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Abstract: The human visual attention system plays an important role in infrared target recognition
because it can quickly and accurately recognize infrared small targets and has good scene adaptability.
This paper proposes an infrared small target detection method based on an attention mechanism,
which consists of three modules: a bottom-up passive attention module, a top-down active attention
module, and decision feedback equalization. In the top-down active attention module, given the
Gaussian characteristics of infrared small targets, the idea of combining knowledge-experience
Gaussian shape features is applied to implement feature extraction, and quaternion cosine transform
is performed to achieve multi-dimensional fusion of Gaussian shape features, thereby achieving
complementary fusion of multi-dimensional feature information. In the bottom-up passive attention
module, considering that the difference in contrast and motion between the target and the background
can attract attention easily, an optimal fast local contrast algorithm and improved circular pipeline
filtering are adopted to find candidate target regions. Meanwhile, the multi-scale Laplacian of
the Gaussian filter is adopted to estimate the optimal size of the infrared small target. The fast
local contrast algorithm based on box filter acceleration and structure optimization is employed to
extract local contrast features, and candidate target regions can be obtained by using an adaptive
threshold. Besides, the mean gray, target size, Gaussian consistency, and circular region constraint
are used in pipeline filtering to extract motion regions, and the false-alarm rate is reduced effectively.
Finally, decision feedback equalization is adopted to obtain real targets. Experiments are conducted on
some real infrared images involving complex backgrounds with sea, sky, and ground clutters, and the
experimental results indicate that the proposed method can achieve better detection performance than
conventional baseline methods, such as RLCM, ILCM, PQFT, MPCM, and ADMD. Also, mathematical
proofs are provided to validate the proposed method.

Keywords: infrared small target detection; feature frequency domain fusion; attention mechanism;
feature weighting adjustment

1. Introduction

Detecting and tracking infrared small targets has been a challenging and extensively
studied topic in the military field. This technique is commonly used in infrared search
and tracking systems, infrared weapon guidance, and missile early warning systems [1–3].
In infrared scenes, small targets are often surrounded by strong background clutter and
noise, while the limited imaging area and lack of distinct features such as shape and texture
make detection and tracking infrared small targets difficult at a long imaging distance.
Especially for backgrounds with sea, sky, and ground clutters, the detection difficulty
further increases due to dynamic changes, low signal-to-noise ratio, fluctuations in target
energy, and even submergence. The imaging characteristics and complex and diverse
backgrounds of the aforementioned small infrared targets pose great challenges to the
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current detection task. Therefore, it is urgent to study how to detect infrared small targets
accurately, robustly, and in real-time [4–7].

The primary methods of small infrared target detection can be categorized as filtering-
based methods, low-rank sparse restoration-based methods, and feature continuity-based
methods. The filtering-based method exploits the difference between the target and back-
ground clutter in the spatial and frequency domains to detect the target. Various filters have
been introduced, including the adaptive toggle operator [8], nonnegativity-constrained
variational mode decomposition [9], and frequency-tuned salient region detection [10].
These methods have a small amount of calculation, but the detection effect is poor. They can
only suppress the uniform background to a certain extent, and the suppression effect is
poor in complex backgrounds with sea, sky, and ground clutters. The low-rank sparse
restoration-based method utilizes the difference in frequency characteristics of the target
and the background clutter to detect the target [11–13]. However, the large number of
calculations limit the engineering application of this type of method. The feature continuity-
based method fully utilizes the temporal continuity of the shape and gray level of the target,
as well as prior information such as the continuity of the motion trajectory to distinguish
the target from the background clutter [14–16]. This type of method has a good detection
effect for fast-moving targets, but it will fail for stationary targets. Therefore, the existing
methods cannot be used in engineering practice to realize accurate, robust, and real-time
detection in complex backgrounds.

In recent years, the human visual attention system has been introduced into the
research of infrared small target detection. The human visual attention system can be
divided into two types: the data-driven bottom-up passive attention mechanism and the
task-dependent top-down active attention mechanism. Although infrared small targets
are very weak, there are certain differences between the targets and the local background,
and the human visual attention system can capture these differences and locate these areas
quickly. Inspired by active attention and passive attention mechanisms, researchers have
innovatively proposed various algorithms and made great breakthroughs [17–20].

By imitating the human visual attention mechanism, local contrast is adopted to
effectively enhance the target area and suppress background clutter and noise, such as
LCM (Local Contrast Measure) [21], ILCM (Improved Local Contrast Measure) [22], LDAM
(Local Difference Adaptive Measure) [23], RLCM (Relative LCM) [24], DLCM (Double-
Layer Local Contrast Measure) [25], MLHM (Multiscale Local Homogeneity Measure) [26],
LIG (Local Intensity and Gradient) [27], HB-MLCM (High-Boost-based Multiscale Local
Contrast Measure) [28], MPCM (Multiscale Patch-based Contrast Measure) [29], WSLCM
(Weighted Strengthened Local Contrast Measure) [30] and ADMD (Absolute Directional
Mean Difference) [31], etc. Based on strong representational capabilities, many deep
learning methods have also begun to be widely used [32,33].

The local contrast-based methods mentioned above only use passive attention infor-
mation to detect small infrared targets, but ignore active attention information, which can
introduce many false alarms. Meanwhile, it is necessary to select features that can accurately
distinguish between real targets and false-alarm targets. To overcome the aforementioned
limitations, this paper proposes a small target detection method based on an attention
mechanism. The proposed method employs passive and active attention information to
improve detection performance. The main contributions of this paper are summarized
as follows:

(1) A top-down active attention module is proposed to obtain target knowledge-experience
Gaussian shape features, and the quaternion cosine transform is used to achieve
multi-dimensional fusion of Gaussian shape features, thereby significantly improving
the signal-to-clutter ratio gain (SCRG) and background suppression factor (BSF).

(2) The difference in contrast and motion between the target and the background is
exploited to design a bottom-up passive attention module; meanwhile, an optimal
fast local contrast algorithm and improved circular pipeline filtering are adopted to
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find candidate target regions, using passive attention features with a discriminative
ability to accurately detect small infrared targets.

(3) The decision feedback equalization considers the results of active and passive attention
mechanisms to find real targets, which can better adapt to environmental changes in
different scenarios.

(4) The remainder of this paper is organized as follows. In Section 2, the related work—such
as the attention method, quaternion method, and ILCM—is reviewed. Section 3 presents
the general framework of the proposed method and provides an in-depth explanation
of its mathematical proofs. Section 4 outlines the experiments to validate the proposed
method. Finally, Section 5 concludes this paper.

2. Related Work

In this section, the attention method, the quaternion method, and LCM are reviewed
in brief, all of which have a strong connection to our research.

2.1. Attention Method

The human visual attention system can be divided into two types: the data-driven
bottom-up passive attention mechanism and the task-dependent top-down active attention
mechanism, as shown in Figure 1. In the bottom-up passive attention mechanism, the
prefrontal cortex (PFC) and posterior parietal cortex (PPC) integrate the original physical
characteristics of external stimuli that are transmitted through the visual pathway to form
a complete saliency map in the brain. This causes eye movement controlled by the superior
colliculus (SC) and makes it easy for us to pay attention to the yellow rectangular target
in the visual scene (the task here is to search the yellow rectangle). The physical features
here include color, intensities, orientations, etc. The top-down active attention mechanism
actively searches for targets with priority map characteristics in the prefrontal cortex (PFC)
of the brain according to known task information and knowledge experience; it causes eye
movement so that we can easily pay attention to the desired target.

Figure 1. The human visual attention system.

Inspired by the human visual attention system, the simulation and simplification of
each attention module can realize the accurate detection of infrared small targets.

2.2. Quaternion Method

The quaternion discrete cosine transform (QDCT) algorithm combines discrete cosine
transform (DCT) with quaternion algebra, and it is widely used in image processing.
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Object detection has been realized through input variables by applying QDCT in recent
times. The stronger the feature generalization ability, the higher the detection performance
of the algorithm.

The quaternion representation is:

Iq = x1 + x2i + x3 j + x4k (1)

where x1, x2, x3 and x4 are four real numbers, and they satisfy the operation rule i2 = j2 =
k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. Each quaternion Iq is a linear
combination of 1, i, j, and k.

Assume that the resolution of Iq is M×N, where M and N represent the length and
width of the image, respectively. The QDCT of Iq is given by

Q(u, v) = QDCT(Iq) = αM
u αN

v

M−1

∑
m=0

N−1

∑
n=0

µQ IqN(u, v, m, n) (2)

where αM
u and αN

v are the coefficients. N(u, v, m, n) and µQ are given by N(u, v, m, n) = cos
[

π
M (m + 1

2 )u
]

cos
[

π
N (n + 1

2 )v
]

µQ = −
√

1
3 i−

√
1
3 j−

√
1
3 k

(3)

The corresponding inverse quaternion cosine transform (IQDCT) is shown below:

Iq
′ = IODCT(Q(u, v)) =

M−1

∑
u=0

N−1

∑
v=0

αM
u αN

v µqQ(u, v)N(u, v, m, n) (4)

The quaternary cosine transform can be employed to fuse the input feature variables
to realize the complementary fusion of feature information of different dimensions and
achieve target detection.

2.3. LCM Algorithm

The traditional LCM algorithm uses a sliding window to traverse the entire image
pixel by pixel from left to right and top to bottom to calculate the local contrast of the image,
consequently achieving accurate detection of small targets. The sliding window contains
3 × 3 sub-windows in total. Among the sub-windows, the one in the center denoted by “0”
represents the target area, and the ones in the surrounding area denoted by “1”, “2”, “3”,
“4”, “5”, “6”, “7”, and “8” represent the background area.

The average gray value of each sub-window can be expressed as

m =
1
N ∑

i,j
Id(i, j) (5)

where N is the number of pixels in each sub-window, and Id(i, j) is the gray value in the
sub-window whose center is located at the coordinates (i, j). When the sliding window
passes through a certain pixel of the image, the LCM of the pixel can use the central
sub-window and the eight adjacent background sub-windows, and its expression is:

C = min(L0 ×m0/mk)(k = 1, 2, . . . , 8) (6)

where L0 and m0 are the maximum gray value and mean gray value of the sub-window “0”,
respectively, while mk(k = 1, 2, . . . , 8) represents the mean gray value of the eight surround-
ing sub-windows. The eight surrounding sub-windows serve as the local background
(see Figure 2).



Sensors 2023, 23, 8608 5 of 18Sensors 2023, 23, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 2. The calculation principle of LCM. 

3. Methodology 
In the top-down active attention module, to fully utilize the knowledge-experience 

information of infrared small targets, this paper extracts Gaussian shape features and uses 
QDCT to achieve complementary fusion of multi-dimensional Gaussian shape features. 
In the bottom-up passive attention module, the difference in contrast and the motion be-
tween the target and the background can attract attention easily, and based on this, this 
paper proposes an optimal fast local contrast algorithm and uses improved circular pipe-
line filtering to find candidate target regions, which can reduce the false alarm rate and 
improve detection precision effectively. Additionally, decision feedback equalization is 
adopted to detect real targets, and it is effective in different scenarios to better adapt to 
environmental changes. Figure 3 shows the flowchart of the proposed method, followed 
by a detailed description of the specific execution steps. The introduction of the top-down 
active attention module is outlined in Section 3.1, followed by the explanation of the bot-
tom-up passive attention module in Section 3.2. Section 3.3 discusses decision feedback 
equalization, and Section 3.4 presents the optimal fast local contrast algorithm along with 
its mathematical proofs. 

Infrared image 
squence

0°

90°

45°

135°

QDCT Normalization IQDCT Candidate
region

multi-dimensional feature 
fusion module

Gaussian Shape
Feature extraction

Top-down active attention module

Bottom-up passive module 

optimal fast LCM

𝑠1𝑠2𝑠3𝑠4 Build 
circular 

filter from 
frame M 

Input 
next t 
frames

Filter
Choose 
targets

Candidate
region

FIFO principle 
update

Multiscale 
LOG filter

fast LCM
Adaptative
thresholdBox 

 filter
Structure 

Optimization

Candidate
region

decision 
feedback 

equalization

 improved circular 
pipeline filtering

 
Figure 3. The flowchart of the proposed method. 

3.1. Top-Down Active Attention Module 
The top-down active attention module exploits the prior knowledge of the infrared 

small target to design a discriminator and effectively detect the infrared small target. Due 
to the use of an optical imaging system in Gaussian shape feature extraction, infrared 

Figure 2. The calculation principle of LCM.

The fast local contrast algorithm based on box filter acceleration and structure opti-
mization is an improved version of the LCM, and it has a faster calculation speed while
ensuring accuracy.

3. Methodology

In the top-down active attention module, to fully utilize the knowledge-experience
information of infrared small targets, this paper extracts Gaussian shape features and uses
QDCT to achieve complementary fusion of multi-dimensional Gaussian shape features.
In the bottom-up passive attention module, the difference in contrast and the motion
between the target and the background can attract attention easily, and based on this,
this paper proposes an optimal fast local contrast algorithm and uses improved circular
pipeline filtering to find candidate target regions, which can reduce the false alarm rate
and improve detection precision effectively. Additionally, decision feedback equalization
is adopted to detect real targets, and it is effective in different scenarios to better adapt to
environmental changes. Figure 3 shows the flowchart of the proposed method, followed
by a detailed description of the specific execution steps. The introduction of the top-down
active attention module is outlined in Section 3.1, followed by the explanation of the
bottom-up passive attention module in Section 3.2. Section 3.3 discusses decision feedback
equalization, and Section 3.4 presents the optimal fast local contrast algorithm along with
its mathematical proofs.
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3.1. Top-Down Active Attention Module

The top-down active attention module exploits the prior knowledge of the infrared
small target to design a discriminator and effectively detect the infrared small target. Due to
the use of an optical imaging system in Gaussian shape feature extraction, infrared small
targets appear as isotropic Gaussian-like spots while the background typically exhibits a
uniform direction. To distinguish the Gaussian-like spots and strip-like textures that have
a single direction, the second-order directional derivative filter is adopted to construct a
continuous function within a specific area using discrete points, and then, the directional
derivative of the function is determined. As shown in Figure 4, this method can effectively
extract the desired features.
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Figure 4. The effect of the second-order directional derivative filter. (a) The original image; (b) the
processing effect in the horizontal direction; (c) the processing effect in the vertical direction.

Denote the gray value of the image at the coordinate point (x, y) as f (x, y), and denote
the directional derivative Di of the direction vector l as:

Di = ∂2 f (x,y)
∂l2

∣∣∣∣
(x0,y0)

=
[

fxx(x, y) cos2 α + 2 fxy(x, y) cos α cos β + fyy(x, y) cos2 β
]∣∣∣∣

(x0,y0)

(7)

where α is the angle between the direction vector l and the X-axis (row of image), and β is
the angle between the direction vector l and the Y-axis (column of image).

Because the target has the same Gaussian characteristics, the Gaussian-like target is
retained in the detection process. Meanwhile, to better suppress the background clutter,
four directions α = 0◦, 45◦, 90◦, 135◦ are selected for calculation. So, the Gaussian shape
features of the target can be obtained

[D1(x, y), D2(x, y), D3(x, y), D4(x, y)] (8)

In the multi-dimensional feature fusion module, the quaternion cosine transform is
used to achieve complementary fusion of multi-dimensional Gaussian shape features [34].
The Gaussian shape features are represented by D1(x, y), D2(x, y), D3(x, y), and D4(x, y)
respectively. They are taken as four data channels to construct quaternion representation:

q(x, y) = λ1 ∗ D1(x, y) + λ2 ∗ D2(x, y)
→
i + λ3 ∗ D3(x, y)

→
j + λ4 ∗ D4(x, y)

→
k (9)

where
→
i ,
→
j , and

→
k represent three imaginary axes, and λ1, λ2, λ3, and λ4 correspond to

different data channel weights; here, they are set to 0.15, 0.15, 0.35, and 0.35, respectively.
Assume that the resolution of q(x, y) is M×N, where M and N represent the length

and width of the image, respectively. The QDCT of q(x, y) is given by

Q(u, v) = QDCT(q(x, y)) = αM
u αN

v

M−1

∑
m=0

N−1

∑
n=0

µQq(x, y)N(u, v, m, n) (10)
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where αM
u and αN

v are the coefficients. N(u, v, m, n) and µQ are given by Equation (3).
The normalization function is used for Q(u, v) to suppress the low-frequency in-

formation of the background and enhance the high-frequency information of the target.
The frequency-domain normalization function is shown below:

Q′ = sgn(Q) =

{
x0
|Q| +

x1
|Q| i +

x2
|Q| j +

x3
|Q| k |Q| 6= 0

0 |Q| = 0
(11)

where x0, x1, x2, and x3 are four components of Q, respectively. |Q| is the magnitude of the
quaternion. Finally, the corresponding IQDCT is used to obtain the spatial domain saliency
map as follows:

q′(x, y) = IODCT(sgn(QDCT(q(x, y))))
= IQDCT(Q′)

=
M−1
∑

u=0

N−1
∑

v=0
αM

u αN
v µqQ′(u, v)N(u, v, m, n)

(12)

To make the saliency map smoother, the smoothing process is performed by using the
Gauss smooth filter to obtain the final map. The formula is as follows:

S(x, y) = g(x, y, σ = 1.5) ∗
[
q′(x, y)� q′(x, y)

]
(13)

Then, the candidate region of the top-down active attention module can be obtained
and denoted as Ra.

3.2. Bottom-Up Passive Attention Module

Based on the contrast and motion characteristics of infrared small targets, the bottom-
up passive attention module designs a discriminator to effectively detect targets. An op-
timal fast local contrast algorithm is proposed in this paper to find the candidate target
regions by using contrast characteristics of infrared small targets, and improved circular
pipeline filtering is adopted to find candidate target regions using motion characteristics of
infrared small targets. The difference in contrast and motion between the target and the
background can attract passive attention easily, which is a discriminative characteristic for
accurately detecting small infrared targets.

Since the scale of infrared small targets has a certain range, it is necessary to cover all
targets with scales ranging from 2 × 2 to 9 × 9. When contrast feature extraction is per-
formed by calculating the local contrast at multiple scales, the target and clutter background
will be enhanced at the same time, and the detection effect is not ideal. To resolve this
problem, this paper proposes an optimal fast local contrast algorithm to extract candidate
regions. In this algorithm, the multiscale Laplacian of Gaussian (LOG) filter is used to
estimate the optimal scale of the infrared small target. Meanwhile, the fast local contrast
algorithm based on box filter acceleration and structure optimization is employed to ex-
tract local contrast features, and candidate target regions can be obtained by an adaptive
threshold. The flowchart of the proposed optimal fast local contrast algorithm is shown
in Figure 5. To obtain the sub-window scale of the corresponding image pixel f (x, y), the
LOG filter is used to estimate the sub-window scale in advance and obtain the optimal scale
of the infrared small target. The formula of the multiscale LOG filter with a scale-space
constant si(i = 1, 2, 3, 4) is shown as follows

LoG(x, y, si) =
1

2πsi
2

[
x2 + y2 − 2si

2

si
4

]
e
−x2−y2

2si
2 (14)
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Then, the candidate region of the top-down active attention module can be obtained 
and denoted as aR . 

3.2. Bottom-Up Passive Attention Module 
Based on the contrast and motion characteristics of infrared small targets, the bottom-

up passive attention module designs a discriminator to effectively detect targets. An opti-
mal fast local contrast algorithm is proposed in this paper to find the candidate target 
regions by using contrast characteristics of infrared small targets, and improved circular 
pipeline filtering is adopted to find candidate target regions using motion characteristics 
of infrared small targets. The difference in contrast and motion between the target and the 
background can attract passive attention easily, which is a discriminative characteristic for 
accurately detecting small infrared targets. 

Since the scale of infrared small targets has a certain range, it is necessary to cover all 
targets with scales ranging from 2 × 2 to 9 × 9. When contrast feature extraction is per-
formed by calculating the local contrast at multiple scales, the target and clutter back-
ground will be enhanced at the same time, and the detection effect is not ideal. To resolve 
this problem, this paper proposes an optimal fast local contrast algorithm to extract can-
didate regions. In this algorithm, the multiscale Laplacian of Gaussian (LOG) filter is used 
to estimate the optimal scale of the infrared small target. Meanwhile, the fast local contrast 
algorithm based on box filter acceleration and structure optimization is employed to ex-
tract local contrast features, and candidate target regions can be obtained by an adaptive 
threshold. The flowchart of the proposed optimal fast local contrast algorithm is shown in 
Figure 5. 
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To obtain the sub-window scale of the corresponding image pixel ( , )f x y , the LOG 
filter is used to estimate the sub-window scale in advance and obtain the optimal scale of 

Figure 5. The flowchart of the proposed optimal fast local contrast algorithm.

The scale-space constant for detecting small infrared targets should satisfy the criterion
that the size of the target is slightly smaller than 2

√
2si, i.e., the scale-space constant

corresponding to small infrared targets (around 3× 3 pixels) should be 1.1. In this study, the
scale of a small target is smaller than 9 × 9 pixels. To guarantee the real-time performance
of the algorithm, four typical scales are selected. The scale-space constant si corresponding
to small infrared targets (3 × 3 pixels, 5 × 5 pixels, 7 × 7 pixels, and 9 × 9 pixels) are
[1.1 1.77 2.48 3.19]. The optimal sub-window scale is defined as

F = max(Fi) = LoG(x, y, si)⊗ f (x, y)(i = 1, 2, 3, 4) (15)

At each position, the optimal sub-window scale can be obtained to design the local
contrast algorithm. Based on box filter acceleration and structure optimization, a fast local
contrast algorithm is proposed in this paper to extract the local contrast features. As shown
in Figure 6, the sub-window in the center denoted by “0” represents the target area, and
sub-windows in the surrounding area are four rectangular sub-windows denoted by “11”,
“22”, “32”, “44”, respectively [3]. The original sub-windows of the LCM algorithm denoted
by “1” and “2” are combined into “11”, those denoted by “3” and “5” are combined into
“22”, those denoted by “7” and “8” are combined into “33”, and those denoted by “4” and
“6” are combined into “44”. The difference di between the central sub-window “0” and its
four neighboring sub-windows with the optimal sub-window scale σi is defined as

di(x, y, σi) =
(mσi

0 −mσi
Bii)m

σi
0

mσi
Bii

(i = 1, 2, . . . , 4) (16)

where mσi
0 and mσi

Bii are the mean gray value of the central sub-window “0” and its four
neighbor sub-windows with the optimal sub-window scale σi, respectively.
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The fast local contrast map with the optimal sub-window scale σi can be defined as

S(x, y, σi) = min{d1 ∗ d3, d2 ∗ d4} (17)

To accelerate the mean gray calculation of four rectangular neighbor sub-windows, a
box filter is introduced. As shown in Figure 7, the box filter mainly converts the gray of the
image pixel f (x′, y′) into the sum of the gray value of the corresponding diagonal region
from the upper left corner to any point (x, y). Its mathematical formula is

I(x, y) = ∑
x′≤x,y′≤y

f (x′, y′) (18)Sensors 2023, 23, x FOR PEER REVIEW 9 of 18 
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Figure 7. Box filter acceleration.

The value at location (x1, y1) is the sum of the pixels in rectangle A. The value at location
(x2, y2) is A + C, at location (x3, y3) is A + C, and at location (x4, y4) is A + B + C + W.
The sum within W can be computed as I(x1, y1) + I(x4, y4)− I(x2, y2)− I(x3, y3). The mean
gray calculation of four rectangular neighbor sub-windows can be converted to simple
additions and subtractions as follows

∑ W =
I(x1, y1) + I(x4, y4)− I(x2, y2)− I(x3, y3)

(x2− x1)(y4− y2)
(19)

Therefore, the fast local contrast algorithm based on box filter acceleration and struc-
ture optimization can extract the local contrast features. Meanwhile, to detect candidate
small infrared targets, an adaptive threshold method is used. The candidate small infrared
target region S′(x, y) can be expressed as

S′(x, y) = S(x, y) S(x, y) ≥ T
S′(x, y) = 0 S(x, y) < T
T = µS + k•σS

(20)

where µS and σS denote the mean and variance of the local contrast map S(x, y), respec-
tively; k = 3 is the proportionality coefficient. Further, T is the adaptive threshold value.

As shown in Figure 8, to reduce the false alarm rate, improved circular pipeline
filtering is adopted to find candidate target regions using motion characteristics of infrared
small targets. The mean gray, target size, and circular region constraints are used in pipeline
filtering to extract motion regions [35].
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To find the moving target areas, the local contrast map obtained by the optimal fast
local contrast algorithm is regarded as an input of the pipeline as follows:

H′ =
{

H′1, H′2, . . . , H′ l
}

(21)

where H′ denotes the centers of suspected target patches, and l is the number of local
contrast patches.

Concentric ring pipeline filtering with an inner radius r1 and an outer radius r2 is set,
and the step sizes of S1 and S2 gradually increase with the length of T = 5. The number of
times kM that the center of the suspected target patches in the current frame falls on the
corresponding concentric ring pipeline filtering is calculated. Meanwhile, the mean gray
and target size have a good match. If kM exceeds the set threshold U = 3, the centers of the
suspected target patches are determined as real candidate target regions; otherwise, they
are determined as false targets and rejected.

The pipeline filtering is updated according to the principle of First-In-First-Out (FIFO),
and the frame that comes in first will be removed first in the update process. Then, the
candidate small infrared target regions can be obtained and denoted as RV .

3.3. Decision Feedback Equalization

For the top-down active attention module, Gaussian shape features are adopted to
implement feature extraction, and quaternion cosine transform is used to achieve multi-
dimensional fusion of Gaussian shape features. Through numerous experiments, it is found
that a large number of Gaussian noises will be retained, affecting the detection of the small
infrared targets. The square operation and lower weight can significantly suppress the
background Gaussian-like noises. After many experiments, this paper sets the weight to
0.7 for the top-down active attention module. For the bottom-up passive attention module,
the local contrast characteristic has been proven to work well in many situations and can
achieve target enhancement, and the weight is set to 1. Meanwhile, motion characteristic is
also important, and it helps to find small infrared targets in complex scenes. After many
experiments, the weight is set to 1.3.

Based on the experimental results, feedback equalization processing is conducted to
obtain the optimal weight coefficient and expression:

F= 0.7∗Ra + S′ + 1.3 ∗ RV (22)

The final candidate regions are regarded as the real target regions.

3.4. Algorithm Analysis of Optimal Fast Local Contrast Algorithm

In the optimal fast local contrast algorithm, the multiscale LOG filter is used to
estimate the optimal scale of the infrared small target, and box filter acceleration and
structure optimization are used to enhance the computation speed. The primary focus
of the algorithm analysis is the detection performance of the optimal fast local contrast
algorithm to improve target detection while suppressing the background. Four cases need
to be analyzed.

di(x, y, σi) =
(mσi

0 −mσi
Bii)m

σi
0

mσi
Bii

(i = 1, 2, . . . , 4) (23)
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S(x, y, σi) = min{d1 ∗ d3, d2 ∗ d4} (24)

(1) When the image pixel f (x, y) belongs to the target region, then mσi
0 > mσi

Bii,
m

σi
0

m
σi
Bi i

> 1,

and di > mσi
0 −mσi

Bii > 0; finally, S(x, y, σi) > 0.
(2) When the image pixel f (x, y) belongs to the background region, then mσi

0 −mσi
Bii ≈ 0,

m
σi
0

m
σi
Bi i
≈ 1, and di = mσi

0 −mσi
Bii ≈ 0; finally, S(x, y, σi) ≈ 0.

(3) When the image pixel f (x, y) belongs to the strong edge region, for one direction,

mσi
0 > mσi

Bii,
m

σi
0

m
σi
Bi i

> 1, and di > mσi
0 −mσi

Bii > 0; for the other direction, mσi
0 −mσi

Bii ≈ 0,

m
σi
0

m
σi
Bi i
≈ 1, and di = mσi

0 −mσi
Bii ≈ 0; finally, S(x, y, σi) ≈ 0.

(4) When the image pixel f (x, y) belongs to the noise region, because it has a smaller
size than the target, and its contribution to the mean gray value is limited, then
S(x, y, σi) > S(x, y, σi)nosie > 0.

In summary, the target region and the background clutter region (background, strong
edge, and noise region) can be distinguished by defining the contrast by the difference and
the ratio, and the back-ground clutter region is suppressed so that the background clutter
region tends to be 0, thereby achieving a better effect of infrared target detection.

4. Experimental Results

Experiments were conducted in this section to verify the effectiveness of the proposed
method for detecting small targets. The real infrared images are taken by infrared thermog-
raphy. To investigate the performance of the proposed method in different scenes, four
infrared image sequences with complex background clutters were chosen as test sequences.
Figure 9 shows the target labeled by a red box in each image, while Table 1 lists the specifics
of the four sequences. The background types of these sequences include sea, sky, and
ground clutters. In Figure 9(a1), the target is submerged in the cloud, and many noises are
randomly distributed in the whole infrared image. In Figure 9(b1,d1), plants and roads
have high intensity, and the small infrared target will be blurred and easily confused with
the background clutters. In Figure 9(c1), the glint will interfere with the target detection
process. The algorithm’s ability to detect small infrared targets is evaluated using current
metrics both from single-frame and multi-frame methods. The program is executed in
Matlab2021a on a personal computer equipped with an Intel® CoreTM i7-11700 CPU @
2.50 GHz and 32 GB memory.
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Table 1. The specifics of four real infrared image sequences.

Background Type Sequence Number Frame Target Number Target-Size Range Target SCR Range

Cloud-sky Seq.1 195 1 3 × 3–5 × 5 3.16–4.84
Ground Seq.2 144 1 4 × 4 1.42–7.74
Sea-sky Seq.3 108 1 3 × 3–5 × 5 2.42–8.77
Ground Seq.4 399 1 4 × 4 1.42–30.46

4.1. Evaluation Metrics

Different evaluation metrics are introduced for single-frame and multi-frame small
infrared target detection.

The performance of target detection algorithms in single-frame recognition is often
evaluated with the SCRG and BSF. The SCRG is an evaluation metric to describe the
significance of the enhancement of the target after the process of an algorithm, and BSF
reveals the significance of suppression of the background after the process of an algorithm.
The SCRG and BSF are defined as

SCR =
Gmt − Gmb

σb
, SCRG =

SCRout

SCRin
, BSF =

(σc)in
(σc)out

(25)

The average gray of the target area is denoted as Gmt, while the average gray and
standard variation of the local background area are denoted as Gmb and σb, respectively.
The signal-to-clutter ratio of the input and output images is denoted as SCRout and SCRin
respectively, while the standard deviation of the input and output images is represented as
(σc)in and (σc)out respectively. Additionally, the length ratio of the local background edge
to the target region edge is 1.4.

To determine how well multi-frame target recognition performs, the Receiver Oper-
ation Characteristic (ROC) curve is utilized. The ROC curve plots the false positive rate
(FPR) on the horizontal axis, which is the ratio of the number of false targets detected to the
number of real targets, and it is also known as the precision. The true positive rate (TPR)
is plotted on the vertical axis, which represents the likelihood that a detected true target
is an actual true target, and it is known as the false-alarm ratio. The algorithm achieves
optimal detection results when TPR is high and FPR is low, simultaneously indicating a
high detection rate and low false-alarm rate. TPR and FPR are mathematically expressed as:{

TPR =
number of true target detected

number of real targets

FPR =
number of false targets detected

number of real targets

(26)

There exists a relationship between the TPR and FPR. Typically, when the FPR is
high, the TPR is also high. To assess the TPR and FPR while identifying the true number
of targets, the LABELIMAGE2020 software is utilized to label the ground truth of small
infrared targets in actual infrared images. To achieve correct detection, the Euclidean
distance between the labeled targets and detection results should be less than 16 pixels.
However, there could be an error in determining the actual position of the labeled targets.
After conducting numerous experiments, a threshold of 16 pixels is set up.

4.2. Effectiveness Analysis for Single-Frame Detection

The effectiveness of single-frame detection is evaluated using SCRG and BSF. When
the proposed method achieves high values of both SCRG and BSF, it indicates that the target
has been enhanced and the background has been suppressed, making it easier to locate
the target. Our proposed method was tested with about 900 infrared images to evaluate its
effectiveness. Here, four representative infrared images are taken as an example, as shown
in Figure 9(a1–d1). Their 3D gray distributions are shown in Figure 9(a2–d2). After the
execution of the proposed method, the target is enhanced, and the clutter is suppressed,
making the target easy to detect, as shown in Figure 10(a1–d1). It is noteworthy that the
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proposed method failed to enhance the target significantly for the image from Seq.2, as
shown in Figure 10(b1). However, after using the motion information, the proposed method
can enhance the target significantly and suppress the background clutters, and the target
is found.
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Figure 10. The 3D gray distributions of representative infrared images using five methods (the
proposed method, ADMD, MPCM, PQFT, and WASPCM).

4.3. Comparison Analysis for Single-Frame Detection

Figure 10, and Tables 2 and 3 present the comparison of ADMD, MPCM, PQFT, and
WASPCM with our proposed method, to demonstrate its efficacy against intricate sea, sky,
and ground clutters.



Sensors 2023, 23, 8608 14 of 18

Table 2. EASCRG, EABSF, and the computational cost of the proposed method and four baseline
methods for Seq.1, Seq.2, Seq.3, and Seq.4.

Metrics
Index Seq.1 Seq.2 Seq.3 Seq.4

Proposed
EASCRG 30.5 2.89 12.5 66.2
EABSF 2099.5 645 1129.6 1444.4
Time(s) 0.6027 0.1379 1.1598 0.1316

ADMD
[31]

EASCRG 26.9726 83.6801 11.8651 47.0298
EABSF 0.6574 0.4434 0.0977 0.3810
Time(s) 0.2083 0.0351 0.9446 0.0298

MPCM
[29]

EASCRG 16.7465 2.8000 8.0934 28.8780
EABSF 3077.1 786.6690 1684.5 2563.3
Time(s) 0.8113 0.1489 1.7263 0.1361

PQFT
[34]

EASCRG 4.3851 0.7913 2.1392 13.6803
EABSF 1434.04 676.3588 850.3719 1398.2.
Time(s) 0.3138 0.0360 0.3026 0.3076

WASPCM
[36]

EASCRG 4.2918 0.8718 5.35 7.2413
EABSF 1371.1 663.5638 1667.3 1831.1
Time(s) 1.3857 0.1674 0.8887 0.1383

Table 3. The ensemble average SCRG with combination of different characteristics.

Each Characteristic Ensemble Average SCRG

Gaussian 7.5
Gaussian + motion 9.9
Gaussian + contrast 11.7

Gaussian + contrast + motion 12.9

Figure 10 shows the 3D gray distributions obtained when applying ADMD, MPCM,
PQFT, and WASPCM. These methods enhance the target while suppressing clutter.
Our proposed method outperforms the other methods attributed to its use of Gaussian, con-
trast, and motion features for target detection, which significantly enhances the target and
suppresses the background clutter. For instance, the representative infrared image chosen
from Seq.2 has a lot of background clutters, which introduces many false targets. Our pro-
posed method relies on motion characteristics and can obtain real targets. However, ADMD,
MPCM, PQFT, and WASPCM cannot accurately find real targets. Obviously, our proposed
method surpasses the other four methods, enabling efficient target detection.

To quantitatively compare our proposed method with four other methods in single-
frame detection, the ensemble average SCRG (EASCRG) and ensemble average BSF (EABSF)
were taken as indicators. Table 2 shows the detection results for Seq.1, Seq.2, Seq.3, and
Seq.4. It can be seen that our proposed method achieves the highest ensemble average
SCRG in all four sequences, outperforming the other four methods. Although the MPCM
method achieves the highest ensemble average BSF, it consumes more time compared to
our proposed method. Though the ADMD method has the lowest time consumption in
Seq.1, Seq.2, and Seq.4, it obtains worse ensemble average SCRG and ensemble average BSF
than our proposed method. Similarly, the PQFT method has the lowest time consumption
in Seq.3, but it obtains lower ensemble average SCRG and ensemble average BSF than our
proposed method. The WASPCM method has inferior ensemble average SCRG and ensem-
ble average BSF and higher computational cost than our proposed method. Therefore, our
proposed method achieves an optimal detection effect in small infrared target detection,
especially under the presence of complex sea, sky, and ground clutters.

Meanwhile, an ablation experiment was conducted to demonstrate that the use of
each characteristic (Gaussian, contrast, and motion characteristics) in our proposed method
helps to enhance the target and suppress the background clutters. The test results of all four
sequences are listed in Table 3, and the evaluation metric is ensemble average SCRG. It can



Sensors 2023, 23, 8608 15 of 18

be observed that our proposed method with only Gaussian characteristics obtained the
lowest performance. Both the contrast and motion characteristics can improve performance.
The combination of different characteristics contributes to the best performance with a
maximum value of 27.6.

Finally, the sub-window scale of the corresponding image pixel is obtained using the
multiscale LOG filter. According to Figure 11, if a simulative small target has a diameter of
7, the multiscale Laplace with a scale-space constant of 3.19 will yield the maximum value.
Although calculating multi-scale patches to select the most suitable scale for the target and
reduce background clutter is time-consuming, the computation speed can be increased with
parallel computations on GPU. To meet the real-time requirement, the algorithm speed can
be further enhanced.
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4.4. Effectiveness Analysis for Multi-Frame Detection

To evaluate the performance of multi-frame target recognition, the TPR and FPR,
also known as the precision and false-alarm ratio, are utilized to form the ROC curve.
The algorithm’s performance is optimal when the precision reaches the maximum under
the same FPR. Figure 12 displays the ROC curve of different methods for the entire sequence,
including Seq.1, Seq.2, Seq.3, and Seq.4. Our proposed method achieves the highest
precision and shows the best detection performance for the entire sequence at the same FPR.
The ADMD method has the lowest time consumption in Seq.2 and Seq.4, but it obtains
the worst detection performance. The PQFT method and WASPCM method can reach
intermediate detection performance to find small infrared targets. The MPCM method,
because of its best background suppression effect, can obtain good detection results in most
cases. However, its performance is not as good as our proposed method.

Our method was evaluated with qualitative and quantitative analysis methods in
this study, and it achieves the highest level of target significance and effectively reduces
background clutter, thereby achieving the best detection performance.

It should be noted that, in the capture phase, accurately detecting small infrared targets
is important because this is the basis of tracking in military applications. Therefore, it is
crucial to study small infrared target detection.
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5. Conclusions

This paper proposes an infrared small target detection method based on an attention
mechanism against complex sea, sky, and ground clutters. Firstly, the top-down active
attention module obtains knowledge-experience Gaussian shape features and achieves
a complementary fusion of different feature information. Then, an optimal fast local
contrast algorithm and improved circular pipeline filtering are adopted to design the
bottom-up passive attention module, and the difference in contrast and motion features
between the target and the back-ground is found. Finally, decision feedback equalization
is adopted to fuse the results of the top-down active attention module and the bottom-up
passive attention module, thereby detecting real targets, and this is useful in different
scenarios to better adapt to environmental changes. Experiments were conducted on actual
infrared images with intricate backgrounds involving sea, sky, and ground clutters, and
experimental results reveal that the proposed method can proficiently identify targets
and deliver exceptional detection results compared to other methods such as ADMD,
MPCM, PQFT, and WASPCM. In particular, the best detection result is obtained in the
sea background.
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