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Abstract: Sooty mold is a common disease found in citrus plants and is characterized by black
fungi growth on fruits, leaves, and branches. This mold reduces the plant’s ability to carry out
photosynthesis. In small leaves, it is very difficult to detect sooty mold at the early stages. Deep
learning-based image recognition techniques have the potential to identify and diagnose pest damage
and diseases such as sooty mold. Recent studies used advanced and expensive hyperspectral or
multispectral cameras attached to UAVs to examine the canopy of the plants and mid-range cameras
to capture close-up infected leaf images. To bridge the gap on capturing canopy level images using
affordable camera sensors, this study used a low-cost home surveillance camera to monitor and detect
sooty mold infection on citrus canopy combined with deep learning algorithms. To overcome the
challenges posed by varying light conditions, the main reason for using specialized cameras, images
were collected at night, utilizing the camera’s built-in night vision feature. A total of 4200 sliced
night-captured images were used for training, 200 for validation, and 100 for testing, employed on the
YOLOv5m, YOLOv7, and CenterNet models for comparison. The results showed that YOLOv7 was
the most accurate in detecting sooty molds at night, with 74.4% mAP compared to YOLOv5m (72%)
and CenterNet (70.3%). The models were also tested using preprocessed (unsliced) night images
and day-captured sliced and unsliced images. The testing on preprocessed (unsliced) night images
demonstrated the same trend as the training results, with YOLOv7 performing best compared to
YOLOv5m and CenterNet. In contrast, testing on the day-captured images had underwhelming
outcomes for both sliced and unsliced images. In general, YOLOv7 performed best in detecting
sooty mold infections at night on citrus canopy and showed promising potential in real-time orchard
disease monitoring and detection. Moreover, this study demonstrated that utilizing a cost-effective
surveillance camera and deep learning algorithms can accurately detect sooty molds at night, enabling
growers to effectively monitor and identify occurrences of the disease at the canopy level.

Keywords: sooty mold; citrus; deep learning; YOLO; CenterNet

1. Introduction

Crop pests are one of the major problems in crop production globally, reducing crop
yield in quality and quantity. According to the Food and Agriculture Organization (FAO)
report in 2019, between 20 and 40% of production is lost annually due to pest damage, and
crop disease infection contributes to approximately USD 220 billion loss per year [1]. This
is reflected in the production of citrus, one of the popular major sources of vitamin C and
regarded as one of the most important and highly cultivated fruit families in the world [2,3].
Citrus diseases such as huanglongbing (HLB), leprosis, and citrus canker pose a potential
yield loss of up to 80% [4]. Moreover, fungi are frequent and rampant in citrus production.
Sooty mold is one of the most common occurrences, which is caused by fungi that develop
and feed on honeydew produced by sap-sucking insects such as whiteflies, scale insects,
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aphids, psyllids, and mealy bugs [5]. The fungi create an unpleasant black surface build-
up of mycelia on the stem, fruits, and leaves affecting the plants’ photosynthetic ability
(Figure 1) [6]. In a study conducted by Insausti and his colleagues (2015) on orange leaves,
they found that sooty mold can reduce the photosynthetic photon flux density (PPFD) by
44 to 74%, lowering photosynthesis [7]. In addition, copious sooty mold incidence may
cause a reduction in fruit quality and delay fruit color development [5]. Thus, monitoring
and detecting the presence of sooty mold on citrus is important to combat its negative effect
on photosynthesis, fruit quality, and yield. However, most orchards still rely on manual
disease monitoring, which is labor-intensive and sometimes inaccurate. Conventional
disease diagnosis requires experience and expert visual assessment on-site to identify
disease occurrences that can be expensive and inconvenient [8]. To address these challenges,
many recent studies have focused on automating the detection and identification of plant
diseases through the help of computer vision and Internet of Things (IoT) technologies. The
proliferation of devices with cameras and accessible internet, coupled with the advancement
in computer technology, rendered machine learning and image processing techniques, made
it possible for automated detection and recognition of crop diseases [9,10].
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In recent years, image recognition based on deep learning (DL) has been significantly
important in detecting disease and pest damage on plants [11]. However, one of the
main challenges of researchers working in this field is the acquisition of suitable and
sizeable amount of image datasets for the DL models to perform reliable disease detection.
Researchers worldwide have developed open-access datasets of different plant diseases
that can be used by other researchers. For instance, Parez et al. (2023) explored plant disease
detection using two popular publicly available datasets from PlantVillage (PV) and Data
Repository of Leaf Images (DRLI) to produce a new dataset called Plant Composite [12].
The three datasets were used in GreenVit, a fine-tuned version of vision transformers (ViT)
to classify healthy and unhealthy conditions of various plants with 99% accuracy. However,
not all publicly available datasets are suitable or sufficient for some studies. Khan et al.
(2022) collected their own images and created a new dataset for wheat disease classification
of brown- and yellow-rusted disease [13]. Image data collection and disease detection can
also be expensive and complicated, as most of the recent studies used high-end thermal and
multispectral cameras with complex algorithms to detect crop diseases. A study conducted
by Yang et al. (2019) used a Fluke TiS20 infrared thermal camera and multiple steps to
detect disease on tea plants, including the conversion of RGB images to HSV, splitting
color components, thresholding, color identification, converting images to gray, and noise
removal [14].
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To provide solutions to the challenges and limitations of the aforementioned works,
this study aims for a simple, efficient, and cost-effective alternative for disease monitoring,
detection, and identification using DL algorithms. The primary achievements of our
research include the following:

• The study used an affordable home surveillance camera with night vison capability to
capture sooty mold infections on citrus canopy at night in a field environment, thereby
minimizing the effects of varying light conditions during the day to divert on using
expensive cameras;

• All images were collected remotely using IoT technology to eliminate the need for an
on-site data collection;

• The study provided a simple alternative on sooty mold disease detection by using less
image preprocessing and easy, light, one-stage detection models: YOLOv5m, YOLOv7,
and CenterNet;

• A comparative analysis of three DL algorithms has been conducted to detect sooty
mold infection on the citrus canopy. The highest detection accuracy was achieved at
74.4% using YOLOv7, which can be utilized in real-time orchard disease monitoring
and detection.

The remainder of the article is structured into multiple sections. Section 1 discusses
the effects of sooty mold infection on citrus plants specifically, and the traditional and
recent developments in the monitoring, detection, and identification of crop diseases.
Section 2 enumerates related research studies on detecting and identifying diseases using
different convolutional neural networks (CNNs) for different crops. Section 3 presents the
methodology, including the data collection and training, to detect sooty mold infection on
citrus. Sections 4 and 5 report the results of applying DL algorithms to sooty mold detection
on citrus canopy. Finally, Section 6 summarizes this paper by defining conclusions and
future plans for the study.

2. Related Works

In recent years, DL has achieved significant advancements in crop disease monitor-
ing and detection, significantly surpassing conventional techniques [15]. Currently, early
detection of diseases through DL plays a significant role in agricultural production and
decision-making by employing DL algorithms in plant disease recognition that can mini-
mize the drawbacks associated with conventional manual selection of disease, leading to
more object extraction from plant disease characteristics [16].

Single-stage detectors such as YOLO and CenterNet are reported to detect crop damage
and disease quickly, as they require fewer computations and perform faster by viewing
object detection in a straightforward regression task, analyzing input images, and learning
to predict both the probabilities of different classes and the coordinates of bounding
boxes [17]. A study conducted by Uğuz et al. (2023) in citrus fruits to detect Alternaria
alternata and thrips diseases succeeded in obtaining 99% AP using YOLOv5 [18], while
Soeb et al. (2023) demonstrated better performance of YOLOv7 in detecting tea leaf diseases
in natural environments using a Canon EOS 80D Single-Lens Reflex (SLR) camera compared
to previous detection models such as CNN, deep CNN, DNN, and AX-Retina [19]. They
achieved 97.3% detection accuracy with 96.7% precision, 96.4% recall and 98.2% mAP.
Dananjayan et al. (2022) developed a new dataset of infected citrus leaves with precise
annotations and multiple classes called CCL’20 on single leaf images and found that
CenterNet predicts citrus leaf diseases at an early stage with high accuracy compared to
other object detection models [20].

In contrast, Syed Ab Rahman et al. (2022) employed a two-step deep CNN based
on Faster R-CNN to detect citrus diseases [21]. The model delivered a 94.37% accuracy
in detecting citrus black spot, citrus bacterial canker, and Huanglongbing. However, the
process involved numerous data preprocessing to prepare the images for training. All
images were first converted to grayscale using histogram equalization to produce images
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with the same intensity range. Then, the gray images were transformed into binary images
using a thresholding function.

In addition to the advancement in DL algorithms, several studies have utilized un-
manned aerial vehicle (UAV) technologies to monitor and detect crop diseases at the canopy
level. Shahi et al. reviewed numerous works on crop disease detection, highlighting ma-
chine learning and DL techniques using UAV-based remote sensing [22]. Abdulridha
and colleagues also used a UAV-based remote sensing technique to detect citrus canker
using a Resonon Pika L 2.4 hyperspectral camera mounted on a UAV (DJI Matrice 600, Pro
Hexacopter) and achieved 100% classification accuracy for detecting citrus canker on tree
canopies in orchards [23]. Meanwhile, DadrasJavan et al. (2019) detected citrus greening
on low-altitude multispectral images using a Micasense RedEdge multispectral camera
attached to an unmanned aerial vehicle [24]. They obtained an 81.75% classification result
that validated the potential of low-altitude multispectral imagery in fast citrus greening
orchard detection.

However, without the use of UAVs and specialized cameras, some of the studies
had limitations on capturing canopy level images in field conditions. Most mid-range
cameras including smartphones can only capture close-up images of infected individual
leaves in field environment and struggle to produce reliable field canopy images due
to varying light conditions. In consequence, studies on sooty mold detection frequently
operate on complex algorithms and close-up images on the field environment to avoid
using expensive cameras and or images captured indoors. For instance, a study conducted
by Khanramaki et al. (2021) proposed an ensemble of DL algorithms to detect citrus pests
such as leafminer, pulvinaria, and sooty mold using close-up leaf images captured on a
natural environment by various smartphone models [25]. The ensemble involved three
levels of diversity including a classifier level, feature level, and data level. At the classifier
level, four CNN architectures were used (AlexNet, VGG16, ResNet 50, Inception-ResNet-
v2). At the feature level, the original RGB images were transformed into several spaces
such as wavelet, Principle Component Analysis (PCA), and Lab color space. In addition,
the data level used a bootstrap strategy. The authors achieved the highest accuracy of
99.04% using their proposed ensemble. The complex process of image transformation on
images captured in field conditions was necessary to minimize the effect of fluctuating light
conditions. According to Albattah et al. (2022), accurate identification and classification
of plant diseases in the outside environment pose significant challenges primarily due to
varying field conditions [8]. The presence of low-intensity information in both the image
background and foreground, substantial color resemblance between healthy and diseased
plants, and changing light conditions impede the precise identification and classification of
plant diseases. Meanwhile, Xie et al. (2023) detected sooty mold and other leaf diseases of
Litchi using individual leaf images captured by smartphones in field conditions combined
with an improved fully convolutional one-stage object detection (FCOS) network called
FCOS for Litch (FCOS-FL) [26]. They utilized G-GhostNet-3.2 as the backbone network
extraction feature to improve the FCOS that resulted in a 95.7% detection of sooty mold.

The aforementioned research methodologies produced high detection accuracies; how-
ever, they may be complicated and expensive for small farmers. Studies [19,23,24] detected
different diseases with high accuracies but utilized expensive SLR, multispectral, and
hyperspectral cameras that are 7×, 85×, and 220×, respectively, more expensive than the
home surveillance camera. On the other hand, research [20,25,26] used semi-affordable
digital cameras and smartphones to collect images; however, they lacked reliability to
provide direct and simple detection methodologies and still cost 2× to 5× more than the
proposed sensor camera. In addition, only the drone-attached expensive cameras provided
the canopy detection of diseases and most mid-range price sensors captured individual
or close-up leaf images. Thus, to build these gaps and scale down the complexity of the
system as well as balance the cost with accuracy to provide a convenient, affordable, simple,
and new alternative on advanced disease monitoring systems in field environment at the
canopy level, this research proposes detecting sooty mold infections on the citrus canopy at
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night using established single-stage detectors and low-cost security surveillance cameras.
Appendix A summarizes the related works cited and our proposed system for comparison.

3. Materials and Methods

This study used Satsuma mandarin (Citrus unshiu Marc.) planted in Tsukuba, Ibaraki,
and a home surveillance camera that was installed on a pole placed close to the trunk of
the tree, high enough to capture the whole tree canopy. The Wi-Fi function was also set
up to collect the data remotely. The collected images were prepared following a series
of procedures that included image slicing, cleaning, splitting, augmentation, and format
conversion before they proceeded to train with the three DL models (Figure 2).
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3.1. Image Collection

All images were collected using a low-cost 4 MP surveillance home security camera
(CTIPC-530C, Shenzhen C-TRONICS CO., LTD., Shenzhen, China) with 2560 ×1920 pixels
resolution, 25 M HD night vision capability, 2 pcs IR LEDs, advanced image digital noise-
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reduction, Wi-Fi connectivity, and could rotate 355◦ horizontally and 90◦ vertically. To
eliminate the inconvenience of traditional monitoring and data gathering in the field
under changing weather conditions, IoT technology was used through the CTRONICS
mobile application to remotely capture images at different angles, anytime and anywhere,
provided there was a Wi-Fi connection (Figure 3). In addition, images were captured at
night to minimize the effects of varying light conditions during the day on fluctuating
weather conditions, causing unnecessary shadows and bright reflections on the leaves
that affect the appearance of sooty mold infections. Figure 4 shows the conditions during
the day and night: (a) too much light reflected on leaf surfaces and created unfavorable
shadows during sunny days, (b) suitable light only on cloudy weather, and (c) images
collected at night using the night vision feature of the camera produced grayscale images.
Twelve images were gathered every other night (one-night interval) from 19:00 to 24:00
for six months, from October 2022 to March 2023. Each captured image had a resolution
of 2560 × 1440 pixels. A total of 1080 night images were collected for the citrus canopy
dataset. Unsuitable images were eliminated, and 1000 images remained and were selected
to create the initial dataset that was prepared with several image processing systems.
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3.2. Image Processing
3.2.1. Image Slicing and Cleaning

The CTRONICS surveillance camera produced wide images covering the citrus canopy.
These images were utilized to increase the number of datasets by slicing the images into
quadrants. All 1000 images were sliced into four using Pine Tools, a free online tool that can
slice single or bulk images horizontally, vertically, or both. After slicing, the resolution of
each image became 1280 × 720 pixels. Moreover, the total number of images was expanded
to 4000. These images underwent another round of dataset cleaning through a random
selection of 1000 images, subsequently excluding poor and unsuitable images; these were
blurred images due to water droplets and moisture (fog) accumulation on the camera lens.
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3.2.2. Image Splitting and Labeling

The images were divided into training, validation, and testing sets, where 70%
(700 images) were allocated for training, 20% (200 images) for validation, and 10% (100 images)
for testing. Afterward, they all underwent labeling using LabelImg, a free and open-source
tool for image annotation written in Python that uses QT for the graphical interface.
The black spots and build-up on the surface of the leaves that showed sooty mold infec-
tions were labeled. To provide labeling consistency, only leaves with visible and distinct
symptoms were manually labeled using a bounding box to safeguard the neural network
detection performance. Each image, with its own label, generated a corresponding .txt
file. These files contained information about the object class and the coordinates of the
bounding box, representing the upper left and lower right corners of each identified sooty
mold-infected leaf.

3.2.3. Image Augmentation

A sufficient number of training images is recommended for the DL algorithms to learn
better; thus, to increase the number of labeled datasets, the 700 training images were aug-
mented by rotating to 90, 180, and 270 degrees counterclockwise and flipping horizontally
and vertically (Figure 5). This 5-augmentation procedure produced 3500 additional images
with corresponding .txt files that expanded the training dataset to 4200 images (Table 1).
These training images, together with the unaugmented validation and testing images, were
used in YOLOv5m and YOLOv7 (Table 2). Alternatively, the .txt file data of all these images
were converted to XML files and then to JSON format for CenterNet training, following the
same data distribution.
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Table 1. Total number of image datasets before and after augmentation.

Image Training Validation Testing Total

Original Image 700 200 100 1000
Augmented Image 3500 0 0 3500
Total 4200 200 100 4500
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Table 2. Image data allocation for DL algorithms.

Model Training Validation Testing

YOLOv5m 4200 200 100
YOLOv7 4200 200 100

CenterNet 4200 200 100

3.3. Quantitative Analysis

The three DL algorithms used in this study were YOLOv5, YOLOv7, and CenterNet.
The quantitative analysis of the models was performed through the standard evaluation
metrics for object detection that includes the models’ performance based on precision,
recall, mean average precision (mAP), and intersection over union (IoU).

3.3.1. Training Process
YOLOv5 and YOLOv7

You Only Look Once is a well-known and widely used algorithm for image detec-
tion [27]. YOLO is known for its fast computation speed and simple architecture that di-
rectly outputs the position and category of bounding boxes in the neural network (Figure 6).
YOLO detects sooty mold infections by dividing the image into S × S grids. When the
center of the sooty mold infection falls within a particular grid cell, the model predicts
multiple bounding boxes and confidence scores for each box. However, YOLO predicts
several bounding boxes per grid, thus non-maximum suppression (NMS) is applied to
identify and eliminate redundant bounding boxes to achieve accurate final detection of
sooty mold infections.
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YOLOv5 and YOLOv7 are two recent versions that were released in 2020 and 2022,
respectively. The two models have improved architecture compared to their predecessors.
YOLOv5 was created using PyTorch instead of the DarkNet framework and utilized a
modified CSPDarknet53 backbone [28]. YOLOv5 integrates the AutoAnchor algorithm
to examine and adjust anchor boxes to ensure their compatibility with the dataset and
training parameters. In addition, YOLOv5 employs a k-means function to dataset labels,
generating initial conditions for a genetic evolution algorithm that refines anchor boxes
over 1000 generations using complete intersection over union (CIoU) loss and the best
possible recall as the fitness function [29]. YOLOv5 has five available versions: YOLOv5n
(nano), YOLOv5s (small), YOLOv5m (medium), YOLOv5l (large), and YOLOv5x (extra-
large). YOLOv5n is a lightweight and fast variant that emphasizes speed over performance;
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subsequently, as the model size increases, it progressively prioritizes high performance
over speed.

Alternatively, YOLOv7 achieves better performance by utilizing an extended efficient
layer aggregation network (E-ELAN) that enables effective control over the shortest longest
gradient path to facilitate efficient learning and convergence of DL models even though
it solely relies on the MS COCO dataset without utilizing pretrained backbones. This
version also introduces several architectural modifications and a range of bag-of-freebies
that enhance accuracy without impacting inference speed, albeit increasing training time.
Some of these bag-of-freebies consist of planned reparametrized convolution, coarse label
assignment for the auxiliary head and fine label assignment for the leading head, conv-bn-
activation with batch normalization, implicit knowledge inspired by YOLOR, and the use
of the exponential moving average as the final inference model [29].

CenterNet

CenterNet is another reliable object detection model known for anchor-free object
detection that was demonstrated by Xia et al. to be suitable for detecting plant diseases
in natural environments [30]. CenterNet’s algorithm differs from traditional bounding
box-based approaches. CenterNet adopts a key point prediction-based detection method,
where the final prediction box for plant diseases is obtained by predicting key points rather
than bounding boxes [31]. In addition, instead of treating objects as pairs of key points,
CenterNet detects each object as a triplet of key points, resulting in improved precision
and recall. It also utilizes center pooling and cascade corner pooling to enrich the infor-
mation gathered from the top-left and bottom-right corners of the object, providing more
discernible details in the central regions [32]. Ultimately, identifying the final bounding
boxes was accomplished by utilizing the detected center key points.

CenterNet exhibits faster detection speed compared to other one-stage and two-stage
detection models [33]. This is attributed to its small number of network parameters, which
requires fewer computations. Figure 7 summarizes the architecture and working principles
of CenterNet model disease detection.
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3.3.2. Performance Metrics

To evaluate the effectiveness of the model in detecting sooty mold of citrus at night at
the canopy level, standard evaluation metrics for object detection, such as intersection over
union (IoU), and average precision (AP), were employed. These metrics are widely used to
measure model accuracy and performance.

Intersection over union (IoU) is a commonly used metric for evaluating localization
accuracy and measuring localization errors in object detection models. IoU involves
determining the overlap between the predicted sooty mold infections and ground-truth
bounding boxes by calculating the intersection area. Through IoU, the total occurrences
of true positives (TP), false positives (FP), and false negatives (FN) were defined. In this
study, TP is when the sooty mold infections were detected as sooty mold, while FP is when
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another object was detected as sooty mold. Lastly, FN is when sooty mold infections were
not detected at all.

Precision (P) measures model accuracy in detecting sooty mold by determining the
proportion of TPs relative to the total number of predictions made by the model. Precision
can be calculated using the equation provided below.

Precision =
TP

TP + FP
(1)

where true positives (TPs) are the correct detection and false positives (FPs) are the incorrect
detection of sooty mold infections on the citrus canopy.

Meanwhile, recall assesses the model’s ability to accurately identify sooty mold among
all the positive targets, including FN detections or those that were initially missed and
undetected. Recall can be determined by the ratio between the total predictions of sooty
molds made by the model and the total number of existing labels associated with sooty
mold infections.

Recall =
TP

TP + FN
(2)

Recall and precision exhibit a tradeoff, which is visualized as a curve by adjusting
the classification threshold of sooty mold infections on citrus canopy. The area under
this precision-recall curve represents the average precision for sooty mold infections in
the model. Taking the average of these values across all classes gives the mean average
precision (mAP), which can be calculated using the following expression:

mAP =
1
C

T

∑
k=1

P(k)∆R(k) (3)

where C is the total class number, T is the IoU threshold number of sooty mold infections, k
is the IoU threshold of sooty mold infections, P(k) is the precision, and R(k) is the recall.

3.4. Qualitative Analysis

Qualitative analysis of the best-performing model was also conducted on enhanced
images (50% and 80% brightness) to test the robustness of the model in detecting sooty
mold infections at night at varying levels of brightness.

4. Results
4.1. Quantitative Analysis
4.1.1. Training

This study utilized a dataset comprising 4500 images, with 4200 images allocated for
training, 200 images for validation, and 100 images for testing purposes. These images
were processed using three object detection models, namely, YOLOv5m, YOLOv7, and
CenterNet, following the configuration described in Table 3.

Table 3. Training configuration for three object detection models.

Model Input Size Batch Size Epoch

YOLOv5m 640 × 640 16 50
YOLOv7 640 × 640 16 50

CenterNet 512 × 512 - 150

Table 4 summarizes the results of the training process that shows the performance
of the DL algorithms on validation results at 50% IoU. Considering the three parameter
sets, precision, recall, and mAP, YOLOv7 shows a slight advantage in overall performance
compared to the other two models. YOLOv7 accounted for a 69.8% recall value with
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74.4% mAP compared to YOLOv5m with a 66.7% recall value and 72% mAP. In contrast,
CenterNet generated the lowest recall and mAP values of 52.7% and 70.3%, respectively.

Table 4. DL algorithm training performance in detecting sooty molds in citrus canopy.

Model Precision (%) Recall (%) mAP (%)

YOLOv5m 69.0 66.7 72.0
YOLOv7 68.1 69.8 74.4

CenterNet - 52.7 70.3

Figures 8 and 9 show the training curves for YOLOv5m and YOLOv7, respectively.
Both exhibited a favorable performance in detecting sooty mold on citrus canopy, as evident
in the decline in training losses and improvement in mAP over time, demonstrating the
models’ development on learning to identify and detect sooty molds accurately. However,
validation losses of both models progressed, which might be attributed to the limited
diversity of the image dataset used during the training.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 8. Training and validation results from YOLOv5m. 

 
Figure 9. Training and validation results from YOLOv7. 

In addition to the abovementioned parameters that were used to determine the best 
algorithm among YOLOv5m, YOLOv7, and CenterNet for detecting sooty mold in citrus 
at night, the training time and size of each model were also considered in deciding the 
appropriate model for specific training situations (Table 5). YOLOv5m and YOLOv7 
trained at similar rates of 6.3 and 7.1 h, respectively, compared to the longer training hours 
of CenterNet, which reached up to 67 h to complete. Moreover, the size of each model also 
differed; YOLOv5m was the lightest at 40.2 MB, and CenterNet was the heaviest at 83.9 
MB. These additional parameters together with precision, recall, and mAP provide valu-
able information that can help us choose the most suitable model for detecting sooty mold 
infections at night on citrus canopies in orchard environments. 

Table 5. Training time and size of the object detection models. 

Model Training Time Model Size 
YOLOv5m 6.3 h 40.2 MB 
YOLOv7 7.1 h 71.3 MB 

CenterNet 67 h 83.9 MB 
  

Figure 8. Training and validation results from YOLOv5m.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 8. Training and validation results from YOLOv5m. 

 
Figure 9. Training and validation results from YOLOv7. 

In addition to the abovementioned parameters that were used to determine the best 
algorithm among YOLOv5m, YOLOv7, and CenterNet for detecting sooty mold in citrus 
at night, the training time and size of each model were also considered in deciding the 
appropriate model for specific training situations (Table 5). YOLOv5m and YOLOv7 
trained at similar rates of 6.3 and 7.1 h, respectively, compared to the longer training hours 
of CenterNet, which reached up to 67 h to complete. Moreover, the size of each model also 
differed; YOLOv5m was the lightest at 40.2 MB, and CenterNet was the heaviest at 83.9 
MB. These additional parameters together with precision, recall, and mAP provide valu-
able information that can help us choose the most suitable model for detecting sooty mold 
infections at night on citrus canopies in orchard environments. 

Table 5. Training time and size of the object detection models. 

Model Training Time Model Size 
YOLOv5m 6.3 h 40.2 MB 
YOLOv7 7.1 h 71.3 MB 

CenterNet 67 h 83.9 MB 
  

Figure 9. Training and validation results from YOLOv7.

In addition to the abovementioned parameters that were used to determine the best
algorithm among YOLOv5m, YOLOv7, and CenterNet for detecting sooty mold in citrus
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at night, the training time and size of each model were also considered in deciding the
appropriate model for specific training situations (Table 5). YOLOv5m and YOLOv7 trained
at similar rates of 6.3 and 7.1 h, respectively, compared to the longer training hours of
CenterNet, which reached up to 67 h to complete. Moreover, the size of each model also
differed; YOLOv5m was the lightest at 40.2 MB, and CenterNet was the heaviest at 83.9 MB.
These additional parameters together with precision, recall, and mAP provide valuable
information that can help us choose the most suitable model for detecting sooty mold
infections at night on citrus canopies in orchard environments.

Table 5. Training time and size of the object detection models.

Model Training Time Model Size

YOLOv5m 6.3 h 40.2 MB
YOLOv7 7.1 h 71.3 MB

CenterNet 67 h 83.9 MB

4.1.2. Model Testing

To evaluate the performance of the three trained models in detecting sooty mold in the
citrus tree canopy at night, 100 original images were used for testing using the best-trained
weight from each model. The results show that YOLOv7 was the most accurate in detecting
sooty molds compared to YOLOv5m and CenterNet. YOLOv7 achieved 75.6% mAP, while
YOLOv5m and CenterNet scored slightly lower, with 67.9% and 72.3% mAP, respectively
(Table 6).

Table 6. DL algorithm testing performance in detecting sooty molds in citrus canopy.

Model Precision (%) Recall (%) mAP (%)

YOLOv5m 78.1 57.1 67.9
YOLOv7 66.9 72.5 75.6

CenterNet - 54.4 72.3

4.1.3. Testing on Preprocessed (Unsliced) and Day-Captured Images

To further evaluate the performance and accuracy of the trained algorithms, the best-
trained weight of each model was tested on 10 randomly selected preprocessed (unsliced)
night images. The test shows a similar detection trend with the sliced images, and YOLOv7
leads the detection at 60.3% mAp (Table 7). Interestingly, CenterNet had an underwhelming
performance at 27.5% mAP.

Table 7. Testing performance on preprocessed (unsliced) night images.

Model
Night-Unsliced Image

Precision (%) Recall (%) mAP (%)

YOLOv5m 74.1 24 47.6

YOLOv7 59.7 63.3 60.3

CenterNet - 25.3 27.5

Moreover, to push the boundaries and determine the possible limitations of the models,
day-captured images were tested to determine the accuracy and competence of the models
in detecting sooty mold infections. The results demonstrated unfavorable outcomes for
detecting sooty molds for all the DL models for both sliced and unsliced images. All models
had low mAPs compared to their night counterparts. However, YOLOv7 performed better
than the other two algorithms at 42.5% and 26.7% mAP on sliced and unsliced images,
respectively (Table 8).
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Table 8. Testing performance using day-captured images.

Model
Day-Sliced Image Day-Unsliced Image

Precision(%) Recall (%) mAP (%) Precision (%) Recall (%) mAP (%)

YOLOv5m 53.1 19.7 34.1 35.1 5.4 19.1

YOLOv7 45.5 51.0 42.5 30.6 48.0 26.7

CenterNet - 44.2 41.8 - 17.8 13.8

These results also demonstrated that CenterNet had a weak performance on unsliced
images both for night- and day-captured images; however, it performed similarly to
YOLOv7 and better than YOLOv5m on sliced images. The low detection of the models,
especially on day-captured images, is not surprising given that the images had a different
environment and were totally different from the images used in the training.

Figure 10 and Table 9 showcase sample results of the models in detecting sooty molds
on citrus using 10 preprocessed (unsliced) night images. From 64 total sooty mold infections,
CenterNet detected 50, the highest detection among the three models; however, it also
acquired 17 false positive (FP) detections compared to none with the other two models.
Weighing the correct and false detections, YOLOv7 still performed better than the two
other models, with 31 detections and 33 undetected sooty mold infections.
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(FP) detection).

Table 9. Summary of the detection results of the three models on the sample preprocessed
night image.

Model Total of Sooty Mold
Labels

True
Positive False Negative False

Positive

YOLOv5m 64 19 45 0
YOLOv7 64 31 33 0

CenterNet 64 50 14 17

For the day-captured images, testing results on the full/unsliced version resulted in
58 detections for YOLOv7, 53 for CenterNet, and only 5 for YOLOv5m, out of the total of
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79 sooty mold infections (Figure 11 and Table 10). It is also worth noting that YOLOv5m
had the highest undetected infections at 74, while CenterNet topped the misdetection result
at 44. In contrast, on day-captured sliced images, CenterNet detected all 51 infections but
incurred 13 false detections (Figure 12 and Table 11). YOLOv5m and YOLOv7 had only 3
and 1 false detections, respectively. These results show that using a night image-trained
model to detect sooty mold infections in day-captured images faces difficulty, causing low
accuracy in detection, including high false detection.
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positive (FP) detection).
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Figure 12. Test examples on the detection of sooty molds using sliced day-captured images from
(a) original image, (b) YOLOv5, (c) YOLOv7, and (d) CenterNet. (The orange square in the fig-
ure refers to FN or undetected sooty mold infections, and the orange fill indicates false positive
(FP) detection).
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Table 10. Summary of the detection results of the three models on the sample unsliced day-captured
image.

Model Total of Sooty Mold
Labels

True
Positive False Negative False

Positive

YOLOv5m 79 5 74 10
YOLOv7 79 58 21 34

CenterNet 79 53 26 44

Table 11. Summary of the detection results of the three models on the sample sliced day-captured
image.

Model Total of Sooty Mold
Labels

True
Positive False Negative False

Positive

YOLOv5m 51 16 35 3
YOLOv7 51 33 18 1

CenterNet 51 51 0 13

4.2. Qualitative Analysis

To further assess the performance and robustness of the best sooty-mold detection
model, YOLOv7, a qualitative analysis was performed by subjecting the model to images
under varying brightness levels. To conduct the analysis, a set of test images was processed,
systematically altering their brightness levels. The original images were enhanced to 50%
and 80% brightness, and consequently tested on the best weight of YOLOv7. Figure 13
shows the original images in the first row and the second and third row represent 50%
and 80% brightness, respectively. The visual representation demonstrated the outstanding
performance of YOLOv7 on how well it responded to varying light intensities, highlighting
the models’ ability to detect sooty mold accurately at night regardless of the lighting
conditions. Comparing the original image detection to 50% and 80% brightness, the majority
of the infections were still detected by the model despite the increased image brightness.
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5. Discussion
5.1. Performance Analysis of the Three DL Algorithms

Conventional disease monitoring and detection methods are laborious, prone to inac-
curacies, and necessitate on-site visual assessment by experienced experts, which can be
costly and inconvenient. Thus, this study used available IoT and DL technologies to detect
sooty mold infection on citrus canopy to provide affordability, accuracy, and convenience.
Images were captured remotely using IoT technology through the CTRONICS mobile
application. In addition, images captured at night were used to build the training dataset,
as the field environment is often subjected to varying light conditions, especially during
the day, which affects the quality of images captured by the camera and the appearance
of sooty mold infections on the citrus canopy. This is a crucial concern in object detection,
as the images must be learned and recognized properly by the computer algorithm. This
study used images captured at night using an affordable home surveillance camera with
night vision capability. The night vision component of the camera automatically trans-
formed the images into black and white, highlighting the occurrence of sooty molds on
leaf surfaces. It also clearly separated the leaves from the background and minimized
shadows that are dominant in images captured during the day. This makes image collection
and processing simple and straightforward, as it eliminates additional procedures such as
image enhancement in dataset preparation.

The night-captured image dataset was trained on three established object detection
models: YOLOv5m, YOLOv7, and CenterNet. Based on the parameter set, the YOLOv7
model had the best overall performance in terms of training detection accuracy at 74.4% and
model testing at 75.6%. Likewise, it had a fast-training time of 7.1 h, similar to YOLOv5m
at 6.3 h, and was remarkably quicker than the 67 h training time of CenterNet. However,
YOLOv7 is not the lightest model among the groups and is situated in the middle of
YOLOv5m (40.2 MB) and CenterNet (83.9 MB) at 71.3 MB. The size of one-stage object
detection models, in general, was manageable compared to the large model size of two-
stage detection models and can be considered for an orchard real-time disease monitoring
and detection system. The reason behind this is that a lighter model usually has fewer
parameters that require less computational resources and training time compared to larger
models. YOLOv7 has a less complex architecture and needs less data for training. Thus,
YOLOv7 is highly recommended in orchard real-time disease monitoring and detection for
faster, simpler, and more practical applications.

However, the results in Figures 8 and 9 showed some unstable plots and a lack of
decaying in validation losses that were encountered due to the limited data diversity. When
training a deep learning model, having a diverse and comprehensive dataset is important
for the algorithm to generalize well across different scenarios. In the case of this study,
the limited dataset might restrict the model’s ability to learn complex patterns effectively
during training, leading to unstable validation losses.

Nevertheless, it is worth noting that the model can still perform well on unseen data
during testing (Table 6). This indicates that the model had learned valuable features and
was capable of generalizing new, previously unseen instances. Even so, to address this
challenge and further improve the models’ performance, there are several strategies that
will be considered further, such as adding a greater number of trees and selecting different
locations to create a diversified dataset.

5.2. Performance Analysis on the Detection Using Preprocessed and Day-Captured Images

The performance of the three DL models using preprocessed (unsliced) night images
was more reliable and consistent compared to the day-captured images. This result was
expected, as the training dataset was derived from this version, and they had the same
lighting conditions that heavily favored similar detection, as image characteristics such
as contrast, color, and texture were the same [28]. This is a promising result for building
real-time orchard disease monitoring and detection, as the images or videos captured by
the surveillance camera can directly detect sooty mold infection without slicing the image.
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In contrast, poor detection of sooty mold on citrus canopy was observed using day-
captured images on both sliced and unsliced versions. The results were expected, as the
dataset used in training consisted of night-captured images that have a completely different
color and lighting condition compared to the day-captured images. The low detection of
sooty mold infections showed the limitation of the models to build a training dataset based
on night-captured images that can detect sooty mold during the day. In terms of the model
performance, YOLOv7 consistently topped the detection accuracy across the three types of
image datasets, outperforming YOLOv5m and CenterNet, and had more reliable testing
results than the erratic detection of CenterNet and low detection of YOLOv5m. CenterNet
had a weak detection accuracy on unsliced images regardless of light condition, which was
attributed to the limitation of the model in detecting small objects. Unsliced images were
the combination of 4 sliced images; hence, sooty mold infections appeared smaller, uniform,
and more complex on unsliced images, which caused difficulty in extracting reliable sooty
mold features affecting CenterNet’s performance [34].

YOLOv5m had higher precision results on testing using preprocessed and day-
captured images compared to YOLOv7. However, the high precision of YOLOv5m caused
fewer detections and low true positive results on testing due to the high sensitivity of the
model to detect sooty mold infections on the images. The YOLOv5m model tuned for high
precision to minimize false positives ensured that most of the predicted positive instances
were correct. However, aiming for high precision can come at the cost of missing some
true, positive sooty mold infections, resulting in low recall. In other words, the YOLOv5m
model was very cautious in making positive sooty mold predictions and did not detect
sooty mold infections if it was not very confident about the presence of sooty mold.

Moreover, the testing results of the models showed some misdetections, which can
be attributed to labeling inconsistencies, as not all sooty mold infections were clear due
to moisture fogging and water droplets covering some parts of the lens, in addition to
limitations on the camera resolution, camera angle, distance from the canopy, and other
pest and disease damage.

6. Conclusions

In citrus disease management, sooty mold is one of the significant causes of the
decrease in the production and quality of fruit. To support fruit growers in controlling
the disease at an early stage, an onsite, low-cost, and real-time data collection platform
is required. However, image data transmission and dataset quality must be stable and
protected. To overcome these challenges on convenience, quality, and cost, this research
aimed to bring a solution using an affordable surveillance camera combined with one-stage
detection algorithms to remotely monitor and detect sooty mold on the citrus canopy at
night in the field environment. The proposed methodology used a night-time image dataset,
reducing the need for extensive image preprocessing. The images that were collected at
night minimized the effects of varying light conditions, averting the need for expensive
cameras and complicated algorithms to detect sooty mold infections. The images were
also collected remotely using IoT technology to eliminate the need for an on-site data
collection. The study found that a low-cost camera sensor can provide reliable detection of
citrus sooty mold infections using simple DL models. Among the utilized DL algorithms,
YOLOv7 performed the best accuracy at 74.4% on detecting citrus sooty mold at night
compared to YOLOv5m and CenterNet. Moreover, YOLOv7 consistently performed better
on testing with preprocessed night and day images. The study plans to further improve the
accuracy of the models in sooty mold detection using multilocation datasets and develop a
holistic disease management system that aims to monitor, detect, count, and control disease
incidence. In further research, the system will incorporate a DL counting mechanism to
calculate the canopy area with the highest number of infections for implementing a spot
spraying system that can apply the right amount of control on sooty mold infections at the
right time.
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Appendix A

Table A1. Summary of the related works cited and our proposed system for comparison.

Article Crop Features Algorithms/
Models Accuracy Sensor Captured Image;

Environment

Uğuz et al.,
2023 [18] Citrus

Disease detection and
physical disorders

caused by Alternaria
alternata and thrip

diseases classification for
citrus fruit images using

convolutional neural
network.

Faster RCNN
with ResNetX101-

FPN;
Mask R-CNN

with ResNetX101-
FPN;

SSD300 with
VGG16;

YOLOv5 with
CSPDarknet

74.3%
98.8%
93.2%
99%

Not mentioned
Individual fruit;

Controlled
environment

Soeb et al.,
2023 [19] Tea

Used an improved
YOLOv7 object detection
model, YOLO-T, for tea

leaf diseases detection in
natural environment.

YOLOv7 97.3% Canon EOS 80D
SLR camera

Close-up leaf
image;
Field

environment

Dananjayan
et al., 2022

[20]
Citrus

Developed a new dataset
of infected citrus leaves
with precise annotations

and multiple classes
called CCL’20 on single

leaf images to detect
anthracnose, melanose

and bacterial brown spot.

CenterNet2
detector with
ResNeXt-101,

DCN/Res2Net-
101,

DCN/Res2Net-
101 DCN-BiFPN

Others. . .

89%,
90%,
91%

Point and shoot
camera

Individual leaf;
Controlled

environment

Syed Ab
Rahman

et al., 2022
[21]

Citrus

Employed a two-step,
deep CNN to detect

citrus black spot, citrus
bacterial canker, and

Huanglongbin.

Faster R-CNN 94.3% Not mentioned
Individual leaf;

Controlled
environment
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Table A1. Cont.

Article Crop Features Algorithms/
Models Accuracy Sensor Captured Image;

Environment

Abdulridha
et al., 2019

[23]
Citrus

UAV-based remote
sensing technique to
detect citrus canker.

Neural Network
Radial Basis

Function (RBF);
K-Nearest

Neighbor (KNN)

100%
96%

Resonon Pika L
2.4

hyperspectral
camera

mounted on a
UAV (DJI

Matrice 600, Pro
Hexacopter)

Canopy; Field
environment

DadrasJavan
et al., 2019

[24]
Citrus

Detected citrus greening
on low-altitude

multispectral images
using multispectral

camera attached to UAV.

SVM 81.7%

Micasense
RedEdge

multispectral
camera

attached to
UAV

Canopy; Field
environment

Khanramaki
et al., 2021

[25]
Citrus

Proposed ensemble of
deep learning models

that involved three levels
of diversity including
classifier level, feature
level, and data level
diversity to detect

leafminer, pulvinaria,
and sooty mold.

AlexNet,
VGG16,

ResNet 50,
Inception-
ResNet-v2,
Proposed
ensemble

91.3%
89.3%
96.1%
92.8%
99%

Sony
DSC-W170,
Samsung
Galaxy J7,
Samsung

Galaxy Grand
Prime, and X6
Apple iPhone

Individual leaf;
Field

environment

Xie et al.,
2023 [26] Litchi

Used an improved FCOS
network called FCOS for

Litch (FCOS-FL) with
G-GhostNet-3.2 as the
backbone network to
detect to detect sooty

mold and other diseases.

FCOS-FL 95.7% iPhone 12 and
Xiaomi 6

Individual leaf:
Field

environment

Proposed
system Citrus

Sooty mold detection on
citrus canopy at night

using affordable
surveillance camera and

one-stage object
detection models.

YOLOv5m
YOLOv7

CenterNet

72%
74.4%
70.3%

CTRONICS
home

surveillance
camera

Canopy; Field
environment
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