number of features computed using FuzzyEn (Section 3.4). In order to do this, we used
an iterative approach in which only the first feature gave the maximum value of ARKF.
Next, the ARKF value was calculated for the combination of two features. The evaluation
procedure was repeated with one more of the remaining features added. Figure 7 illustrates
the dependence of ARKF on feature numbers.

With 11 features, classification accuracy ARKF is 99.9%, which is the same as that
achieved using all 126 features. By minimizing the number of features, it is possible to
reduce the computational costs of classification and use lower-performance devices for
analysis, such as peripheral IoT devices or embedded analytical modules in EEG signal
measurement devices.
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The length of the EEG segment (LEEG) can also be reduced to reduce the amount of
data to be processed. In Section 3, we used segments with 1000 counts (~7.8 s). However,
it is possible to shorten this length in order to speed up calculations. We achieved this
by reducing the most resource-intensive part of the analysis—the calculation of FuzzyEn.
Another part of the time is spent filtering the signal using wavelet methods. According
to Figure 8, ARKF accuracy depends on the number of LEEG readings when using all
126 features (see Section 3.1) or the 11 most informative ones (this section).
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The segment length LEEG of 1000 samples provides a high classification accuracy
of 99.9% for both 11 and 126 features. As segment length LEEG decreases, classification
accuracy ARKF also decreases, but less intensely for 126 features than for 11. For example, a
decrease in length even by 20% (up to LEEG = 800) led to a decrease in accuracy to 99.4%
for 126 features and to 98.2% for 11 features. Thus, ERKF error increased by 6 times for
126 features and by 18 times for 11 features.

Since the main idea of reducing computational costs is to reduce computation time,
we compared the computation time of one segment (calculation of entropy features and
classification by the trained model) for different segment lengths LEEG and different num-
bers of features. The calculations were performed on a desktop computer with an Intel
i5-7200U (2.5 GHz) processor and 8 GB of RAM.

With more than 350 samples, computation time tcomp depends linearly on segment
length LEEG, since most of the time is spent calculating entropy features. It took approxi-
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mately 0.06 s to calculate one feature with a length of LEEG = 1000. In Figure 9, it can be
observed that by reducing the number of features, calculation time can be significantly
reduced (for example, with LEEG = 1000, calculation time varies by 11 times) while main-
taining a low classification error (see Figure 8). The reduction in segment length does
not significantly improve calculation speed (for example, the speed difference between
LEEG = 1000 and LEEG = 800 is only 25%), but significantly increases classification error ERKF.
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5. Future Work: Smart IoT Environment Concept for Patient Health Monitoring

Based on the results presented in Section 3, we conclude that entropy features can be
used to analyze EEG signals in order to effectively diagnose PD patients. Let us present
the idea of a smart IoT environment that continuously monitors the patient’s condition
at home (Figure 10). Such a smart IoT environment collects and analyzes a wide array
of information in real-time using ML sensors in edge IoT devices. The results are then
presented to both the patient and the attending physician through remote, authorized
access to the data. The latter is especially important if the treatment takes place at home
rather than in a medical facility [57]. An attending physician can intervene quickly if a
patient’s condition deteriorates, which the patient himself/herself may not be aware of due
to the deterioration in cognitive functions. This approach enhances human resilience to PD,
making everyday life more comfortable and easier.
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According to the concept of personal medicine [8], the constant monitoring of disease
and identifying the best treatment method for everyone are important elements of care. The
previous sections discussed the classification of EEG signals used to diagnose Parkinson’s
disease. FuzzyEn-based features, however, can be used as a tool to assess the current
state of a disease. Histograms of entropy values (cA3 for channel T8) for people with
Parkinson’s disease and healthy controls are shown in Figure 11. Based on the results
presented, the presence of disease is associated with more chaotic EEG signals in most
patients. Based on the dynamics of the change in entropy value, it is possible to track
the improvement or deterioration of the clinical picture for each individual patient using
several combinations of signal type and channel as indicators. As entropy increases, one
can speak of deterioration in the patient’s condition, and as it decreases, one can speak of
improvement. As a result of the variability in values within the dataset under study, the
absolute value of entropy cannot serve as an unambiguous indicator of disease severity.
The effectiveness of an individual treatment method can also be assessed based on how
much entropy has decreased over time compared with control indicators. Thus, the results
shown in Figure 11 can be expanded with additional studies to identify the connection
between changes in FuzzyEn values of EEG signals and the degree of progression of PD
using continuous monitoring with the proposed IoMT system.
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The optimization of information processing processes is an important step in devel-
oping IoT environments and low-performance sensors that monitor PD patients’ health
status. Due to their limited computing capabilities and small amounts of RAM, IoT devices
and gateways need to reduce their volume to speed up data processing. An IoMT network
is capable of continuously monitoring physiological parameter changes in humans by
using machine learning (ML) models trained on smart sensors [12,58,59]. Physiological or
biomedical sensors that are placed on the patient’s body (wearable sensors) measure differ-
ent types of physiological responses, including heart rate, blood pressure, skin electrical
conductivity, oxygen saturation, heart electrical activity, electroencephalograms (EEGs),
etc. [60]. Additionally, some sensors can be placed in the room where the patient is located
to monitor their movement patterns, gait, physical activity, etc. [61,62]. In addition to
transforming the hardware designs of traditional sensor systems using ML techniques,
artificial intelligence sensors (or smart sensors) can also be designed holistically based on
ML methods [63] and machine learning algorithms [64,65]. A further development of the
ML sensor paradigm was achieved by Warden et al. [59] and Matthew Stewart [58], where
the authors introduced the terms Sensors 1.0 and Sensors 2.0. Sensors 2.0 involve both a
sensor and a machine learning module integrated into one device.

In Section 4, we showed that only 11 features are sufficient to identify PD with a
classification accuracy ARKF of ~99.9%. For future research, it is possible to propose the
development of a type of Sensor 2.0 which will be implemented in the real device (wireless
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headset) (Figure 10). EEG signals will be input into the model, and the output will be the
degree of disease development. This may be part of a smart IoT environment for patient
health monitoring. To implement the EEG signal classification methods proposed in this
work, it is proposed that Raspberry Pi Zero W be used.

The third direction of research could be the fusing of information from EEG devices
and an IoT video camera. Continuous monitoring of the patient’s condition could include
regular (e.g., weekly) EEG measurements at rest and continuous monitoring of motor activ-
ity using video surveillance. By analyzing the video image, it would be possible to identify
specific motor activity disorders characteristic of Parkinson’s disease. Both the patient and
his/her attending physician would be able to monitor the patient’s condition objectively
based on the analysis results. Interaction between the smart IoT environment and a medical
information system could be achieved through network interaction. This would be espe-
cially relevant to remote northern regions with low population density and long distances
to medical institutions with the necessary infrastructure. Additionally, it would reduce the
burden on medical facilities and reduce the cost and time of transporting patients.

6. Conclusions

This study proposes a novel ML model based on EEG entropy features for PD diagnosis
and monitoring in smart IoT environments. We investigated the most effective entropy
method to calculate EEG entropy features. We found that fuzzy entropy performed well in
detecting and monitoring Parkinson’s disease. EEG signals with low frequencies (0–4 Hz)
contributed the most to high classification accuracy, and we identified the most prominent
EEG signal frequency range. Additionally, the most informative signals were received
primarily from the right hemisphere of the head (F8, P8, T8, FC6). A combination of signal
frequency range and channels was selected to accurately diagnose PD with only 11 features
achieving a classification accuracy ARKF of ~99.9%, while reducing data processing time
by ~11 times. A study of the dependence of classification accuracy ARKF on the length
of EEG segments (LEEG) showed a significant decrease in ARKF with a decrease in LEEG:
from 99.9% for LEEG = 1000 to 98.3% for LEEG = 800 when using the 11 best features. At
the same time, decreasing the value of LEEG only slightly reduced computation time, so
this approach does not make much practical sense. This also shows the limitations of the
method: to obtain a high classification accuracy, it is necessary to use long segments of the
EEG signal (1000 samples or ~7.8 s). An optimized model with a small number of features,
reducing computational costs, could be used in low-performance devices, and so would be
applicable for smart IoT environments with ML sensors.
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