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Abstract: Low-Earth orbit (LEO) satellites have limited on-board resources, user terminals are
unevenly distributed in the constantly changing coverage area, and the service requirements vary
significantly. It is urgent to optimize resource allocation under the constraint of limited satellite
spectrum resources and ensure the fairness of service admission control. Therefore, we propose an
intelligent hierarchical admission control (IHAC) strategy based on deep reinforcement learning
(DRL). This strategy combines the deep deterministic policy gradient (DDPG) and the deep Q
network (DQN) intelligent algorithm to construct upper and lower hierarchical resource allocation
and admission control frameworks. The upper controller considers the state features of each ground
zone and satellite resources from a global perspective, and determines the beam resource allocation
ratio of each ground zone. The lower controller formulates the admission control policy based on the
decision of the upper controller and the detailed information of the users’ services. At the same time,
a designed reward and punishment mechanism is used to optimize the decisions of the upper and
lower controllers. The fairness of users’ services admissions in each ground zone is achieved as far as
possible while ensuring the reasonable allocation of beam resources among zones. Finally, online
decision-making and offline learning were combined, so that the controller could make full use of a
large number of historical data to learn and generate intelligent strategies with stronger adaptive
ability while interacting with the network environment in real time. A large number of simulation
results show that IHAC has better performance in terms of a successful service admission rate, service
drop rate, and fair resource allocation. Among them, the number of accepted services increased by
20.36% on average, the packet loss rate decreased by 17.56% on average, and the resource fairness
increased by 17.16% on average.

Keywords: low-earth orbit; satellite communication; deep reinforcement learning; resource allocation;
admission control

1. Introduction

With the continuous advancement of communication technologies and the rapid
growth of global communication demands, the existing terrestrial network can provide
high-speed and diversified services for densely populated areas, but it still has obvious
shortcomings in dealing with long distances, a wide coverage, large capacity, and harsh
terrain communication environment. At the same time, as an important supplement
to the ground network, a satellite network has significant advantages in expanding
the communication coverage, improving the communication capacity and reliability
in hot spots, and realizing the space–air–ground–sea integrated network [1,2]. Among
them, low-earth orbit (LEO) satellite communication systems have become a project
pursued by many enterprises in the Internet, communication, aerospace, and other fields
due to its advantages, including a low delay, low cost, high spectrum utilization, and
low terminal power requirements [3]. However, LEO satellites are characterized by
their low cost, small size, and lightweight design, but they result in severely limited
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on-board power resources. LEO satellites orbit at low altitudes and move at high speeds,
leading to constantly changing coverage areas and complex and dynamic electromagnetic
environments. Furthermore, user terminals are unevenly distributed across different
countries and regions within the coverage area, and there are varying demands for
traditional voice and data services as well as emerging streaming media services. In
summary, LEO satellites must address the dynamic changes in user terminal distribution
and service demands. Hence, addressing the challenge of allocating resources effectively
within the constraints of limited resources such as the satellite spectrum, ensuring
equitable admission control for diverse services, and achieving efficient alignment
between on-board resources and service demands has emerged as a pressing issue in the
realm of satellite communication.

Multi-beam satellite communication technology is an effective approach to solve the
above challenges. This technology achieves multiple frequency reuses and polarization
reuse through spatial isolation, which can increase satellite communication capacity expo-
nentially. At the same time, the dynamically adjusted beam direction can help the satellite
system allocate resources more effectively and further meet the needs of the variability in
coverage area and the diversity of communication requirements [4]. However, the flexibility
of multi-beam satellite communication systems also increases the complexity of resource
allocation. There are usually different communication requirements in the coverage area
of each beam, which requires the satellite communication system to be able to sense the
differences between beams and dynamically adjust the resource allocation scheme to ensure
that the services within each beam are properly served [5]. For these reasons, the academic
community has proposed some solutions from the perspectives of beamforming schemes
and on-board resource joint allocation.

Lin et al. [6,7] proposed a beamforming scheme for a multi-beam satellite communi-
cation system from the perspective of security and energy saving, thereby improving
the secrecy energy efficiency (SEE) of communication networks. Lin et al. [8] adopted
the alternating optimization scheme and the Taylor expansion penalty function to op-
timize the beamforming weight vector and phase shift, aiming to minimize the total
transmission power of the satellite and the base station, while meeting the user rate
requirements. Deng et al. [9] proposed an adaptive packet splitting scheme based on
a discrete firefly algorithm for cross-layer and cross-dimension radio resources opti-
mization and an irregular gradient algorithm to ensure communication efficiency and
reliability. Zhang et al. [10] proposed an uplink cooperative user scheduling and power
allocation method based on game theory in an uplink multi-beam satellite Internet of
Things (S-IoT). Takahashi et al. [11] constructed a power resource allocation model to
jointly control the transmit power and multi-beam directivity according to the traffic de-
mand, so as to improve the efficiency of communication resource allocation. Jia et al. [12]
considered the inter-beam interference, channel conditions, delay, capacity, bandwidth
utilization variance, and other factors, and a joint resource allocation algorithm is pro-
posed, which can flexibly allocate resources according to specific service requirements
and channel conditions. Wang et al. [13] proposed a resource management scheme to
maximize resource utilization and user service weight, and introduced an improved
cuckoo optimization algorithm to ensure the quality of service (QoS) for high-priority
users. In addition, Cai et al. [14] proposed a cognitive S-IoT system supporting code
division multiple access (CDMA), which can jointly optimize the transmission power of
the traditional satellite system and the IoT by maximizing the total rate of the IoT users
under the premise of ensuring the performance requirements of the traditional satellite
system.

The emergence of the above research results brings new ideas and methods for the
resource allocation of multi-beam LEO satellite communication. However, when dealing
with the diverse and time-varying communication requirements in the network, these
methods are difficult for meeting the needs of rapid and dynamic resource allocation due
to high algorithm complexity and long calculation times. Machine learning (ML) [15] has
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super strong learning and inference capabilities, and has been shown as a good application
prospect in network resource allocation [16–19]. In particular, the introduction of deep
reinforcement learning (DRL) provides a more intelligent, flexible, and efficient solution for
the resource allocation of multi-beam LEO satellite communication.

Liao et al. [20] designed a cooperative multi-agent deep reinforcement learning (CM-
DRL) framework to solve the bandwidth allocation problem of multi-beam satellite com-
munication systems. Chan et al. [21] proposed an efficient power and bandwidth allocation
method, which uses two linear ML algorithms and takes channel conditions and traf-
fic demand as inputs to achieve the optimal resource allocation under dynamic channel
conditions. Hu et al. [22] considered inter-beam interference and resource utilization
difference, and a game theory based on bandwidth allocation model for forward links
was established. Furthermore, considering that the addition of satellite beams results in
a larger action space for individual agents in DRL, thereby increasing time complexity,
this paper proposed a multi-agent cooperative deep reinforcement learning approach to
achieve optimal bandwidth allocation. He et al. [23] proposed a multi-objective deep-
reinforcement-learning-based time-frequency (MODRL-TF) two-dimensional resource allo-
cation algorithm to achieve the joint optimization goal of maximizing the number of users
and system throughput for the joint allocation problem of multi-dimensional resources
such as QoS, time, and frequency in multi-beam satellite communication. Huang et al. [24]
proposed a learning-based hybrid-action deep Q-network (HADQN) algorithm to solve
the sequential decision optimization problem in dynamic resource allocation in multi-beam
satellite systems. By using a parameterized hybrid action space, HADQN can schedule the
beam pattern and allocate the transmitter power more flexibly, which greatly reduces the
on-orbit energy consumption without affecting the QoS.

By introducing DRL, the above research provided a forward-looking solution for solv-
ing resource allocation in multi-beam LEO satellite networks. However, current research
still has some shortcomings, with the main deficiency being the lack of consideration for
fair user service admission in the optimal allocation of resources. In the multi-beam LEO
satellite communication system, the coverage area of the satellite is constantly changing,
and the needs of users in the area are diverse.

If fairness is not considered in resource allocation, this will result in some users being
overlooked or frequently denied access, while others consistently occupy more resources.
Over time, this leads to a significant decline in user experience, causing dissatisfaction
with the services provided by the satellite. However, in the existing research, traditional
algorithms exhibit limited flexibility and adaptability when confronted with the com-
plexities of the satellite communication environment. Moreover, accurately extracting
the key information required for fair admission control strategies from a vast array of
service demand characteristics often proves challenging. Additionally, a comprehensive
and effective hierarchical admission control strategy capable of achieving the cooperative
optimization of resource allocation rationality and admission control fairness has yet to
be established. Hence, we propose an intelligent hierarchical admission control (IHAC)
strategy based on DRL. This approach incorporates the user service model, the dynamic
priority model, and carefully designed controller feature inputs, along with a reward and
punishment mechanism. Through the utilization of DRL, IHAC aims to efficiently allocate
multi-beam resources and exercise control over user service access within the coverage
area, simultaneously addressing both objectives.

The contributions of this paper are as follows:

• In this paper, the DLR method is employed to effectively manage the multi-beam
satellite communication system. By combining deep deterministic policy gradient
(DDPG) and deep Q-network (DQN) algorithms, a hierarchical admission control
strategy is constructed, encompassing both upper- and lower-level controllers. The
upper-level controller employs DDPG to comprehensively consider the service de-
mands of various ground zones and formulate resource scheduling strategies from
a global perspective. This ensures optimized resource utilization while ensuring the
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coordinated allocation of beam resources among different ground zones. The lower-
level controller employs DQN to receive decisions from the upper-level controller and
refines the global strategy into localized admission control strategies for each ground
zone’s services.

• This paper develops user service models and dynamic priority models for services.
The user service model enables controllers to have a deeper understanding of different
types of service characteristics, leading to more precise decision-making. By introduc-
ing the adaptive dynamic priority model, controllers can achieve efficient resource
utilization while considering the fairness of competitive services, leading to a more
balanced resource allocation. Furthermore, careful design is applied to the feature
inputs, reward functions, and penalty terms of both upper- and lower-level controllers,
facilitating a more comprehensive and detailed understanding of service demands.
This guides controller decisions towards optimizing both efficient resource utilization
and overall fairness of the communication system.

• In simulation experiments, the proposed strategy is compared with DAQC [25] and
WOA [26]. The results demonstrate that the proposed strategy performs well in terms
of the channel access service quantity, successful service admission rate, service drop
rate, and resource allocation fairness. This highlights the effectiveness of the proposed
strategy.

The remainder of this paper is organized as follows. Section 1 describes the related
works on resource allocation and admission control for multi-beam satellites and the
motivation of this paper. Section 2 describes the system model of the resource allocation
and admission control strategy in this paper. Section 3 outlines the hierarchical admis-
sion control framework based on DRL. Section 4 provides a detailed explanation of the
hierarchical admission control strategy. Section 5 presents the evaluation results of the
experiments. Section 6 summarizes the entire paper and elaborates on the contributions
of this work.

2. System Model
2.1. Communication Model of the Satellite Coverage Area System

In LEO satellite communication systems, as the satellite moves in the orbit, its coverage
will change, and the corresponding traffic load and service priorities will also change. In
order to meet the changing requirements of ground tasks, it is necessary to allocate satellite
resources reasonably. The resource allocation problem is mainly affected by time window
constraints, satellite power consumption constraints, ground user priorities, etc.

The system model for multibeam LEO satellite communication is illustrated in
Figure 1. We simplify the satellite coverage area into rectangles and further divide it into
M fixed ground zones, and the communication tasks are assigned to different ground
zones according to the location of their initiating users. In the context of multibeam
satellite communication, LEO satellites allocate their transmission capacity into multiple
beams, each directed towards a specific ground zone. LEO satellites can dynamically
adjust the beam resources of ground zones in real-time based on the distribution of
services on the ground, and further decide whether to admit user services within these
zones. This communication architecture between user terminals and satellites forms a
complex system.
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Figure 1. Multi-beam satellite communication system model.

2.2. User Service Model

The core focus of this paper is to address the complex issue of user service requests
within multibeam satellite communication systems. The initial step involves constructing
a user service model to depict various types of user services. This user service model
comprehensively accounts for various parameters and features of the requested services
to ensure a comprehensive and accurate representation of user service requirements. In
addition to the user model, we also establish a dynamic user service priority model. Given
the constantly changing communication environment, service priorities are adjusted based
on dynamically changing conditions, such as the remaining service value and service
urgency. By introducing an adaptive dynamic priority mechanism, the user service admis-
sion process is further optimized to ensure efficient resource utilization, while achieving
fair resource allocation among competitive services. Among them, the relevant variable
descriptions of user services are presented in Table 1.

Table 1. User service model parameters.

Notation Definition

Btotal The total bandwidth of the multi-beam satellite
Ptotal The total power of the multi-beam satellite
Um,n The nth user service model in the mth ground zone
Bm,n Requested bandwidth of Um,n
Pm,n Requested power of Um,n
Cm,n Requested capacity of Um,n
Vm,n Initial priority of user services Um,n
Tsm,n The arrival time of the user’s service Um,n
Sm,n The time required to complete the Um,n
t The current time
ST, ET The start and end time of the current resource allocation time window
DPm,n Dynamic priority model for Um,n

With the movement of satellites and the progression of time, the status of user services
is constantly changing. We design a sextuple to represent the data model of user services
within a beam. Let there be M ground zones within the satellite coverage rectangular area,
each containing N user services. To account for the service status of the satellite beam, the
user services Um,n within the beam coverage area are as follows.

Um,n= (Bm,n, Pm,n, Cm,n, Vm,n, Tsm,n, Sm,n). (1)
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where m ∈ {1, 2, . . . , M}, n ∈ {1, 2, . . . , N}; Bm,n and Pm,n satisfy the condition
∑M

m=1 ∑N
m=1 Bm,n ≤ Btotal , ∑M

m=1 ∑N
n=1 Pm,n ≤ Ptotal ; the initial priority Vm,n is from the set

{1, 2, 3, 4, 5}, corresponding to background flow service, interactive service, streaming me-
dia service, audio service, and handover service; Sm,n satisfies the condition
ST ≤ Tsm,n ≤ ET, Sm,n ≤ ET − ST.

Building upon the initial priority of user services, this paper also takes into account
the aspects of the remaining service value and the urgency of service provisioning. The
dynamic priority DPm,n is defined as:

DPm,n = Vm,n ×
t− t′

ET − t + 1
(2)

Let tstart be the time that the service be served. If the service has been served, then
t′ = tstart; if the service has not been served, then t′ = Tsm,n, and Sm,n ≤ ET− t. According
to Equation (2), the dynamic priority of the user service is directly proportional to the initial
priority of the service and the time for the service to be served, and inversely proportional
to the remaining time of this resource allocation time window. The dynamic priority
introduced in this paper enables the strategy to comprehensively understand and evaluate
service priorities, leading to more intelligent service management and admission decisions.

3. Framework of Intelligent Hierarchical Admission Control Based on DRL
3.1. Overview

DRL, as a powerful artificial intelligence technique, offers the core advantage of
autonomous learning and optimization in complex and uncertain environments. It achieves
this by interacting with the environment, accumulating experiences, and progressively
improving decision quality [27–30].

The integration of the DDPG algorithm and DQN algorithm, which are prominent
components of DRL, provides a novel solution for hierarchical admission control in satellite
communication systems. DDPG extends the concepts of DQN and the Actor-Critic frame-
work, effectively handling the complexity of state spaces, making it particularly suitable
for the continuous action control problem of allocating beam resources to ground zones.
On the other hand, DQN can accurately perceive and analyze the state features and com-
munication demands of user services, addressing the discrete admission control problem.
Combining these DRL algorithms with LEO satellite communication hierarchical admission
control leads to intelligent decisions regarding user admission into the communication
network and optimal resource allocation under limited resource conditions.

The combination of the above DRL algorithms, LEO satellite communication resource
allocation, and admission control forms a two-level intelligent admission control frame-
work, as illustrated in Figure 2. In this framework, the upper-level controller bears the
responsibility of intelligent decision-making on beam resource allocation for ground zones
based on their status features and communication demands. Meanwhile, the lower-level
controller focuses on the admission control of user services within each zone. Guided by
upper-level decisions and considering the actual situations of user services in each zone,
the lower-level controller manages communication resources more delicately, ensuring
a certain level of fairness in the allocation of user service resources. Among them, the
parameters in the DRL modeling process are defined in Table 2.

Within the context of this hierarchical admission control strategy, it is necessary to
holistically consider the relationships among all ground zones, while also giving due
consideration to the priority and fairness management among user services. The implemen-
tation of this strategy introduces a new level of intelligence to the entire communication
system, allowing the system to better adapt to diverse communication needs and provide
users with a higher-quality communication experience.



Sensors 2023, 23, 8470 7 of 20Sensors 2023, 23, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 2. Intelligent hierarchical admission control framework. 

Table 2. DRL formulation parameters. 

Notation Definition 
mN  The number of user services requests in the m th ground zone 
mPr  The total dynamic priority of user services in the m th ground zone 

mWt  The total waiting time of user services in the m th ground zone 

, ,m m mB P C  The total requested bandwidth, power, and capacity of user services in the
m th ground zone 

, , ,
ˆˆ ˆ, ,m n m n m nB P C  The ratio of the requested bandwidth, power, and capacity of the n th user 

service to the total requested resources in the m th ground zone 

mSPR   The total dynamic priority of successfully admitted services in the m  th
ground zone 

aveSPR  The average total dynamic priority of successfully admitted services across
all ground zones 

    The total waiting time of services not admitted in the m th ground zone 

aveDWT   
The average total waiting time of services not admitted across all ground
zones 

mSWT  
The total waiting time of successfully admitted services in the m th ground 
zone 

mRP   The reward or penalty for the resource utilization rate of the ground area
admission control strategy 

mRU   The ratio of resources allocated to user services within the m th ground 
zone 

Within the context of this hierarchical admission control strategy, it is necessary to 
holistically consider the relationships among all ground zones, while also giving due con-
sideration to the priority and fairness management among user services. The implemen-
tation of this strategy introduces a new level of intelligence to the entire communication 
system, allowing the system to better adapt to diverse communication needs and provide 
users with a higher-quality communication experience. 

  

Figure 2. Intelligent hierarchical admission control framework.

Table 2. DRL formulation parameters.

Notation Definition

Nm The number of user services requests in the mth ground zone
Prm The total dynamic priority of user services in the mth ground zone
Wtm The total waiting time of user services in the mth ground zone

Bm, Pm, Cm
The total requested bandwidth, power, and capacity of user services in the
mth ground zone

B̂m,n, P̂m,n, Ĉm,n
The ratio of the requested bandwidth, power, and capacity of the nth user
service to the total requested resources in the mth ground zone

SPRm
The total dynamic priority of successfully admitted services in the mth
ground zone

SPRave
The average total dynamic priority of successfully admitted services across
all ground zones

DWTm The total waiting time of services not admitted in the mth ground zone

DWTave
The average total waiting time of services not admitted across all ground
zones

SWTm
The total waiting time of successfully admitted services in the mth ground
zone

RPm
The reward or penalty for the resource utilization rate of the ground area
admission control strategy

RUm The ratio of resources allocated to user services within the mth ground zone

3.2. DRL Formulation
3.2.1. State

As illustrated in Figure 2, the upper-level and lower-level controllers are respectively
equipped with DDPG and DQN neural networks, with DDPG further divided into Actor
and Critic neural networks. The neural networks are required to make decisions based on
the state features of satellite communication. To enhance the neural networks’ perception
capabilities concerning ground zones, user service states, and communication demands,
ensuring that the admission control strategy maintains fairness across various service
resource allocations, we have specially designed the input features for the upper- and
lower-level neural networks. These input features are crafted to provide richer information,
enabling the neural networks to make more precise decisions across diverse scenarios,
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thereby effectively optimizing the performance and resource allocation of the satellite
communication system.

In the upper-level admission control strategy, each ground zone initially conducts
unified scheduling and management of its internal services. After analyzing and processing
user service information, the ground zone’s state features are formed and submitted to
the upper-level DDPG. The input features encompass both user service and ground zone
information, such as the number of service requests in the ground zone, total dynamic
priority, and aggregate requested bandwidth. This empowers the DDPG to gain comprehen-
sive insights into interactions and communication needs among users within the ground
zone, thus providing more precise guidance for higher-level decisions. Meanwhile, the
input features for the lower-level DQN include the upper-level DDPG’s resource allocation
strategy for the ground zone and more detailed user service information, such as service
types. This design enables the lower-level DQN to more accurately assess each user’s
communication performance, enabling more targeted admission control decisions.

To be specific, the upper-level DDPG’s input features are denoted as
sup

t = (sup
t,1 , sup

t,2 , . . . , sup
t,m, . . . , sup

t,M, sup
t,B, sup

t,P), where sup
t,m signifies the state features of the

mth ground zone, and sup
t,B and sup

t,P represent the satellite’s total bandwidth and total power,
respectively. The lower-level DQN’s input features are represented as sdown

t,m .

sup
t,m = (Nm, Prm, Wtm, Bm, Pm, Cm). (3)

sdown
t,m = (B̂m,n, P̂m,n, Ĉm,n, Vm,n, Tsm,n, Sm,n, DPm,n, aup

t,m). (4)

The specific features are given by the following formulas.

Prm =
Nm

∑
n=1

DPm,n. (5)

Wtm =
Nm

∑
n=1

(t− Tsm,n). (6)

Bm =
Nm

∑
n=1

Bm,n. (7)

Pm =
Nm

∑
n=1

Pm,n. (8)

Cm =
Nm

∑
n=1

Bm,n log2(1 + SINRm). (9)

SINRm represents the signal-to-interference-plus-noise Rrtio (SINR) of the mth beam:

SINRm =

Am
Nm
∑

n=1
Pm,n

N0
Nm
∑

n=1
Bm,n + ∑i∈M,i 6=m Ai

Ni
∑

n=1
Pi,n

. (10)

where Am is the channel attenuation coefficient of the mth ground zone; N0 is the power

spectral density of additive white Gaussian noise; ∑i∈M,i 6=m Ai
Ni
∑

n=1
Pi,n is the sum of co-

channel interference from other beams to the mth beam.
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The ratios of the requested bandwidth, power, and capacity of the nth user service to
the total requested resources in the mth ground zone B̂m,n, P̂m,n, and Ĉm,n are as follows:

B̂m,n = Bm,n/Bm,
P̂m,n = Pm,n/Pm,
Ĉm,n = Cm,n/Cm.

(11)

3.2.2. Action

In the proposed hierarchical admission control architecture, the upper- and lower-
level controllers are responsible for the scheduling of satellite-to-ground beam resources
and the admission control of user services within ground zones, respectively. The upper-
level controller plays a crucial role in global decision-making. It aggregates network state
features from various ground zones and feeds this information into the DDPG neural
network. Subsequently, based on these network state features, DDPG formulates a set
of resource scheduling policies aup

t = (aup
t,1 , aup

t,2 , . . . , aup
t,m, . . . , aup

t,M) for each ground zone,
where aup

t,m ∈ [0, 1), ∑M
m=1 aup

t,m = 1, and aup
t,m represent the scheduling policy for the mth

ground zone’s beam resources.
Specifically, when aup

t,m ∈ (0, 1), it indicates that the satellite decides to admit the
mth ground zone and allocate satellite resources to the beams of the current ground zone
according to a certain percentage. On the other hand, when aup

t,m = 0, it signifies that the
satellite will not admit that ground zone.

Once the satellite completes the resource scheduling for various ground zones, it enters
the domain of the lower-level controller. The primary responsibility of the lower-level
controller is the admission control of user services within each ground zone. At this stage,
the lower-level DQN leverages the state feature sdown

t,m of user services within its respective
ground zone to formulate admission control policies adown

t,m ∈ {0, 1} for each user service.
When adown

t,m = 1, it signifies that the corresponding user service is admitted, whereas
adown

t,m = 0 indicates that the user service is not admitted.

3.2.3. Reward

In the proposed intelligent hierarchical admission control framework based on DRL,
the reward function plays a crucial role. The design of this key element not only establishes
a close correlation between the network state feature input and the admission control policy
output but also guides the neural network towards rapidly approaching and converging to
the predefined optimization objectives. During the resource scheduling process for various
ground zones by the satellite, the design of the reward function for the upper-level DDPG
needs to take into account the overall system performance, ensuring both communication
system efficiency and fairness. This prevents excessive bias of communication resources to-
wards specific ground zones, which could impact the overall communication effectiveness.
Therefore, the reward function rup

t for the upper-level DDPG is formulated as follows:

rup
t = α1

√
∑M

m=1(SPRm − SPRave)
2

M
+ α2

√
∑M

m=1(DWTm − DWTave)
2

M
. (12)

where α1, α2 are weight coefficients that weigh the importance of two terms in (12).
The reward function rup

t comprehensively evaluates the fairness of the satellite’s admis-
sion control strategy aup

t for various ground zones by considering the variance of the

total dynamic priority of successfully admitted services
√

1
M ∑M

m=1(SPRm − SPRave)
2 and

the variance of the total waiting time of services not admitted across all ground zones√
1
M ∑M

m=1(DWTm − DWTave)
2.

The lower-level DQN is built upon the foundation of the upper-level admission
control strategy and aims to make decisions for services within each ground zone. In this
architecture, a reasonable lower-level admission control strategy’s primary concern is to
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ensure compliance with the resource allocation proportions set by the upper level. If the
total resource consumption of admitted services exceeds these limits, the lower-level DQN
reward function needs to impose a certain penalty to maintain system balance and stability.
Similarly, the fairness of the intra-zone service admission control strategy must also be
ensured. Therefore, we employ the total dynamic priority SPRm, the total waiting time
of successfully admitted services SWTm, and the reward or penalty RPm for the resource
utilization rate of the ground area admission control strategy to design the reward function
rup

t for the lower-level DQN:

rdown
t,m = β1SPRm + β2SWTm + β3RPm (13)

To ensure data consistency, we have normalized these values. Through these two
components, the lower-level DQN is guided to balance the dynamic priority and waiting
time of intra-zone user services. Additionally, RPm is obtained as follows:

RPm =


−500, RUm = 0
10 log1.1(RUm), 0 < RUm < 1
10, RUm = 1
10 log0.9(RUm), RUm > 1

. (14)

where RUm represents the ratio of resources allocated to user services within the mth
ground zone to the resources allocated by the upper-level control strategy.

4. Strategy of Intelligent Hierarchical Admission Control Based on DRL
4.1. Hierarchical Controller Structure

We delve into the exploration of DDPG and DQN, evolved from the traditional Q-
learning algorithm, and their collaborative implementation in the hierarchical admission
control framework. However, these methods also inherit issues such as instability, overesti-
mation, and convergence challenges that have been associated with traditional Q-learning,
especially when utilizing neural networks to estimate Q-values.

In conventional Q-learning, a common practice involves using a single online network
to estimate Q-values for each state-action pair, and decisions are made based on the
action with the highest Q-value. Nevertheless, this approach can lead to unstable Q-value
estimations, particularly during the initial stages of training. This instability arises from
the chain reaction triggered by the parameter updates in the neural network, resulting in
fluctuations in Q-values. Furthermore, as traditional Q-learning employs a greedy strategy
to select actions with the highest Q-values, it can lead to the overestimation of Q-values,
subsequently affecting the accuracy of the policy.

To overcome these challenges, we introduce the concepts of a target network and
experience replay mechanism in DRL. Specifically, the target network shares the same
structure as the online network but employs a different parameter update strategy. The
target network’s parameters are copied from the online network at regular intervals or
through a soft update approach. This separation of neural networks ensures that the
calculation of the target network Q-values is unaffected by the direct influence of the online
network, reducing the immediate impact of the online network’s instability and mitigating
the chain reaction caused by parameter updates.

Furthermore, in interactive environments, the acquired data are often highly correlated,
with potential correlations between consecutive data points. This correlation can lead to
the neural network being influenced by related data during the training process, thereby
causing instability. The experience replay mechanism, by randomly sampling from an
experience buffer, breaks down data correlation, enhancing data utilization efficiency. The
deployment of neural networks is as follows.
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4.1.1. DDPG in the Upper-Level Controller

Online Actor Network: π(sup
t

∣∣∣θ) , where θ represents the neural network parameters.

Responsible for generating the scheduling strategy aup
t for various ground zones’ beam

resources based on the ground zone and satellite resource state features sup
t .

Online Critic Network: Q(sup
t , aup

t

∣∣∣ω) , where ω represents the neural network param-

eters. Primarily evaluates the quality of actions aup
t made by the online actor network based

on sup
t , guiding the optimization of the action network’s decision-making capability.

Target Actor Network and Target Critic Network: π(sup
t+1

∣∣∣θ′) and Q(sup
t+1, aup

t+1
′
∣∣∣ω′) ,

where θ′ and ω′ are the parameters of these two neural networks, and aup
t+1
′ is the ac-

tion computed by the target action network based on sup
t+1, but not executed during the

interaction process.

4.1.2. DQN in the Lower-Level Controller

Online DQN: Q(sdown
t,m , adown

t,m

∣∣∣µ) , where µ represents the neural network parameters.
In the distributed scenario of ground zone user service admission control, each ground zone
possesses an independent online DQN, sequentially making admission control decisions
for the user service within its zone.

4.2. DRL Training

While interacting with the environment, the upper- and lower-level controllers accu-
mulate a variety of state-action pairs’ experience samples (sup

t , aup
t , sup

t+1, rup
t )

and (sdown
t,m , adown

t,m , sdown
t+1,m, rdown

t,m ) by trying different actions. These experience samples en-
compass the behavior and outcomes of the satellite communication system under various
states. They are stored in an experience replay pool for neural network training. By ob-
taining N(sup

i , aup
i , sup

i+1, rup
i ) and N(sdown

i,m , adown
i,m , sdown

i+1,m, rdown
i,m ) through random sampling,

the correlation between samples is broken, thereby enhancing training stability and the
system’s understanding and adaptability to different situations.

4.2.1. Training of the Upper-Level Controller DDPG

During the training phase of DDPG, the online actor network utilizes the experi-
ence samples N(sup

i , aup
i , sup

i+1, rup
i ) from the replay pool to update its weights based on

Equation (15):

∇θ J ≈ 1
N

N

∑
i=1
∇aQ(sup

i , aup
i

∣∣∣ω)∇θπ(sup
i

∣∣∣θ) . (15)

The online actor network relies on the backpropagation of the policy gradient ∇θ J
for updates. Additionally, the online critic network can be trained by minimizing the loss
function, as expressed below:

Loss(ω) =
1
N

N

∑
i
(yup

i −Q(sup
i , aup

i

∣∣∣ω))
2
, (16)

where yup
i is referred to as the target Q-value, which can be expressed in a sample

(sup
i , aup

i , sup
i+1, rup

i ) as follows:

yup
i

= rup
i + γQ(sup

i+1, aup
i+1
′
∣∣∣ω′), (17)
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The target Q-value is obtained by taking a weighted sum of the current reward rup
i

and Q(sup
i+1, aup

i+1
′
∣∣∣w′) , where γ is considered the discount factor, and aup

i+1
′ is computed by

the target action network, expressed as follows:

aup
i+1
′ = π(sup

i+1

∣∣∣θ′). (18)

Finally, we adopted a soft update approach for updating the parameters of both target
networks, where in each update iteration, the parameters are updated by weighting them
with the learning rate τ, expressed as follows:

ω′ = τω + (1− τ)ω′,
θ′ = τθ + (1− τ)θ′.

(19)

4.2.2. Training of the Lower-Level Controller DQN

Given that we have adopted a distributed ground zone approach with multiple in-
telligent agents and treated each ground zone as an individual agent, in this architecture,
each ground zone needs to balance resource allocation and services admission decisions
while collaborating and interacting with others. This involves finding a balance between
cooperation and competition among multiple intelligent agents. Moreover, we recognize
that the upper-level controller comprehensively considers the dynamic situations of each
ground zone based on global information, thereby partially balancing the resource compe-
tition process among them and indirectly providing a global perspective for the lower-level
controller. Therefore, we opt for a decentralized training approach for the deployment
of lower-level controller agents. In this scheme, each ground zone’s agent is relatively
independent in its training, making decisions based on local information. Here, we provide
an overview of the training process for a single intelligent agent.

The lower-level controller primarily focuses on training the online DQN, and its prin-
ciple is similar to training the online critic network in the upper-level controller. Similarly,
based on the sample N(sdown

i,m , adown
i,m , sdown

i+1,m, rdown
i,m ), we train the online DQN by minimizing

the loss function:

Loss(µ) =
1
N

N

∑
i
(ydowm

i,m −Q(sdown
i,m , adown

i,m

∣∣∣µ)) 2
, (20)

ydowm
i,m = rdown

i,m + γQ(sdown
i+1,m, adown

i+1,m
′
∣∣∣µ′), (21)

adown
i+1,m

′ = π(sdown
i+1,m

∣∣∣µ′). (22)

The parameter update of the target DQN still adopts the soft update method:

µ′ = τµ + (1− τ)µ′. (23)

4.3. Intelligent Hierarchical Admission Control Strategy

Considering the characteristics of satellite high-speed movement and the real-time
variability of users’ needs and demands, we have adopted a strategy of online decision-
making and offline learning for the training and decision-making of intelligent agents.
This strategy aims to ensure that the agents can make adaptive decisions in real-time
environments and continuously enhance their decision-making capabilities through
offline learning.

During the online decision-making phase, the intelligent agents interact with the
environment through the upper and lower-level controllers, accumulating experiences.
This real-time interaction process enables the agents to promptly perceive changes in the
satellite movement, the distribution of user services, and the actual utilization of resources.
In the offline learning phase, we utilize these accumulated experiences to optimize the
agents’ decision-making capabilities. By deeply learning and analyzing the experiential
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data, the agents can acquire insights into more intricate patterns and trends. The detailed
strategy process is illustrated in Table 3.

Table 3. Intelligent hierarchical admission control strategy.

1: Initializing the neural network parameters θ, ω, and µ in the upper and lower-level
controllers. Let θ′ = θ, ω′ = ω, and µ′ = µ.

2: Initializing the experience replay buffers, training episode TE in the upper and lower-level
controllers.

3: Initializing the sampling episode SE with 0.
4: Initializing the state features sup

t = (sup
t,1 , sup

t,2 , . . . , sup
t,m, . . . , sup

t,M, sup
t,B, sup

t,P).
5: For each sampling episode SE, do:
6: The online actor network of the upper-level controller computes the scheduling strategy of

beam resources for each ground zone based on the input state sup
t , i.e., aup

t = π(sup
t

∣∣∣θ) .

Subsequently, the scheduling strategy aup
t,m is transmitted to the corresponding lower-level

controller.
7: The lower-level controllers deployed in each ground zone combine the local service

information with the upper-level strategy aup
t,m to make decisions. The online DQN then

makes admission control decisions for each user service within the ground zone based on

the input state, i.e., adown
t,m = π(sdown

t,m

∣∣∣µ) .

8: The upper-level beam resource scheduling strategy and the lower-level user service
admission control strategy are executed, resulting in states sup

t and sdown
t,m , as well as rewards

rup
t and rdown

t,m . These components form experience samples (sup
t , aup

t , sup
t+1, rup

t ) and
(sdown

t,m , adown
t,m , sdown

t+1,m, rdown
t,m ), which are stored in the upper-level and lower-level experience

replay pools, respectively.
9: Let sup

t = sup
t+1 and sdown

t,m = sdown
t+1,m.

10: If SE > TE:
11: Samples N(sup

i , aup
i , sup

i+1, rup
i ) and N(sdown

i,m , adown
i,m , sdown

i+1,m, rdown
i,m ) are obtained through

random sampling, and then the neural networks of the upper-level and lower-level
controllers are trained and updated using Equations (15)–(23).

12: End for.

Overall, the dual approach of online decision-making and offline learning allows
the agents to balance the real-time responsiveness and learning capability. This strategy
not only enables the agents to make timely decisions in dynamic environments but also
continuously enhances their decision-making abilities through offline learning, thereby
achieving a more intelligent and adaptive hierarchical admission control system.

5. Simulation Analysis
5.1. Simulation Parameter Settings

According to the relevant parameters of the Iridium constellation, a simulation envi-
ronment is built by STK to obtain the satellite coverage time of each ground zone. Then, we
establish a simulation system, and implement an intelligent hierarchical admission control
strategy through MATLAB. Its simulation parameters are shown in Table 4.
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Table 4. Parameter setting.

Parameter Value

Satellite total power, Ptotal 30 dBW
Satellite total bandwidth, Btotal 500 MHz

Satellite height 600 km
Number of services within satellite coverage area 2000

Number of ground zones 40
Simulation time unit length, Ts 50 ms

Initial priority of user services, Vi 1, 2, 3, 4, 5
Initial required capacity of services, Ci [2, 4, 8, 12, 16, 24] × 300 bps

Discount factor for rewards, γ 0.9
Soft update learning rate, τ 0.001

Training episode, TE 300
Experience replay buffers 5000

Sampling batch size 128

5.2. Simulation Result Analysis

In the field of DRL, the convergence of algorithms is regarded as a key indicator for
evaluating the performance and effectiveness of the algorithm. Especially when applied to
LEO satellite communication systems, the convergence speed and stability of the reward
function directly reflect the optimization level of the algorithm and its adaptability under
different circumstances. Therefore, we observed the changes in the reward function during
model training to obtain the optimal settings for model parameters. Furthermore, in simula-
tion experiments, the proposed IHAC strategy is compared with DAQC and WOA in terms
of channel user quantity, successful access probability, and drop call rate, demonstrating
the applicability and superiority of the proposed strategy.

Figures 3 and 4 depict the reward performance of the upper- and lower-level con-
trollers during the training process, where the x-axis represents the number of training
episodes and the y-axis represents the reward value. In DRL algorithms, the objective
is to learn to select the optimal policy to maximize the cumulative reward. The reward
discount factor can be used to balance the immediate reward at the current time step
and the future rewards, with a larger discount factor focusing more on future rewards,
allowing the controller to consider the long-term impact of actions and promoting algo-
rithm convergence. Therefore, in our experiments, we set the reward discount factors as
γ = {0.9, 0.5, 0.1}. From the figures, it can be observed that the reward values tend to
stabilize during the algorithm iterations. However, when γ = 0.9, the reward function
stabilizes more rapidly and remains stable without significant fluctuations over a longer
period. This indicates that when γ = 0.9, the upper- and lower-level controllers exhibit
a higher adaptability to different communication scenarios and service demands in the
LEO satellite communication system.

In this paper, simulation verification is conducted using a time division approach,
where a single resource allocation time window is divided into 10 units of simulated time.
Figure 5 presents the changing trend of the number of user services on the channel as
the simulation progresses. From the figure, it is evident that the intelligent hierarchical
admission control strategy interacts continuously with beam resources and user service
states. This interaction, constrained by the reward function, maximizes the utilization of
beam resources. By continuously interacting with beam resources and user service states
through hierarchical admission control, the maximum utilization of beam resources is
achieved, thereby avoiding resource idleness.
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The proposed strategy in this paper shows a significant improvement in channel
utilization after sufficient training. It not only avoids resource wastage but also effectively
meets the access demands of user services. Compared to DAQC and WOA, the proposed
strategy achieves the highest received service count of 280 and 320, respectively, while
the accepted service count is increased by 22.95% and 21.19%, respectively. The results
highlight that the proposed intelligent strategy, after training, significantly enhances the
utilization of channels, not only preventing resource wastage but also efficiently satisfying
the access requirements of user services.

The rate of successful service access is a critical parameter that reflects user service
satisfaction and is one of the core goals of satellite networks. A high rate of successful
service access implies that services are more likely to be effectively provided. Especially in
scenarios with numerous service demands, terminal users need to compete for limited beam
resources. Therefore, the level of this indicator significantly impacts user experience. As
shown in Figure 6, as the number of services increases, the rate of successful service access
gradually decreases. This is due to network congestion that might prevent accommodating
all service access requests. However, the strategy proposed in this paper maintains a
relatively high rate of successful service access across various service quantity scenarios.
Compared to DAQC and WOA, the average success access rate is increased by 12.12% and
19.05%, respectively. This demonstrates the strategy’s remarkable adaptability in highly
competitive environments.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 20 
 

 

 
Figure 6. Rate of successful service access. 

Compared to services that have not been accessed yet, services that are interrupted 
after accessing are more challenging to accept. This not only means that the resources al-
located to the service are released but that this also requires reapplication and resource 
competition to continue the service. As shown in Figure 7, the service drop rate changes 
based on different service quantities. The graph clearly indicates that the proposed strat-
egy maintains a lower drop rate across various service quantity scenarios. This further 
underscores the strategy’s efficiency in resource allocation and admission decisions, re-
ducing service interruptions and dropped calls, thus enhancing user experience and sat-
isfaction. 

 
Figure 7. Drop call rate of user services. 

The fairness of resource allocation is defined by the ratio of allocated resources to 
requested resources, which reflects the satisfaction of ground zone services. Achieving fair 
resource allocation can reduce unnecessary resource competition. An analysis of Figure 8 
indicates that in the initial stages of the strategy, due to the relatively low number of ser-
vices initially connected to the satellite and the relatively abundant system resources, the 
fairness of resource allocation is relatively high. However, as the number of requested 
communication services gradually increases, differences in dynamic priorities among 

Figure 6. Rate of successful service access.

Compared to services that have not been accessed yet, services that are interrupted
after accessing are more challenging to accept. This not only means that the resources
allocated to the service are released but that this also requires reapplication and resource
competition to continue the service. As shown in Figure 7, the service drop rate changes
based on different service quantities. The graph clearly indicates that the proposed strategy
maintains a lower drop rate across various service quantity scenarios. This further under-
scores the strategy’s efficiency in resource allocation and admission decisions, reducing
service interruptions and dropped calls, thus enhancing user experience and satisfaction.

The fairness of resource allocation is defined by the ratio of allocated resources to
requested resources, which reflects the satisfaction of ground zone services. Achieving fair
resource allocation can reduce unnecessary resource competition. An analysis of Figure 8
indicates that in the initial stages of the strategy, due to the relatively low number of
services initially connected to the satellite and the relatively abundant system resources,
the fairness of resource allocation is relatively high. However, as the number of requested
communication services gradually increases, differences in dynamic priorities among
ground zones and within each zone’s services become more apparent, leading to a gradual
decrease in the fairness of resource scheduling. During the process where the number of
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services reaches 1000, the strategy proposed in this paper reaches and maintains stable
resource fairness at the fastest pace. It outperforms DAQC and WOA in terms of resource
fairness. This demonstrates the strategy’s exceptional adaptability when facing dynamic
and diverse priorities. It maintains high fairness even as the number of services increases,
showcasing its ability to effectively handle varying priority scenarios.
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Finally, we show the performance comparison between IHAC and baseline algorithms
with average metric data, as shown in Table 5. In addition, we analyze the time and space
complexity of IHAC. As we mentioned before, the ground zone and user service status
characteristics in each zone are reported to the upper and lower controllers, respectively, in
order to train and run the DDPG and DQN in the controller. Since all training and running
tasks are performed by the controller, most of the computation and storage cost is incurred
in the controller.
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Table 5. Performance comparison of IHAC with baseline algorithms.

Metrics IHAC DAQC WOA

Average number of user services on the channel 1486.8 1295 1298
Average call drop rate of user services 1.256 1.488 1.623
Average probability of successful service access 0.881 0.785 0.739
Average fairness in resource allocation 20.668 17.526 17.168

In the controller, the computation related to DRL consumes most of the resources, and
we focus on analyzing its time and space complexity. During the inference and operation of
DDPG and DQN, their computational overhead mainly depends on the number of nodes
in the input layer. Specifically, if M represents the number of ground zones, K represents
the characteristic dimension of each ground zone, N represents all user services within
the satellite coverage, and L represents the characteristic dimension of user services, then
the input layer of DDPG consists of MK units, and the input layer of DQN consists of NL
units. Then the time complexity can be expressed as O(|MK|2) + O(|NL|2) . Since DAQC
also uses the Markov decision process to model the problem, which is similar to the DRL
modeling process, we estimate that its computational complexity is comparable to IHAC.
However, for swarm intelligence heuristic algorithms such as WOA, the computational
complexity is related to the dimension of search space D and the time complexity f of the
fitness function. That is, it can be roughly expressed as O(|M|2(D + f )) + O(|N|2(D + f )) .
In addition, the space complexity of the upper and lower controllers can be expressed as
O(MK) + O(NL). However, in the training process, we only need to use a set of samples
to carry out the forward propagation of DDPG and DQN. So, the actual space complexity
is much less than O(MK) + O(NL).

We can find that DL techniques require more computation and storage costs compared
to traditional strategies. However, the IHAC we consider can not only achieve the adaptive
ability to the dynamic environment through the feature extraction of massive data, but also
achieve the dual goals of efficient utilization of beam resources and service fairness.

6. Conclusions

This paper proposes an intelligent hierarchical admission control (IHAC) strategy
based on DRL for LEO satellites. The strategy addresses the resource allocation and ad-
mission control challenges in the field of multi-beam satellite communications, specifically
focusing on intelligent admission control for ground zone services within a multi-beam
coverage area. The strategy employs DDPG and DQN algorithms to create a hierarchical
control strategy that coordinates global resource scheduling with local service admission.
The integration of user service models and adaptive dynamic priority models ensures a
balance between resource utilization and fairness.

By introducing well-designed state feature inputs and reward mechanisms, the
strategy guides decision-making to achieve efficient resource utilization and fairness. In
summary, the IHAC strategy proposed in this paper fills the gap in the field of satellite
multi-beam communications by providing a comprehensive and effective hierarchical
admission control strategy. Leveraging the power of DRL, this strategy can cater to
diverse service demands, ensuring both efficient resource utilization and service fairness.
It presents a solution for the optimization and advancement of multi-beam satellite
communication systems.
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