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Abstract: Blockchain technology can address data falsification, single point of failure (SPOF), and
DDoS attacks on centralized services. By utilizing IoT devices as blockchain nodes, it is possible to
solve the problem that it is difficult to ensure the integrity of data generated by using current IoT
devices. However, as the amount of data generated by IoT devices increases, scalability issues are
inevitable. As a result, large amounts of data are managed on external cloud storage or distributed
file storage. However, this has the disadvantage of being outside the blockchain network. This makes
it difficult to ensure reliability and causes high latency during data download and upload. To address
these limitations, we propose a method for managing large amounts of data in the local storage node
of a blockchain network with improved latency and reliability. Each blockchain network node stores
data, which is synchronized and recovered based on reaching a consensus between smart contracts
in a cluster network. The cluster network consists of a service leader node that serves as a gateway
for services and a cluster node that stores service data in storage. The blockchain network stores
synchronization and recovery metadata created in the cluster network. In addition, we showed that
the performance of smart contract execution, network transmission, and metadata generation, which
are elements of the proposed consensus process, is not significantly affected. In addition, we built
a service leader node and a cluster node by implementing the proposed structure. We compared
the performance (latency) of IoT devices when they utilized the proposed architecture and existing
external distributed storage. Our results show improvements up to 4 and 10 times reduction in data
upload (store) and download latency, respectively.

Keywords: internet of things; Web 3.0; Ethereum; application platform; service-oriented
architecture; blockchain-based storage

1. Introduction

Blockchain technology was first developed to enable distributed smart contracts, and
its popularity has grown owing to cryptocurrency networks such as Bitcoin [1]. Later,
blockchain platforms supporting smart contracts such as Ethereum [2] and Hyperledger
Fabric [3] emerged, making it possible to process multi-purpose transactions. With smart
contracts, blockchains manage distributed nodes executing intelligent logic in peer-to-peer
(P2P) [4] networks rather than a central trustee; this ensures the reliability of logic and
data storage. Because of these advantages, recent generations of decentralized networks,
namely Web 3.0 [5,6], rely on blockchain technology. Web 3.0 orchestrates data through a
decentralized blockchain network. More specifically, its trusted services, enabled by smart
contracts, are transmitted, processed, and stored in a blockchain network such as Ethereum
rather than a central server. In addition, decentralized nodes provide services less affected
by attacks such as denial of service (DoS) and data tampering by central administrators,
thereby reducing hacking and data leakage risks. According to Gartner [7], 63% of digital
marketing leaders struggle to deliver personalized experiences, and approximately 84% of
digital marketers use artificial intelligence and machine learning, the technology driving
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Web 3.0 for real-time personalization. These together improve marketing capabilities
that deliver a better experience. In addition to Web 2.0, which is currently in use on the
Internet, Web 3.0 is a distributed network organized around user data and permissions
and implemented using blockchain technology and smart contracts. Similarly, IoT devices
can leverage the blockchain technology that Web 3.0 uses to achieve the same positive
effects that Web 2.0 has over Web 3.0. IoT devices can collect and process data from the
physical world through sensors and actuators. The data they collect can be executed
with smart contracts, using distributed ledger technologies like blockchain to ensure
immutability and security. Additionally, IoT devices can also be used to securely manage
and control the permissions and data that they produce. For example, IoT devices can use
blockchain technology to secure user privacy and collect or control data with user consent
through smart contracts. Therefore, IoT devices can become more powerful when used in
conjunction with blockchain and smart contracts, but are limited by the low performance
caused by the blockchain’s interaction with external storage, such as the following.

1.1. Motivation

The data generated by a blockchain network built with IoT devices is stored equally across
all IoT devices participating in the blockchain network. As a result, the capacity requirements
inside the network increase, which leads to the limitations of blockchain technology.

Therefore, Web 3.0 services with a network backend similar to blockchain networks
implemented with IoT devices will also have large file data based on data storage built
outside the blockchain network due to scalability issues.

According to Cloudwards.net [8], 94% of businesses use enterprise cloud services.
Web 3.0 services [9–11] store data outside the blockchain based on the existing cloud and
record only metadata in the blockchain. However, the cloud service-based data storage
method cannot guarantee transparency and reliability due to its centralized structure, and
file loss is possible. To address this limitation, most Web 3.0 services [12,13] use distributed
storage network services [14,15] to store data.

Figure 1 shows the data storage process in the existing Web 3.0. In this structure, the
file-storing infrastructure and the blockchain network are separated. The client stores data
in an external distributed file system and records metadata resulting from the data storage
on the blockchain.

Figure 1. Data storage process of existing blockchain based services.
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1.2. Challenges

In existing distributed storage networks, it is challenging to prevent file loss by dis-
tributing and storing data in only a part of the network owing to scalability problems.
In addition, the increase in gateway traffic utilizing a centralized gateway for efficiency
in a distributed environment can degrade performance and reliability. To address these
limitations, the following challenges must be overcome:

• Difficult to prevent data loss: In the case of distributed storage configured externally
by the blockchain, the node that maintains the file lacks the logic to store it, so it cannot
prevent data from being lost.

• Possibility of data forgery: When file data are stored in a centralized structure such as
cloud storage, there is a possibility of data forgery by an administrator.

• Centralization issues with gateways: In the case of existing distributed data storage,
there is a gateway to efficiently process users’ data storage and download requests,
but this causes centralization problems.

• Latency issues with I/O requests: High latency when requesting to download data
stored in a distributed file system or external cloud storage must be addressed. In
particular, when loading distributed files from a distributed system, there is a large
amount of latency in the process of merging the system itself and the external down-
load or upload over the Internet.

To address each of the challenges presented, we have the following contributions.

1.3. Contribution

The main contributions of this paper are listed as follows:

• File management method based on the service provider to prevent file loss. We
propose a service-providing architecture for creating services in a blockchain network
based on smart contracts to prevent file loss and a method for storing data in nodes
participating in service creation and maintenance.

• Data consensus technique to ensure the integrity of user data based on original file
replication and metadata. When storing user service data, the data of the distributed
service nodes are synchronized by executing a synchronization agreement on the
service data, and the reliability of the data queried by the client is ensured by per-
forming recovery on the blockchain through metadata recorded on the blockchain. By
applying this technique, the blockchain networks running on IoT devices can process
data with high performance by requesting data from the blockchain network instead
of the external storage network. Metadata are recorded on the blockchain to ensure
reliability, and as data are managed locally rather than in an external network, this
increases data processing latency while increasing performance.

• Distributed storage supporting high-performance data I/O based on blockchain net-
work. To ensure the reliability of stored data, a technique is applied in which nodes in
the blockchain network maintain service data.

To solve the storage limitation, a service cluster that provides storage resources for
services in the blockchain network is formed. In a blockchain network, clusters can be built
from multiple service units. In a blockchain network, clusters can be built from multiple
service units. Therefore, cluster nodes will only retain data generated by the services
to which they belong. Each service cluster also has a service leader node that acts as a
gateway. The service leader node serves as a router that forwards data storage and query
requests from clients who use the service through the participation of multiple nodes to
the cluster node and is periodically replaced by applying a replacement policy to solve the
centralization problem.

2. Related Work

In this section, we present existing studies for blockchain data storage and describe the
main differences from our proposed architecture. Filecoin [16] operates on the upper layer
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of the interplanetary file system (IPFS) [17], and P2P-connected nodes store distributed
files. A client can store files in a storage space with a storage provider. By consensus,
there are Proof of Spacetime and Proof of Replication processes. Proof of Spacetime
guarantees that the client stores files for a certain period, and Proof-of-Replication can
guarantee that data are stored in a physical storage space. Swarm [18] is a basic layer
service of Ethereum as a distributed storage platform and content distribution service.
Swarm provides DApp developers with a foundation in messaging, data streaming, P2P
statistics, variable resource update, storage provision, storage verification and proof of
custody scan and repair, payment channels, and database service areas. In addition to the
P2P storage function, Swarm is an incentive system that supports resource trading used
in P2P. It provides a solution that implements DDoS attack prevention, zero-downtime,
fault-tolerant, censorship-resistant, and self-sustaining functions. In Web3Storage [19],
data are stored based on IPFS. IPFS nodes temporarily store data on three geographically
distributed nodes and store that data on at least five distributed miners on the Filecoin
network. This technique provides a simple interface through IPFS, and there is a node
that hosts itself. Consequently, the service efficiency is high, but unlike the approach we
propose, the solution for the delay between the user, the cluster, and the Filecoin network
is not considered. In STORJ [20], a sharding technique is applied for data storage. The
metadata of the sharded data are stored in the Ethereum blockchain, and the metadata
includes location information from which the data can be retrieved. The shared data are
merged into the client’s local system, and data forgery is periodically verified using the
parity shard technique. Since this technique divides and encrypts files and stores them,
there is a latency, and since the files are merged in the user’s local system, there is a load
on the client. In BigChainDB [21], nodes in the network maintain MongoDB [22] to store
data and Tendermint [23] for data consensus. By consensus based on Tendermint, up to
1/3 of Byzantium can be allowed, and stability exists by managing the list of nodes that
the network subject will participate in. However, in the case of MongoDB, there is a limit
to the amount of data that can be stored, and the network list is managed privately. In
BlockHouse [24], all operations for data storage are performed through smart contracts
based on a private blockchain. In addition, by applying the Proof of Retrievability System,
data verification is performed over a set period. Once the data are verified, it is securely
stored using a smart contract and encryption algorithm. Through this process, trust in the
data stored on the server can be guaranteed based on the blockchain, but there is a limit
to increasing the size of the blockchain. In our study, when a user makes a verification
request, there is a difference as the metadata are managed on the public blockchain. In
Pise et al. [25], only the hash value is recorded in the blockchain after encrypting and
distributing the file for data storage. In our study, we propose blockchain-based cloud
storage with data encryption as a safe and efficient way to store data in the cloud. The
proposed model is suitable for implementing the blockchain structure, and the algorithm
used for implementing the system model is efficient and can provide high security for data
stored in the cloud. However, the latency, which is a limitation to be solved in this study,
was not considered in their technique. In Srikanth, Somarouthu, et al. [26], the data to be
stored by the user is encrypted, distributed, and stored in chunks. However, there is a
difference from this study in that there is no verification or consensus on the data storage
and download process. In Nandini and Girisha [27], their solution processes transactions
with encrypted data based on smart contracts and is based on the Ethereum network, but
the contents of large data storage are not considered. Huang, Pei, et al. [28] proposed
a public third-party audit method that detects tampering on the cloud server to ensure
reliability between the user who stores data and the cloud service. In this framework, all
consensus nodes replace the third-party auditor to execute auditing delegations and record
them permanently, thereby preventing entities from deceiving each other. To apply this
method, however, it is necessary to interact with the cloud service provider through the
framework and disclose the data to public nodes. This creates problems such as increased
traffic on the central server and relying on a single point of failure. In this study, data
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are managed and verified in a single cloud, a cluster of blockchain nodes rather than
validators. Li et al. [29] proposed a technique for storing and managing large-capacity
data generated by IoT devices based on blockchain. In their study, data generated by IoT
devices was stored in a distributed hash table (DHT), and the pointer address of the DHT
was recorded in the blockchain. Our proposed architecture stores data in the local storage
of each blockchain node rather than in an external DHT. Wang et al. [30] stored metadata
through IPFS, a distributed file system, and the Ethereum blockchain to ensure the privacy
and stability of data stored in cloud storage. In addition, data privacy was ensured through
the ABE (attribute-based encryption) access control method. However, this method also
distributed data and stored the data in a network outside the blockchain. ChainFS [31]
proposed a middleware to ensure stability when end-users store data in cloud storage.
Data were stored on the Amazon cloud, and secret-key distribution and file operations
were recorded through the blockchain. In this paper, each node stored data and created,
synchronized, and recovered service clusters. Segment blockchain [32] aimed to reduce
the storage requirements of the blockchain. To this end, each node in the blockchain uses
a technique that stores only segments of the blockchain. In contrast to this, our proposed
architecture reduces the storage requirements of nodes by storing user data in units of
services and recording only metadata in the blockchain. The related works mentioned
above are summarised in Table 1.

Table 1. Comparison of the existing blockchain storage.

Abstract Contribution Differences from the Proposed Structure Organize

Web3Storage
[19]

- Store data in IPFS of 3 geograph-
ically distributed nodes hosted by
Protocol Labs.
- Data will then be stored in at least
5 decentralized miners on the File-
coin network.

- Storing data on an IPFS network in a decentralized net-
work, providing an easy interface through hosting
- Self-hosted data exists.

- It hosts a separate node directly and stores the data,
so the stability of the stored data are not taken into
account.
- There is a delay in the process of data transmission to
users, IPFS Cluster, and Filecoin network.

o Data Stability −
o High Latency −
o Easy Interface +

STORJ
[20]

- Store metadata on the Ethereum
blockchain.
- Record data by sharding and dis-
tributing it.

- Metadata are created with information about where the
data can be found again.
- The original data are merged back into the client’s local
system.
- Data tampering is verified through regular inspection of
data through parity shards.

- There is a delay in the process of encrypting, dividing,
saving, and downloading files.
- Storj bridges exist, so single point errors are possible.
- Encryption, partitioning, and combining of data are
performed locally on the client, so there is a load on
the client side.

o High Latency −
o SPOF possibility −
o Load on Client −
o Validate

Data Tampering +

BigChainDB
[21]

- Each node maintains a locally inde-
pendent mongo DB, stores data, and
proceeds with consensus based on
Tendermint.

- BigchainDB uses Tendermint to cope with the BFT prob-
lem by making the entire network work properly even if
up to a third of the nodes fail.
- Because the subject of the network manage the list of
nodes, a malicious person or organization cannot attack
the network using a large number of nodes.
- To request processing of BigchainDB’s network,
BigchainDB HTTP API is used.

- Since the network subject exists and manages the
node list, the reliability of the node cannot be guaran-
teed.
- Since clusters cannot be configured in units of ser-
vices, a large files cannot be stored.

o Data Reliability −
o Cannot Store

Large File −
o Hard to Attack +
o Fault Tolerance +

BlockHouse
[24]

The methodology of Blockhouses
focuses on a method that contains
three components:
initialization of the storage device,
day-audits, and conclusion of the de-
vice.

- Except the data transferred between the client and the
server, all the actions go through a smart contract in the
blockchain in order to log, pay and secure the entire stor-
age process.
- This system uses a dual Smart Contract and Proof of
Retrievability system to automatically check at a fixed
frequency if the file is still hosted.

- The degree of decentralization is low by using a pri-
vate blockchain. The main problem that happens in
the network may be that the scale of the blockchain is
too drastically it is impossible to store. By canceling
production the erasure codes are used to rectify the
problem.

o Decentralized −

In Pise, et al.
[25]

The system uses proof of storage and
proof of work to verify that hosts do
not meddle with data in blockchain.

- It uses Space Wallet, a special structure that tracks avail-
able storage space on all nodes
- The proposed system does not encrypt or decrypts data
before uploading it to peers which creates a threat to confi-
dentiality and privacy of user’s data.

- it does not solve the file recovery issue at the end of
the storage.
- It does not encrypt data and requires CPU computa-
tion by using PoW method.

o Cannot Recover
Data −

o Load local CPU -

Srikanth et al.
[26]

Using your PC as a storage server
by storing data on unused storage
space.

- the user’s file is encrypted and stored across multiple
peers in the network using the IPFS(InterPlanetary File
System) protocol.

- By using IPFS as an off-chain file, only the hash value
is recorded in the blockchain after encrypting and dis-
tributed storage.
- It did not solve the data reliability and latency prob-
lem of IPFS.

o Data Reliability −
o High Latency −

In Nandini et al.
[27]

For efficient storage use, data are
stored in a storage space not used
by the existing PC, using the PC as a
storage server, and focusing on data
security.

- Hashing Algorithm-It is created using a hashing func-
tion such as 256(SHA 256) and stores the hash value of
encrypted chunks.
- At the client end, a hashing function such as SHA 256 is
used to store chunked data.

- Data to be stored on the user side is encrypted, di-
vided into chunks and stored in distributed nodes.
- In the storage process, there is no consensus of nodes
and no stability and reliability verification process.
- There is no verification process for data when down-
loading data.

o Data Stability −
o Data Reliability −

3. Architecture
3.1. System Architecture

Figure 2 shows the proposed architecture. In this architecture, two kinds of networks
are implemented for service offerings. Firstly, the blockchain P2P network is responsible for
blockchain maintenance, transactions, and block propagation within and between clusters.
In addition, it deploys smart contracts to ensure reliability and synchronization of service
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data storage, service synchronization, and recovery transactions that can be stored and
managed. In addition, it supports the management of the list of services by storing the
service leader node that serves as a gateway for service creation, the cluster within the
service, and the blockchain account and IP address of the cluster that stores data. Secondly, a
configured data consensus network delivers file binary data (to be stored by users) through
this data consensus network; metadata are generated and then propagated to the leader
node. The consensus algorithm can use PoW, PoS, PBFT, etc. when used in a service
cluster, and in this paper, it is composed of PoA-based Geth. In the case of data consensus
algorithms, CFT and BFT are important in the process of verifying that the proof data are
the same, so we use a PBFT-based consensus algorithm. The operation process is as follows:

• The service user sends a request for a data query or insert to the service leader node.
• In the service cluster, data are synchronized or recovered through the data consensus

network within the service cluster.
• When the processing of data consensus in the cluster is finished, the leader node

creates a transaction and records metadata in the blockchain.

Figure 2. System Architecture.

3.2. Replacement Policy

Figure 3 shows a proposed technique to solve the centralization of the gateway, a
limitation of the existing distributed file system. Users initiate data storage and download
requests to the central gateway to store data in the distributed file system. This method
transmits data to multiple nodes, but the network traffic of the gateway increases, and
the reliability of the data cannot be guaranteed. There are several methods that can be
introduced to address these limitations: stake-based, randomized, and round-robin-based
selection. In this paper, we implement the round-robin method of leader selection. The
round-robin scheme we are talking about in this paper is a simple form of round-robin,
where the next node acts as a gateway for each request. In this way, the service leader nodes,
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which act as gateways for the selected service clusters, can distribute traffic by sending and
processing requests every specific round. This leader node is a normal node, such as a node
acting as a gateway to another system, and typically takes no additional load beyond the
load of maintaining the node. In addition, the proposed architecture records the metadata
generated after the request of the cluster node in the blockchain, and consequently, the data
transmitted to the gateway cannot be forged or falsified by verifying the signature.

Figure 3. Method to replace the leader node for gateway distributed processing.

In the proposed architecture, nodes in a blockchain network constitute a cluster of
service units. A node consists of a service leader node for connecting users and services
and a cluster node that stores data in local storage. A user must send a request to store data
in a cluster of service units. However, one node is required to send all data to multiple
cluster nodes and to aggregate data again for consensus. In addition, in a single node,
traffic increases due to the overloading of the communication volume with the cluster
node, and if a single node handles all communication, reliability problems occur during the
transmission/reception process. Therefore, by applying the Round-Robin [33] method, the
user’s request is propagated to all cluster nodes in the service, and the process for collecting
responses is distributed and processed by the service leader nodes.

The proposed method solves the traffic increase problem of the gateway used in the
existing distributed file system and guarantees reliability through the private key-based
signature of the data delivered to the gateway and the data consensus process of the
cluster nodes.

In addition, by applying this technique, our system can respond to cases where
nodes are dynamically added and deleted in the public blockchain network environment.
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For example, if a node participating as a service leader node shuts down due to a crash
fault, service processing in the cluster that the service leader node participated in may be
interrupted for that round. In this case, the next service leader node in the queue is selected
using the round-robin method, which allows recovery.

Figure 4 shows the data architecture of the smart contract for creating services, regis-
tering service users, registering leaders and cluster nodes, and storing synchronization and
recovery transactions. The proposed architecture provides local storage for the nodes of
the blockchain network rather than external storage by configuring a service cluster with
nodes. This process is based on smart contracts executed by all blockchain network nodes,
not by a single node. To do this, service creation, leader nodes, and synchronization are
required, and all processes are performed through smart contracts.

Figure 4. Data architecture of smart contract.

3.3. Workflow

This section describes the process for saving data to the storage of blockchain nodes.
The description of the term is as Table 2.

Table 2. Notation for Algorithm Representation.

Symbols Description

IDservice Index that identifies the created service
IDleader Index that identifies the Leader Node
IDcluster Index that identifies the Cluster Node
IDdata Index that identifies the service Data
IPleader Internet Protocol address of the leader node
IPcluster Internet Protocol address of the cluster node
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Table 2. Cont.

Symbols Description

Networkbc Network of Ethereum Blockchain Network
Networkcluster Network of Service Cluster for service provide
Nodebc Blockchain Network Node
Nodeleader Leader node of the service cluster acting as a gateway
Nodecluster Cluster nodes that provide storage services to persist data
User User of blockchain storage service
CurNodeleader Leader node of the service cluster acting as a gateway
CurNodecluster Cluster nodes that provide storage services to persist data
DBcluster Database for service cluster data management
PATH The path of data stored
SC Smart Contract deployed on Networkbc
Request User requests to store and query data
Txsync Transaction for data sync
Txrecovery Transaction for data recovery
Dataservice Service Data (MP3, HTML, JPEG)
Metadata Metadata for data verification
URLdata URL for service data access
Account Blockchain Account
Keypub Public Key
Keypriv Private Key

Sig Signature generated by encryption with the private key
to verify the result

Algorithm 1 [Service creation and user and node registration process] is the process of
configuring a service cluster in the blockchain network and registering the leader node of
the service cluster, Cluster nodes that provide storage services to persist data, and User.

To configure the Network of Service Cluster for service provision as the node con-
stituting the Network of Ethereum Blockchain Network, the service creator must request
service creation from the smart contract. The service creator is created by registering as the
leader node of the service cluster first. The created service is stored in a smart contract and
can be checked by all nodes. When a registration request is made with a leader node, it is
registered with the permission of the existing leader node of the service cluster.

In addition, cluster nodes that provide storage services to persist data of the service
provider role that operates to maintain service data can register with a specific service
through IDservice of the service and blockchain account and IP.

Service User can check the list of service clusters created in the blockchain network.
User can register for the service and request data storage and retrieval through a transaction
that includes a blockchain account.

Algorithm 2 [Process of synchronizing the data of the data store and cluster nodes]
is the data storage process. The process of this algorithm is shown in Algorithm 2; User
requests IP of the leader node of the service to store Data in the network of service clusters
and the leader node of the service cluster Send Request Type of STORE. After the data
storage process is completed, the user returns IDdata. The leader node of the service cluster
that receives Request verifies the account of User and checks whether it is registered in
the service. If verified, Request is sent to all cluster nodes that provide storage services
registered in the service. The network of service cluster nodes receives Request and stores it
in DBcluster. The network of service clusters encrypts the hash of the saved file with Keypriv
to create Sig, creates Metadata, including FileHash and Sig, and sends it to the leader node
of the service cluster. The leader node counts whether all cluster nodes in the network
of service clusters have saved data and sends Metadata of all cluster nodes to the smart
contract to Txsync is created. In a smart contract, the data of Metadata are verified with the
Keypub of cluster nodes, and the same FileHash is created. When Txsync is saved, FileHash
is broadcast to all cluster nodes so that the saved FileHash can be verified.
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Algorithm 1 The process of crafting service

Procedure: THE PROCESS OF REQUEST SERVICE AND ENROLLMENT NODE FROM SC
1: ServiceCreatorIn f o ← Account, IP, Status
2: IDservice, IDleader ← CreateNewService(ServiceCreatorIn f o)
3:

Procedure: THE PROCESS OF CREATING SERVICE FROM SC
4: IDservice = Count(ServiceList) + 1
5: ServiceIndex ← IDservice, ServiceType
6: NodeList← LeaderList, ClusterList
7: TxList← SyncTxList, RestoreTxList
8: ServiceIn f o ← ServiceIndex, NodeList, TxList
9: ServiceList.Add(ServiceIn f o)

10:
Procedure: THE PROCESS OF ADDING Nodeleader :
11:
12: if CheckServiceLeaderList(IDservice, Account, IP) is not then
13: LeaderIn f o ← LeaderIn f o(IDservice, Account)
14: IDcluster ← AddLeader(LeaderIn f o)
15: end if
16:
Procedure: THE PROCESS OF ADDING Nodecluster :
17:
18: if CheckServiceClusterList(IDservice, Account, IP) is not then
19: ClusterIn f o ← ClusterIn f o(IDservice, Account)
20: IDcluster ← AddCluster(ClusterIn f o)
21: end if
22:
Procedure: THE PROCESS OF ADDING User :
23:
24: if CheckServiceAccountList(IDservice, Account) is not then
25: UserIn f o ← ServiceUserIn f o(IDservice, Account)
26: IDuser ← AddUser(UserIn f o)
27: end if

Algorithm 2 The Process of storing service data

Procedure: THE PROCESS OF Posting Request FROM User To Nodeleader
1: IPleader ← GetCurLeaderNode(IDservice)
2: IDdata ← PostRequest(IDservice, IPleader, IDuser, Type, Address, File)
3:

Procedure: THE PROCESS OF Broadcasting Request FROM Nodeleader To Nodecluster
4: IpTablecluster ← GetClusterNodeList(IDservice)
5: Metadata = BroadcastRequest(IpTablecluster, Request)
6: if Count(Metadata) is Count(Networkcluster) then
7: Txsync ← CreateSyncTx(KeyPriv)
8: StoreSyncTx(Txsync)
9: end if

10:
Procedure: THE PROCESS OF Storing Data FROM Nodecluster
11: Reqeust← GetRequest()
12: PATH ← StoreDataLocalStorage(Reqeust.File)
13: FileHash← GenerateSig(Reqeust.File)
14: Sig← GenerateSig(FileHash, Keypriv)
15: Metadata← GenerateMetadata(Sig, FileHash)
16: ResponseMetadata(Metadata)

Algorithm 3 [Process of downloading and verifying data] is the process of download-
ing and verifying data. The process of this algorithm is shown in Algorithm 3 and Figure 5.
This shows the process of querying and verifying Data stored in the network of service
clusters by User. User needs IDdata of stored data and the IP of the current leader node
of the service cluster to return Data. User sends Request to the leader node of the service
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cluster IDdata and user’s blockchain Address and IDservice via IPleader. Leader nodes of
the service cluster delivers Requests of query type to CurNodecluster(current leader node
of the service cluster) selected in a round-robin method. The current leader node of the
service cluster creates a URL accessible through PATH stored in DBcluster with IDdata, and
encrypts URL with Keypriv to create Sig. current leader node of the service cluster creates
Metadata through URLandSig and sends it to User through Nodeleader. User downloads
FileBinary through a URL and creates a FileHash. Additionally, User is compared with
FileHash recorded in the network of the ethereum blockchain network to verify that the
data are synchronized. If FileHash is different, the recovery process is performed.

Algorithm 4 [Process of data recovery] is the recovery process in case the verification
is performed after data download. This process occurs when the data returned by User in
Algorithm 3 is tampered with or out of sync. This process is performed to keep the data
of all service cluster nodes the same through data consensus. Additionally, the client can
return synchronized data after this process. If verification of Data fails, User requests data
recovery from the leader node of the service cluster, and Txrecovery is saved in a network
of the ethereum blockchain. User sends Request of Recovery Type to the leader node, and
the current leader node broadcasts it to all cluster nodes that provide storage service in
the network of service clusters. Cluster nodes that provide storage services sends the
FileBinary of IDdata i ncluded in Request to the leader node. When transmitting, every
leader node of the service cluster divides FileBinary into N equal parts to create a FileHash.
This process decentralizes the creation and verification of FileHash to be performed by
multiple leader nodes in the service cluster. Additionally, the current leader node of
service cluster sends a save request to the service contract to create Txrestore by collecting
FileHashandURL created by the leader node of the service cluster. In a smart contract, the
FileHash of IDdata determines another cluster node as the generated FileHash and sends a
URL for recovery to the cluster nodes.

Algorithm 3 The process of querying and validating service data

Procedure: THE PROCESS OF CREATING QUERY Request FROM User
1: IPleader ← GetCurLeaderNode(IDservice)
2: URL, Signature← PostRequest(IDservice, IPleader, IDuser, Type, Address, IDdata)
3:

Procedure: THE PROCESS OF POSTING Request FROM Nodeleader
4: IPcluster ← GetCurClusterNode(IDservice)
5: URL, Signature← BroadcastRequest(IPcluster, Request)
6:

Procedure: THE PROCESS OF BROADCASTING URL FROM Nodecluster
7: PATH ← ReadDataLocalStorage(Reqeust.IDdata)
8: URL← GenerateURL(PATH)
9: Sig← GenerateSig(URL, Keypriv)

10: Metadata← GenerateMetadata(URL, Sig)
11: ResponseMetadata(Metadata)
12:
Procedure: THE PROCESS OF VERIFICATING Data FROM User
13: FileHash← GetFileHash(IDdata)
14: File← GetFileBinary(URL)
15:
16: if GetFileHash(File) is not FileHash then
17: IPleader ← GetCurLeaderNode(IDservice)
18: URL, Signature← PostRequest(IDservice, IPleader, IDuser, Type, Address, IDdata)
19: end if



Sensors 2023, 23, 8569 12 of 19

Algorithm 4 The process of recovering service data

Procedure: THE PROCESS OF BROADCASTING Txrecovery FROM Nodeleader
1: BroadcastRequest(IPcluster, Request)
2:
3: if Nodeleader is CurNodeleader then
4: FileHash, Sig← GetRecoveryResponse()
5: FileHashes, Signature← PostRequest(IDservice,IPleader,IDuser,Type,Address, IDdata)
6: if Count(FileHashes) is Count(Networkleader) then
7: Txrestore ← CreateRestoreTx(KeyPriv, FileHashes)
8: StoreRestoreTx(Txrestore)
9: end if

10: else if Nodeleader is not CurNodeleader then
11: URL, Sig← GetRecoveryURL()
12: File← GetFileBinary(URL)
13: Result← Veri f yFile(GetFileHash(File), FileHash)
14: PostVerificationResult(Result)
15: end if

Figure 5. The process of query and validating service data.

4. Experiment
4.1. Experiment Setup

In this section, we describe the results of experiments conducted to measure and
compare the performance of the proposed architecture. For the experiment, User, cluster
nodes that provide storage services, and leader node of the service cluster were configured
on physically separated devices. The experimental environment in Table 3 is as follows.
User sent a request to the leader node via gRPC communication based on WiFi (802.11ac)
in a Laptop with an Apple M1 Chip and 16 GB of RAM. The leader node runs on the
Dell EMC PowerEdge R740 server (CPU: Intel® Xeon® Silver 4210R 2.4 G, RAM: 32 GB
RDIMM), and a total of 3 nodes are configured as Docker containers locally on the server.
The Cluster node is a desktop (Gen Intel(R) Core(TM) i9-11900KF, RAM 32.0 GB), and
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3 nodes are configured as a Docker container unit. In the experiment, User, cluster node,
and leader node were included in different networks, so that the cluster node and the
leader node were each assigned an IP. Since the goal of this experiment was to see how well
we could distribute traffic rather than address scalability, we configured the network with
a total of three nodes. The experiment measured and compared file data storage and query
latency from the client’s point of view and measured data storage and recovery agreement
and data storage latency during the operation of the proposed architecture.

Table 3. Experiment Enviroment.

Type Name Function Specs (Version)

HW

Server Running Service
Leader Node

DellEMC Power Edge R740 server (CPU:
Intel Xeon Sliver 4210R 2.4 G, RAM: 32 GB
RDIMM, Ubuntu 18.04)

Desktop Running Service
Cluster Node

Gen Intel(R) Core(TM) i9-11900KF, RAM
32.0 GB, Window 10

Laptop Running User Apple M1 Chip, RAM 16 GM

SW

Docker Node operation version 20.150.7

Golang Used to implement
node

version 1.18

MongoDB Database on cluster
nodes

version 6.0

Redis Pub-sub version 7.0

Solidity Smart contract 0.8.7

4.2. Experiment Data

The performance evaluation criteria compared latency with IPFS, which is the most
widely used off-chain. To measure the latency and performance of service data storage, the
data size of the currently most used file format was organized as shown in Table 4.

Table 4. Dataset.

Type PNG GIF JPG PDF WAV

Size 4 KB 8 KB 12 KB 16 KB 32 KB

4.3. The Latency Service Data I/O

Figure 6 is the result of comparing the data input time of the network implementing the
proposed system architecture and IPFS. In the proposed architecture, the user sends a request
including the file binary and account information to the service leader node, and the service
leader node broadcasts the request to the cluster node. The cluster node delivers the requested
metadata to the service leader node, and the leader node combines them and transmits them
to the smart contract. In the smart contract, the synchronization transaction is stored through
the data transmitted by the service leader node, and the data of all cluster nodes is confirmed
to be synchronized. In the process, when the latency from the time the user transmits the
request to the synchronization transaction request to the smart contract was measured, the
latency was lower than when the data of the same size were stored in the IPFS.
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Figure 6. The latency insert compare with proposed method and IPFS.

Figure 7 is the result of comparing the data download request processing time of
the network implementing the proposed system architecture and IPFS. In the proposed
architecture, the user sends a request, including the ID of the returned data, to the service
leader node after saving the data to request data. The service leader node transmits a
request to the node corresponding to the current cluster node in a round-robin manner
among cluster nodes. Upon receiving the request, the cluster node verifies the user’s
address and signature and sends the data-accessible URL and URL to the user through the
service leader node, including the encrypted signature with the cluster node’s private key.
Users can download data through the URL. The latency in the process was further reduced
by using the method of downloading binaries from a single node compared with the IPFS
method, in which files are distributed and stored by multiple nodes. Therefore, it showed
lower latency compared with the method of uploading data from IPFS and downloading
distributed files through CID and showed a larger difference compared with the difference
in data storage time.

Figure 7. The latency query compare with proposed method and IPFS.
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4.4. The Latency of Processing Synchronization

Figure 8 is the result of measuring the latency for data consensus in progress to ensure
synchronization of all cluster nodes for data when saving data in the proposed system
architecture. To store the synchronization transaction, the file binary data are passed,
and the cluster node must store the binary data and generate metadata, including the
file hash and signature. In addition, the service leader node sends a request to store the
synchronization transaction in the smart contract through the corresponding metadata.
This process is included in the process of data consensus by storing the synchronization
transaction. As a result of measuring this process, there was no significant difference
according to the data size, and there was no large latency in the smart contract call or
metadata generation latency. In the case of network latency, it increased as the data size
increased, but it was confirmed that the increase did not significantly affect the performance.

Figure 8. The comparison of the sync consensus latency of data size.

4.5. The Latency of Processing Recovery

Figure 9 shows the latency for the data recovery consensus process by sending a
request to the service leader node when the user verifies the data after downloading the
file and if the verification fails. When a user sends a request to the service leader node,
the leader node forwards the request to all cluster nodes. The cluster node forwards the
data included in the request to all leader nodes. All leader nodes generate a FileHash
value from file data, encrypt it with their private key, and transmit it to the current leader
node, and the leader node calls a smart contract to save the recovery transaction. When the
transaction is saved and the block is propagated, the cluster node checks whether the data
has been restored through a smart contract event and requests the data through the URL
to synchronize the data. In this process, the latency includes the process of requesting the
user to download a file from the cluster node, verifying the file hash value through the data
recorded in the blockchain, and delivering it to the cluster node through the service leader
node. It also includes the process of sending the file binary data from the cluster node to
the leader node and generating metadata, as well as the smart contract request time when
the leader node currently selected as a round robin sends a recovery transaction storage
request. As a result of the measurement, the latency for downloading the file binary data
and verifying it by the user was the largest, and the latency for contract calls and metadata
creation was constant. In the case of file transfer time, the latency increased according to
the file size, but the increase was not large.
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Figure 9. The comparison of the restore consensus latency of data size. (When replacing service
leader node from 1 to 2).

4.6. The Latency of Service Recovery Due to the Crash Fault of Service Leader Node

Figure 10 shows the result of a comparison with the architecture in which the proposed
leader replacement policy is applied to solve the traffic increase problem of the centralized
gateway of the existing distributed file system. For the experiment, the user’s request was
transmitted at the same interval when the leader node replacement method was applied
and when it was not applied. In the case of leader node replacement, the three leader nodes
change their order every 0.9 s in a round-robin manner and receive user requests. As a
result of the experiment, when the gateway was centralized, the overall traffic increase
was high for both data delivery and transmission from the leader node. When the user’s
request data are transmitted, network traffic is about three times higher when there is one
leader node than when three nodes are changed in a round-robin method. When user data
are transmitted to the cluster node, the amount of traffic generated is higher than that of
input traffic, and it is twice as high as when round-robin is applied.

Figure 10. The latency leader node replacement.
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4.7. The Latency Analysis of Cluster Node Storage Processing

Figure 11 shows the result of measuring the latency when the cluster node stores
and queries the file binary data. In this paper, we aim to reduce the latency that occurs
when storing and querying file data using the file data management technique based on
the existing external network. Both the network speed and file-data storage latency of the
cluster node storing the data must be minimized. To this end, the file index was managed
based on NoSQL, and the file data was stored in the local storage of the cluster node. Our
results show no significant difference between the data storage path indexing latency and
the file data storage latency for the data save request, and the read request had a higher
latency for reading the file binary data. Both operations showed small latency that did not
affect performance, and the increase in latency was not large depending on the file size.

Figure 11. The comparison storage processing latency.

5. Conclusions

In this paper, we propose a blockchain architecture to improve network latency and
reliability, which is a limitation of technologies that use external off-chain networks due
to the inability to store large amounts of data as the size of the blockchain increases when
storing data generated by IoT devices. To reduce latency, blockchain nodes are clustered
as a service unit to store and query data in local storage. The reliability of the data was
ensured. When compared against existing off-chain alternatives, the results of our proposed
architecture showed lower latency, and the local storage data processing speed of the
cluster node and the latency in each process had a significant impact on performance. The
experiments confirmed that there was no detrimental effect on performance. Additionally,
unlike the existing data storage methods such as cloud storage and distributed file systems,
the nodes of the blockchain network duplicate the data source, and the client directly
verifies the tampering of the data and requests the data of the cluster nodes to synchronize
the data to the original data. This guarantees reliability and reduces the possibility of
data loss. In subsequent studies, distributed storage techniques are applied to solve the
limitation of the local storage increase in each cluster node that is configured in service
cluster units and maintains service binary file data in the blockchain network, an efficient
replacement policy, and the signatures of leader nodes and cluster nodes. We plan to
study how to reduce the gas consumption of smart contracts used for verification. In
addition, we will refer to the comparative analysis of consensus algorithms [34] to identify
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the characteristics of each consensus algorithm and use the identified characteristics to
make further improvements to the consensus algorithms we performed or supported in this
study. Plus, as the availability of IoT services expands, the system proposed in this paper
can be widely used in official document processing services and patent registration [35].
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