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Abstract: This paper addresses the problem of tracking a high-speed ballistic target in real time.
Particle swarm optimization (PSO) can be a solution to overcome the motion of the ballistic target
and the nonlinearity of the measurement model. However, in general, particle swarm optimization
requires a great deal of computation time, so it is difficult to apply to realtime systems. In this paper,
we propose a parallelized particle swarm optimization technique using field-programmable gate
array (FPGA) to be accelerated for realtime ballistic target tracking. The realtime performance of
the proposed method has been tested and analyzed on a well-known heterogeneous processing
system with a field-programmable gate array. The proposed parallelized particle swarm optimization
was successfully conducted on the heterogeneous processing system and produced similar tracking
results. Also, compared to conventional particle swarm optimization, which is based on the only
central processing unit, the computation time is significantly reduced by up to 3.89×.

Keywords: ballistic target tracking; field-programmable gate array; particle swarm optimization;
realtime system

1. Introduction

The performance of target tracking with ballistic trajectories and interception can be
determined by the accuracy of target tracking. Therefore, in order to track a target, it is
necessary to select an algorithm that can accurately estimate the state of the target’s location,
angle, etc. While model noise from measuring the state of a target is typically assumed to
have a Gaussian distribution for mathematical simplicity, the measurement model noise
generated by radome seekers and scintillators is nonlinear and non-Gaussian in nature [1,2],
so assuming a Gaussian distribution is not appropriate. Some filtering-based algorithms
do not show satisfactory performance in accurately tracking targets due to uncertainties
in nonlinear and non-Gaussian properties. Linear Kalman-filter-based target tracking
algorithms also have a problem in that values do not converge or diverge while estimating
the state of a target.

Various nonlinear filters such as extended Kalman filter (EKF), particle filter (PF), and
unscented Kalman filter (UKF) were applied to estimate the state of the target to solve
problems caused by the nonlinear and non-Gaussian properties of noise [3–5]. Optimization
methods can also be applied to estimate the state of the target in environments with
nonlinear and non-Gaussian noise. Among them, particle swarm optimization (PSO)
methods are being actively studied by applying them to estimating the state of the target
because they can handle various error distributions. Also, due to the characteristics of PSO
methods, the particles exchange information with each other to find the optimal point, so
even if some particles do not find the exact value and do not converge, the global optimum
is eventually reached. However, the main limitation of using particle swarm optimization
methods is that, to find the optimal value, the number of particles and the number of epochs,
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meaning the number of times the particles move, must be large, and the performance is
proportional. Therefore, applying PSO to realtime systems has the limitation of reducing
the computational time of finding an appropriate compromise between performance and
realtime properties.

In this paper, a particle swarm optimization method capable of estimating the state of
the target in a nonlinear and non-Gaussian noise environment is used for precise realtime
tracking and intercepting ballistic targets. However, a large number of particles and a
large number of epochs are required to accurately estimate the state of the target using
the PSO method. The PSO method is a sampling-based algorithm, so, as the number of
particles used and the number of epochs increase, the time required increases. Therefore,
acceleration is essential in order for the PSO method to have real time. In our previous work,
we accelerated the ballistic target tracking algorithm using the design of heterogeneous
devices of a central processing unit (CPU) and a graphics processing unit (GPU) in an
on-board environment [6]. As a result, parallelization using GPU could benefit greatly in
terms of the time of the algorithm. Parallel acceleration using GPU has the advantage of
being able to conduct parallel research on a relatively convenient platform through the
CUDA Library. However, acceleration using GPUs consumes a great deal of power and
generates a great deal of heat when performing parallel operations on thousands of internal
cores. For the Jetson Xavier NX used in previous studies, it basically consumes 15 W
of power and consumes more or less depending on the nvpmodel. The heat generation
problem caused by high power consumption cannot be ignored. In the case of Xavier
NX, considerable heat was generated even though it contained a heat sink. These power
consumption and heat generation problems are quite sensitive in the defense sector, and
it is necessary to reduce power consumption and heat generation for the stability of the
system. The design of heterogeneous devices of FPGA and CPU can overcome these power
consumption and heat generation problems. FPGA has disadvantages in terms of price
compared to GPU, but it has the advantage of low power consumption and low heat
generation because it is completed within a single core designed through software. Due
to these advantages, algorithm acceleration using FPGA is being carried out in various
fields, as shown in Table 1. In this paper, a part that takes a great deal of calculation time
during PSO was identified, and then parallelization using FPGA was performed on the
part. The acceleration was carried out using the AMD Zynq 7000 SoC ZC706 Evaluation
Kit equipped with both a processing system (PS) and programmable logic (PL) to suit
the onboard environment under the assumption that state estimation is carried out using
PSO methods in ballistic target interceptors. As a result, PSO in an embedded environment
was mutually designed with PS and PL to improve real time and successfully estimate the
state of the ballistic target.

2. Background

The PSO method is a metaheuristic optimization algorithm that imitates the natural
phenomenon of individuals using their collective intelligence to find the optimal solu-
tion [7], and its performance and utility have been proven over a long period of time [8–11].
PSO methods are being researched to solve problems in a variety of fields, including
construction, edge computing, and energy [12–14]. Especially, the PSO method has the
advantage of being simple and easy to implement compared to other metaheuristic opti-
mization algorithms, and its ability to handle various types of error distributions makes it
applicable to state estimation of goals. Table 1 shows papers related to PSO methods for
target estimation. There is a great deal of research going on [15–17], and relevant research
for missile applications can be found [18–20]. Also, various attempts have been made
to accelerate the algorithm to overcome the limitations of the PSO method described in
Section 1. First, acceleration using GPUs has been researched [21–23]. In addition, as in this
paper, acceleration studies using FPGA can be found [24–27].
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Table 1. Works related to the acceleration of PSO.

Related Works Parallelization Parallelization Part Missile Application

[15–17] X - X
[18–20] X - O

[21] GPU

Propagate particle swarm
Compute objective error

Update “best”
Update positions

X

[22] GPU Calculation of error X

[23] GPU Calculation of the cost
Function X

[24] FPGA
Initialization
Evaluation

Position update
X

[25] FPGA Particle updating X

[26] FPGA Particle updating
Finding best particle X

[27] FPGA Calculation of Pearson’s
correlation coefficient X

Ours FPGA

Random value to particles
Predicted measurements

Associated likelihood function
Particle update

O

Previous acceleration research has been completed in various sections, depending on
the characteristics of the application. In this paper, a PSO method is applied to estimate
ballistic targets, and there are various parts with a large proportion of computational time.
Accordingly, many parts with large computational time are modularized and parallelized,
respectively. This modularization allows the application to operate more flexibly and
adaptively. Therefore, unlike other studies, this paper has various sections to be parallelized,
and, accordingly, parallel acceleration was performed for all parts of random value to
particles, predicted measurements, associated likelihood function, and update particles.

The contributions of this paper are as follows.

• To the best of our knowledge, this is the first approach to accelerate PSO for ballistic
target tracking with an FPGA.

• This paper has parallelized most of the computationally time-consuming parts of the PSO.
• A new parallelization method for realtime ballistic target tracking has been developed.
• The proposed approach has been validated on a real embedded system, and the

computation time has been significantly reduced.

The rest of this paper is organized as follows: Section 3 describes the missile target
tracking system based on particle swarm optimization and the realtime problem with
particle swarm optimization. In Section 4, after profiling the computational time for
the entire particle swarm optimization, a new parallelization method is proposed for
the computational-intensive parts. Section 5 provides a description of the experimental
environment, a performance evaluation of each parallelization part, and a performance
evaluation of the overall algorithm. Finally, Section 6 presents our conclusions.

3. Problem Description

The end goal of the algorithm for realtime ballistic target tracking is to estimate the
state of the target in real time. The algorithm is experimented in a simulation environment
to evaluate the performance of the algorithm. Therefore, it is essential to simulate the
trajectory of the ballistic missile target in the simulation environment. Aerodynamic forces
such as gravity and drag have a major impact on the path of a ballistic missile in the
atmosphere, unlike outside the atmosphere. In this paper, we focus on gravitational and
aerodynamic forces because our goal is to estimate the target state of the missile after it
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has reentered the atmosphere. As a result, we simulate the situation by assuming that the
missile is a point mass in a three-dimensional Cartesian coordinate system.

The three-dimensional nonlinear motion of the simulated missile, including gravita-
tional and aerodynamic forces, can be modeled as follows [28].

.
pos_x = Vcosγcosψ

.
pos_y = Vcosγsinψ

.
pos_z = −Vsinγ (1)

.
V =

T − D−mgsinγ

m
.
γ =

Lcosδ−mgcosγ

Vm
.
ψ =

Lsinδ

Vmcosγ
(2)

D =
1
2

ρV2 × ED × S L =
1
2

ρV2 × EL × S (3)

where pos_x, pos_y, and pos_z represent the position of the missile, and V represents the
velocity, and γ and ψ represent the altitude and azimuth, respectively. Also, m is the
mass, g is the gravitational constant, and T, D, and L are thrust, drag, and lift, respectively.
Aerodynamic forces are composed of air density ρ, drag coefficient ED, lift coefficient EL,
and, finally, the reference area S. δ represents the direction of lift generation. As mentioned
earlier, the goal of this approach is to estimate the state of the missile during the reentry
phase. In general, during the reentry phase, the T is set to zero and m is assumed to
be constant because the propellant of the missile has finished burning. Also, within the
atmosphere, the L is assumed to be zero because the ballistic missile’s maneuvers are
generally very small and have a small effect compared to drag.

3.1. The Problem of Target Tracking

In this paper, target tracking is based on the well-known Singer motion model [29,30].
The Singer motion model assumes that the target is a first-order static Markov process with
zero mean. The state space representation of the Singer model in continuous time is defined
as follows.

.
x = Sx + Yw (4)

S =

03 J3 03
03 03 J3

03 03 − J3
τ

, Y =

03
03
J3

 (5)

where
.
x is the state of the tracked target, w is white Gaussian noise with mean zero and time

constant τ. J3 of the S and Y matrices is a cubic identity matrix, and τ is the mobilization constant.
The discrete time equation for white Gaussian noise w is defined as follows.

xi = Ωi−1xi−1 + wi−1, wi−1 ∼ N(0, Ri) (6)

Ωi
∼= J + S∆t (7)

Ri
∼= HwR0 = Hw

∆t5

20 J3
∆t4

8 J3
∆t3

6 J3
∆t4

8 J3
∆t3

3 J3
∆t2

2 J3
∆t3

6 J3
∆t2

2 J3 ∆tJ3

 (8)

where Ωi denotes the state transition matrix and ∆t denotes the sampling interval. The
covariance Ri is composed of Hw, the power spectral density and R0, the white noise jerk
model. The magnitude of the increase in acceleration over a period of time is represented
by the jerk integral over that time.

The state variable x is defined as follows.

x =
[

PTVT AT
]T

(9)
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P = [xyz]T (10)

where P, V, and A are position, velocity, and acceleration in the Cartesian coordinate system,
respectively, and [xyz] is the position of the target in the three-dimensional Cartesian
coordinate system.

With this definition of the target, next define the data being measured. First, assume
that the measurements of the target are made by radome seeker, which measures altitude,
attitude, and distance. These measurements can vary depending on the relative position of
the target and the radar, defined as follows.

[xayaza]
T = [xyz]T − [xsyszs]

T (11)

where xa, ya, and za represent the relative positions of the target and the radar, and xs, ys,
and zs represent the radar positions. Therefore, the two bearing angles and the relative
distance can be expressed as follows.

cD
cθ

cψ

 =


√

xa2 + ya2 + za2 + R_nD

tan−1
(

za√
xa2+ya2

)
+ G_nθ + R_nθ

tan−1
(

ya
xa

)
+ G_nψ + R_nψ

 (12)

where R_nD, R_nθ, R_nψ means the radar receiver noise, which is Gaussian noise, and G_nθ,
G_nψ means the non-Gaussian glint noise, which can be called the radar measurement error.

3.2. The Problem of Real Time

Precision guidance and control to successfully intercept a target are highly dependent
on how accurately and quickly the target can be tracked. Therefore, accuracy and fast
updates are critical for algorithms that track high-speed targets such as ballistic missiles.
In this paper, a PSO algorithm is used for high-speed ballistic target tracking. Due to the
characteristics of sampling-based algorithms, PSO methods need to ensure a sufficient
number of particles and a sufficient number of epochs to estimate the target with high
accuracy. Figure 1 shows the results of ballistic target tracking using PSO with 50 particles
and 20 epochs. Next, Figure 2 shows the results of ballistic target tracking using the PSO
technique with 200 particles and 5 epochs. In Figures 1 and 2, the left plot shows the
estimated altitude range compared to the true model, the middle plot shows the crossrange
compared to the true model, and the right plot shows the target downrange compared to
the true model. Further, we can see that the red line, which is the result of estimating the
state of the target, deviates significantly from the actual state of the target shown by the
blue line. In conclusion, both experiments failed to accurately estimate the target’s state.
This shows that the PSO algorithm requires a larger number of particles and epochs to
estimate the accurate state of the target.
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In order to intercept a ballistic trajectory target, it is necessary to be able to estimate the
target’s state in real time. However, in the previous experiment, ballistic target estimation
using PSO requires a sufficient number of particles and epochs to be ensured. This directly
impacts the real time performance of the application. In the case of PSO, as the number
of particles and epochs increases, the computation time increases, so there is a trade-off
between the accuracy and real time of the target estimation. To overcome this trade-off
problem, this paper proposes a parallel acceleration method through heterogeneous device
co-design of CPU and FPGA. When the PSO algorithm is performed using only the CPU,
the algorithm is performed sequentially, which greatly increases the computation time.
However, in FPGA, the same operation can be parallelized and computed simultaneously,
which can reduce the computation time compared to the method using only CPU.

4. Proposed Method
4.1. Overview of the Proposed Method

The overall flow of the application for ballistic target tracking is shown in Figure 3.
The PSO algorithm applied to the application is divided into (1) initialize particle informa-
tion, (2) random value to particles, (3) predicted measurements, (4) associated likelihood
functions, (5) check particle’s quality, and (6) update particles. In this paper, the computa-
tion time for each part is measured to improve the computation speed of the algorithm,
and a method for accelerating the parts that take a long time is proposed.
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4.2. Computation Time Profiling

The computation times for each part were measured with 3000 particles and 10 epochs on
the PS of the AMD Zynq 7000 SoC ZC706 Evaluation Kit, and the results are shown in Figure 4.
The results of Figure 4 show that (2) random value to particles takes the longest time, followed
by (6) update particles, (4) associated likelihood function, and (3) predicted measurement. Since
the computational time of these four parts accounts for about 94.87% of the total algorithm, it
needs to be accelerated. Therefore, these four sections are set as targets for parallelization and
acceleration using the PL of ZC706’s FPGA to enhance performance. The FPGA of the PL was
utilized for the four sections, and the PS was used for the remaining sections, resulting in a
heterogeneous device design using both the CPU and FPGA.
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4.3. Parallelization Method #1: Random Value to Particles

The random value to particle process accounts for about 43.31% of the entire algorithm
and is the most computationally time-consuming part of the algorithm. Therefore, paral-
lelizing this part is essential in a realtime target tracking environment. This is performed
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for every iteration of the PSO, as many times as there are particles. The position of the
particle can be calculated as follows.

Ptupdated = (Ω× Pthat) +
(

Ω×
√

Ri × randnum
)

(13)

where Ω is the state transition matrix of the target and Pthat is the position information
of the initial particle. Ri is the covariance matrix for the noise, and, finally, randnum is a
random number generated by a normal distribution with mean 0 and standard deviation 1.
In our method, we do not generate random numbers in PL for simplicity of design but
use PS to generate random numbers according to the Mersenne Twister method and then
transfer them to PL [31]. The resulting Ptupdated is used to find the optimal location in the
particle set.

To parallelize this part, we use Xilinx Vitis HLS to synthesize the hardware IP. Algorithm 1
shows pseudocode for the random value to particle part. This part consists of three nested
iterations, each repeating the number of particles, the number of rows, and the number of
columns of the target’s state transition matrix. It is important to note that the lowest iteration
has a compound operator.

Algorithm 1: Random Value to Particles

Input Particle position array Pthat and Random number array randnum
Output Updated particle position array Ptupdated

1. for i = 0: the number of particle
2. for j = 0: the number of rows of transition matrix
3. Ω_Ri_rand← 0
4. Ω_pt← 0
5. for k = 0: the number of columns of transition matrix
6. Ω_Ri_rand+ = Ω ∗

√
Ri ∗ randnum

7. Ω_pt + = Ω∗ Pthat
8. end
9. Ptupdated = Ω_pt + Ω_Ri_rand

10. end
11. end

Designing parallel computation hardware IP to accelerate the random value to particle
part is completed as follows. Algorithm 2 shows pseudocode for a parallelized random
value to particle. First, the clock of the hardware IP is set to 10 ns based on experimental
results that show no negative slack. Next, since the data transfer from PS to PL and PL to
PS uses the AXI Stream interface, we need to convert the data type between the transfers.
Since the AXI Stream interface supports uint32 type for data transfer, the data type casting
part is also added when configuring the hardware IP. Data type casting converts between
uint32 type and float type, and this process takes 1 clock per execution. Since the data type
casting process takes only 1 clock to execute, pipelining is not possible. Therefore, this part
uses the sequential processing method.

The main computation part consists of three nested iterations as described above, and
the lowest iteration has a compound operator. Compound operands cannot be parallelized
because each operation is interdependent. Therefore, the lowest iteration remains sequen-
tial, and pipelining is performed for the higher iterations. Parallel operations by pipelining
are stacked every 1 clock, and the number of particles input to the hardware IP at a time is
set to 500 for flexibility in changing parameters between PS and PL. Therefore, the upper
iteration is repeated a total of 4500 times, which is the product of the number of particles
and the target’s state transition matrix. The result of this pipelining can be seen in Figure 5.
The sequential form of the bottom iteration consumes a total of 73 clocks, which determines
the depth of the pipelining to be 73.
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Algorithm 2: Parallelized Random Value to Particles

Input
Particle position uint32 array Pthat
Random number uint32 array randnum

Output Updated particle position uint32 array Ptupdated
1. do in sequential: for x = 0: Particle Dimension
2. uint32_to_float_datatype_casting(Pthat)
3. end
4. do in sequential: for y = 0: Particle number × Particle Dimension
5. uint32_to_float_datatype_casting(randnum)
6. end
7. do in parallel: for i = 0: the number of particle
8. do in parallel: for j = 0: the number of rows of transition matrix
9. Ω_Ri_rand← 0

10. Ω_pt← 0
11. do in sequential: for k = 0: the number of columns
12. Ω_Ri_rand+ = Ω ∗

√
Ri ∗ randnum

13. Ω_pt + = Ω∗ Pthat
14. end
15. Ptupdated = Ω_pt + Ω_Ri_rand
16. end
17. end
18. do in sequential: for z = 0: Particle number × Particle Dimension
19. float_to_uint32_datatype_casting(Ptupdated)

20. end
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4.4. Parallelization Method #2: Predicted Measurement and Associated Likelihood Functions

The predicted measurements part of the algorithm, which estimates the state of the
target, takes up about 8.43% of the entire algorithm and is the fourth most time-consuming
part of the algorithm. This process is performed for an initialized number of epochs in
each iteration of the PSO and involves calculating estimates of distance, angle, and rotation
angle for each particle. To obtain an estimate of the distance, angle, and rotation of a target
in the Cartesian coordinate system, the equation is as follows.

Distance =
√

Ptp1
2 + Ptp22 + Ptp32 (14)
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θ = tan−1

 Ptp3√
Ptp1

2 + Ptp22

× 180
π

(15)

ψ = tan−1

(
Ptp2

Ptp1

)
× 180

π
(16)

where Ptp1, Ptp2, Ptp3 are the position information of the particles in the algorithm to find
the optimal point in the particle swarm optimization algorithm. For the estimation of the
target state, the particle position information in the algorithm is obtained as a matrix with
three rows and a column with a size equal to the number of particles used in the particle
swarm optimization. Therefore, for an epoch of PSO, the above equations are repeated as
many times as the number of particles. Since the equations are repeated as many times
as the number of particles and epochs to estimate the target state, the more particles and
the more epochs, the more accurate the final state estimate, but the computation time also
increases, so parallelization is performed.

The associated likelihood function part, which measures the quality of the particles
by putting the estimates from the predicted measurements into a likelihood function to
evaluate the quality of the particles, takes up 13.13% of the total algorithm and is the
third most time-consuming part of the algorithm. Like the predicted measurements part,
this process is performed at each epoch of the PSO and is repeated for the number of
particles. As the number of particles increases to improve the accuracy of the estimation,
the computation time of this part also increases, so it is necessary to parallelize it. The
error values of the estimates of distance, angle, and rotation angle obtained in the previous
process can be obtained through their respective likelihood functions. The likelihood
function for distance is defined as follows.

DistanceE =
1√

2π × sigD
× exp

(
−(meaD − Distance)2

(2× sigD)
2

)
(17)

where sigD and meaD are the measurement noise and the acquired measurement of the
target’s distance, respectively, and sigD is set to 1 in this paper. Distance is the estimated
distance value obtained in the predicted measurements part.

The likelihood functions and internal operations for angles and rotation angles are
defined as follows.

sub1 = (1− ep)×

 1√
2π × (sigθ,ψ

2 + (sig1/Distance2))

 (18)

sub2 = exp

(
−(meaθ,ψ − θ, ψ)2

2(
(
sigθ,ψ + sig1

)2/Distance2)

)
(19)

sub3 = ep× 1√
2π × (sigθ,ψ

2 + (sig2/Distance2))
(20)

sub4 = exp

(
−(meaθ,ψ − θ, ψ)2

2(
(
sigθ,ψ + sig2

)2/Distance2)

)
(21)

θE, ψE = sub1 × sub2 + sub3 × sub4 (22)

PtE = DistanceE × θE × ψE (23)
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where sigθ and sigψ are the measurement noise of angle and rotation angle, respectively,
and are set to 0.1, and sig1 and sig2 are the estimation noise, and are set to 0.5 and 0.1,
respectively. ep is the glint probability, which means the probability of noise. Further, meaθ,ψ
is the measurement obtained for θ and ψ. The likelihood functions for angles and rotation
angles are composed of multiplication and addition operations with sub1, sub2, sub3, sub4,
as above, and have a similar structure, differing only in the noise values used. The final
error value PtE used is equal to the product of the error values for distance, angle, and
rotation angle.

Since the associated likelihood function part takes the output of the previous step,
predicted measurements, and returns a simplified form of the final output, the two parts are
bundled and parallelized. The ratio of the two parts in the algorithm is about 21.56%. By
bundling the two parts, we not only increase the simplicity of the design but also save data
transfer time between PS and PL. To parallelize this part, we use Xilinx Vitis HLS to synthe-
size the hardware IP. Algorithm 3 shows pseudo-code for the predicted measurements part
and the associated likelihood function part. This part consists of a single iteration, where
the estimation and the calculation of the quality of the particles through the likelihood
function are repeated as many times as the number of particles.

Algorithm 3: Predicted Measurements and Associated Likelihood Function

Input
Particle’s position information: Ptp1, Ptp2, Ptp3
Distance, angle, rotation angle measurement: meaD, meaθ , meaψ

Output Particle Quality PtE
1. for i =0: the number of particles
2. calculate estimation of distance Equation (2)
3. calculate estimation of angle Equation (3)
4. calculate estimation of rotation angle Equation (4)
5. calculate error of distance Equation (5)
6. calculate sub1, sub2, sub3, sub4 Equations (6)–(9)
7. calculate error of angle Equation (10)
8. calculate sub1, sub2, sub3, sub4 Equations (6)–(9)
9. calculate error of rotation angle Equation (10)

10. calculate error of particle Equation (11)
11. end

The design of the parallel computation hardware IP to accelerate the predicted mea-
surements and the associated likelihood function part is completed as follows. First,
Algorithm 4 shows the pseudo-code for parallelizing this part. In this hardware IP, the
number of particles entering the input is set to 500, and data type casting is performed
as in Section 4.3. to transfer data. The computational part of this section is pipelined and
performed in parallel. When pipelining, if the time for the operation to be performed
is too short, the pipelining depth will decrease at the same time, and the efficiency of
pipelining will decrease. Therefore, in this section, instead of parallelizing the operation
for one particle, we parallelize the sequential processing of five particles. As a result, the
operations for 5 particles are overlapped every 1 clock. The result of this pipelining can be
seen in Figure 6. The total time it takes to perform the operations on the five particles is
212 clocks, so the pipelining depth is set to 212 to allow 212 operations to be performed
simultaneously. Although 212 operations can be performed simultaneously, the loop is
repeated a total of 100 times, so all operations are performed simultaneously.
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Algorithm 4: Parallelized Predicted Measurements and Associated Likelihood Function

Input
Particle’s position information uint32 array: Ptp1, Ptp2, Ptp3
Distance, angle, rotation angle measurement uint32 array: mea

Output Particle Quality uint32 array PtE
1. do in sequential: for x = 0: the number of particles
2. uint32_to_float_datatype_casting(Ptp1)

3. uint32_to_float_datatype_casting(Ptp2)
4. uint32_to_float_datatype_casting(Ptp3)
5. end
6. do in sequential: for x = 0:2
7. uint32_to_float_datatype_casting(mea)
8. end
9. do in parallel: for i = 0: the number of particles/5

10. do in sequential: for j = 0:4
11. calculate estimation of distance Equation (2)
12. calculate estimation of angle Equation (3)
13. calculate estimation of rotation angle Equation (4)
14. calculate error of distance Equation (5)
15. calculate sub1, sub2, sub3, sub4 Equations (6)–(9)
16. calculate error of angle Equation (10)
17. calculate sub1, sub2, sub3, sub4 Equations (6)–(9)
18. calculate error of rotation angle Equation (10)
19. calculate error of particle Equation (11)
20. end
21. end
22. do in sequential: for x = 0: the number of particles
23. float_to_uint32_datatype_casting(PtE)
24. end
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4.5. Parallelization Method #3: Update Particles

The update particles part, which updates the particle’s information, takes up about 30.00%
of the total algorithm and is the second most time-consuming part of the algorithm. This
process is performed for the preset number of epochs in each iteration of the PSO, and the
operation is performed for each particle. This part of the algorithm is time-consuming and the
computation time increases with the number of particles and the number of epochs, so it needs
to be parallelized. The process of updating a particle’s information is defined as follows.

Pta+1 = kai×
((

c× eps×
(
OPg − Ptp

))
+
(
c× eps×

(
OPl − Ptp

)))
−(1− kai)× PtV (24)
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Ptv+1 = Ptv + Pta+1 (25)

Ptp+1 = Ptp + Ptv+1 (26)

where Pta, Ptv, and Ptp are the current acceleration, velocity, and position of a particle, and
Pta+1, Ptv+1, and Ptp+1 are the acceleration, velocity, and position of the particle in the next
epoch, respectively. In addition, OPg is the global optimal point for all particles and OPl is the
local optimal point. Using the equations above, it is possible to calculate the information the
particle will have in the next cycle from the current particle’s information. The design of the
parallel computation hardware IP to accelerate the update particles part is completed as follows.
First, Algorithm 5 shows the pseudo-code for the update particles part before parallelization.
The algorithm proceeds as long as the current epoch is not the last epoch and iterates over each
particle, updating the values in each dimension of the particle.

Algorithm 5: Update Particles

Input

Particle’s information in current cycle: Ptp, Ptv
Global Optimal Point: OPg
Local Optimal Point: OPl
Current epoch number Nc

Output Particle’s information in next cycle: Ptp+1, Ptv+1, Pta+1
1. If Nc < max cycle number
2. for i = 0: the number of particles
3. for j = 0: the number of particle’s dimension

for k = 0:4
4. Calculate Pta+1 Equation (12)
5. Calculate Ptv+1 Equation (13)
6. Calculate Ptp+1 Equation (14)

end
7. end
8. end
9. end

Next, Algorithm 6 shows pseudo-code for the update particles part after paralleliza-
tion. The number of particles input to the hardware IP is set to 500 as in the previous
method, and we also perform data type casting to transfer the data. The data type casting
part of this part takes 3 clocks per iteration, so it can be performed in parallel. We par-
allelize the update operations for the five particles by pipelining them as we did for the
main computation Methods #3–4. The result of this pipelining can be seen in Figure 7. The
computation for the five particles takes a total of 39 clocks, and the pipeline depth is set to
39 to perform 39 operations in parallel. This part of the algorithm is performed 100 times
for each of the 5 particles and the dimensionality of the particles is 9, so 900 iterations.
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Algorithm 6: Parallelized Update Particles

Input

Particle information for the current cycle uint32 array: Ptp, Ptv
Global Optimal Point uint32 array: OPg
Local Optimal Point uint32 array: OPl
Current epoch number: Nc

Output Particle’s information for the next cycle uint32 array: Ptp+1, Ptv+1, Pta+1
1. do in parallel: for x = 0: the number of particles
2. uint32_to_float_datatype_casting (Ptp)
3. uint32_to_float_datatype_casting (Ptv)
4. uint32_to_float_datatype_casting (OPl)
5. if x < particle’s dimension:
6. uint32_to_float_datatype_casting (OPg)
7. end
8. end
9. do in parallel: for i = 0: the number of particles/5

10. do in parallel: for j = 0: the number of particle’s dimension
11. do in sequential: for k = 0:4
12. Calculate Pta+1 Equation (12)
13. Calculate Ptv+1 Equation (13)
14. Calculate Ptp+1 Equation (14)
15. end
16. end
17. end
18. do in parallel: for x = 0: the number of particles
19. float_to_uint32_datatype_casting (Ptp+1)

20. float_to_uint32_datatype_casting (Ptv+1)
21. float_to_uint32_datatype_casting (Pta+1)
22. endSensors 2023, 23, x FOR PEER REVIEW 15 of 24 
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4.6. Hardware Platform Design

Next, design a platform to connect the PS and PL of the zc706 using the hardware
IP designed in Method #1, Method #2, and Method #3. The design of the platform is
completed in Vivado 2022.1. Figure 8 shows the block diagram of the designed hardware.
The design of the platform was accomplished as follows. First, the three custom hardware
IPs communicate via the AXI-Stream protocol, which utilizes AXI Direct Memory Access
(DMA). DMA is a hardware IP that provides AXI memory mapping and also provides
high-bandwidth direct memory access between peripherals, and we used the IP provided
by Vivado out of the box. We used 11 DMAs to account for the number of I/O ports in the
three custom IPs. We also used the AXI Smartconnect, Interconnect IP provided by Vivado
for mapping between master and slave devices.
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5. Results
5.1. Hardware Platform Design Results

The hardware platform design was carried out through the methods proposed in
Section 4. First, the heterogeneous device co-design was performed on the AMD Zynq 7000
SoC ZC706 Evaluation Kit (xc7z045ffg900-2) with dual ARM Cortex-A9 core processors.
Table 2 shows the hardware usage of the ballistic trajectory target tracking application with
PSO and the total amount of available hardware resources on the xc7z045ffg900-2. The
maximum hardware resources available to the xc7z045ffg900-2 are 218,600 LUTs, 70,400
LUTRAMs, 437,200 FFs, 900 DSPs, and 545 BRAMs, and the application utilizes 40.51%,
7.45%, 21.72%, 41.67%, and 18.35% of the hardware resources.

Table 2. Application’s hardware resource usage.

Resource Utilization Available Utilization (%)

LUT 88,558 218,600 40.51
LUTRAM 5244 70,400 7.45

FF 94,978 437,200 21.72
BRAM 100 545 18.35

DSP 375 900 41.67
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Next, the power consumption of the created hardware platform is shown in Table 3. The
static power consumption of the device is about 0.232 W, which is very low. Furthermore, when
the internal resources are maximally utilized, the device consumes 2.876 W of power, of which
the processing system has the highest share. In conclusion, the proposed hardware platform
consumes a maximum of 3.108 W and a minimum of 0.232 W on the device.

Table 3. Power consumption of the designed hardware platform.

Static Dynamic

Device Clocks Signals Logic BRAM DSP PS

Power
Consumption(W) 0.232 0.194 0.507 0.455 0.038 0.114 1.568

Ratio (%) 7.5 6.2 16.3 14.6 1.2 3.7 50.4

5.2. Simulation Results

In this paper, four parts of the PSO algorithm of the ballistic target tracking algo-
rithm are accelerated using an FPGA to achieve realtime performance. Using the above
methods, the parallelized ballistic target tracking algorithm is tested in a simulation envi-
ronment. To simulate a real missile in a simulation environment, the dynamic model in
Equations (1) and (2) is used, as described earlier. The aerodynamic drag and weight of
the debris are referenced to [32], the sampling interval is set to ∆t = 0.01 s, and the total
simulation time is 3 s. The deviations nd, nθ , nψ of the radar receiver noise model are
0.1 m, 0.1 deg, and 0.1 deg, respectively, and the glint noise nGθ , nGψ follows a Gaussian
distribution as follows.

p = (1− α)pG1 + αpG2 (27)

where α is the glint probability, pG1 is a Gaussian model with pG1 ∼ N
(
0, 0.12), and pG2

is a Gaussian model with pG2 ∼ N
(
0, 12). The tracking motion model is a Singer model

according to Equation (5), and the measurement model is obtained using Equation (12).
The position of the radar is assumed to be fixed on the ground, and the ballistic target is
assumed to move at high speed considering gravity and aerodynamic drag. The parameters
of the PSO algorithm were set as follows: c, which determines the speed when moving
from the local optimum to the global optimum, was set to 2.05; kai, which indicates that the
particles maintain their current speed, was set to 0.729843788; and eps, which determines
how far the particles will spread out when the algorithm starts, was set to a random number
less than or equal to 1. In addition, epoch, the number of times the particle moves, and
the number of particles were set differently for each experiment to check the difference in
experimental results.

The results of trajectory and state estimation are shown in Figures 9 and 10. In
Figures 9 and 10, the left plot shows the estimated altitude range compared to the true
model, the middle plot shows the crossrange compared to the true model, and the right plot
shows the target downrange compared to the true model. The performance of the particle
swarm optimization algorithm depends on the number of particles and the number of
epochs. First, Figure 9 shows the results of an experiment with 500 particles and 15 epochs.
Next, Figure 10 shows the results of an experiment with 3000 particles and 10 epochs per
particle for comparison. It can be seen that, when the number of particles and the number
of epochs are small, the convergence is not very good at the beginning and the error bound
bounces a great deal, as shown in Figure 9. On the other hand, in Figure 10, we can see that,
when the number of particles and the number of epochs are sufficient, the optimal value is
found well, unlike in Figure 9. First, in the altitude direction, we observe an initial bouncing
of the error bounds, but we can see that the optimal value is found and maintained through
iteration since the simulation has been running for 1.5 s. Also, in the crossrange direction,
the error bound bounces in the later part compared to the earlier part, but it does not
deviate much. Finally, in the downrange direction, we can see that the optimal value is well
found. In all three directions, we can see that the optimal value is found and maintained
through the iteration process, so we can see that the target is being tracked normally.
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Figure 10. Ballistic target tracking results with 3000 particles and 10 epochs (blue dashed line:
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Compared to other metaheuristic algorithms, the PSO algorithm still shows strong
performance [33–36]. In this paper, the results of the PSO-based ballistic target tracking were
compared with the results of the ballistic target tracking with Monte Carlo Optimization,
which is a well-known metaheuristics algorithm. The comparison results of the errors
in downrange, crossrange, altitude, and overall mean squared errors (MSE) according to
the number of particles or samples are summarized in Table 4. The errors with the PSO
decrease according to the number of particles more significantly than the errors with the
MCO, which means that the PSO is more appropriate than the MCO in the context of
accuracy because more particles are required for more accurate estimation. Therefore, this
paper chose the PSO as an algorithm for ballistic target tracking.

Table 4. Comparison of the errors with MCO and PSO for ballistic target tracking.

Particle (Samples)
Errors with MCO (km) Errors with PSO (km)

Downrange Crossrange Altitude MSE Downrange Crossrange Altitude MSE

500 0.0133 0.0319 0.0627 0.072 0.0117 0.0524 0.0555 0.077
1000 0.0151 0.0220 0.0638 0.069 0.0158 0.0257 0.0698 0.076
1500 0.0115 0.0319 0.0499 0.060 0.0080 0.0376 0.0420 0.057
2000 0.0127 0.0246 0.0493 0.057 0.0079 0.0283 0.0358 0.046
2500 0.0102 0.0299 0.0417 0.052 0.0085 0.0254 0.0363 0.045

5.3. Results of Algorithm Acceleration with FPGA

The parallelization and acceleration results in this paper were performed on an AMD
Zynq 7000 SoC ZC706 Evaluation Kit (xc7z045ffg900-2) with an FPGA and Dual ARM
Cortex-A9 core processor. The board has 218,600 LUTs, 5244 LUTRAMs, 437,200 FFs,
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545 BRAMs, and 900 DSPs in hardware resources. In this section, we compare the non-
parallelized particle swarm optimization technique using PS only and the parallelized
results using PS and PL together on xc7z045ffg900-2.

First, the parallelization results for each part are shown in Tables 5–9. Table 5 shows
the computation time according to the number of particles in the Method #1 random value
to particles part with 10 epochs. For this part, we present the experimental results according
to the number of particles because it is independent of the number of epochs and is only
affected by the number of particles. In this part, you can see that the computation time
increases linearly as the number of particles increases. Similarly, the parallelized results
also show a linear increase, but the increase is much smaller due to parallelization. As a
result, the acceleration gain for this part is about 7.45×.

Table 5. Result of computation time according to the number of particles in the random value to
particles part.

Number of Particles PS Only (ms) PS + PL (ms) Acceleration (×)

500 11,361.02 1524.74 7.45
1000 22,695.18 3044.62 7.45
1500 34,327.68 4602.71 7.46
2000 45,456.47 6071.05 7.49
2500 57,199.55 7675.52 7.45
3000 68,115.51 9105.85 7.48

Table 6. Result of computation time according to the number of particles in the predicted measure-
ments and associated likelihood functions part.

Number of Particles PS Only (ms) PS + PL (ms) Acceleration (×)

500 5326.16 748.85 7.11
1000 11,142.67 1653.90 6.74
1500 16,948.53 2595.53 6.53
2000 22,470.24 34,876.89 6.44
2500 28,299.83 4621.18 6.12
3000 33,907.71 5710.24 5.94

Table 7. Result of computation time according to the number of epochs in the predicted measurements
and associated likelihood functions part.

Number of Epochs PS Only (ms) PS + PL (ms) Acceleration (×)

5 8046.33 1110.77 7.24
10 16,948.53 2595.52 6.53
15 26,041.55 4768.62 5.46
20 34,477.19 6496.31 5.31
25 43,515.75 8208.57 5.30

Table 8. Result of computation time according to the number of particles in the update particles part.

Number of Particles PS Only (ms) PS + PL (ms) Acceleration (×)

500 7520.93 5356.54 1.40
1000 15,439.34 10,694.70 1.44
1500 24,290.23 16,393.26 1.48
2000 31,390.19 21,727.67 1.44
2500 40,636.12 27,443.28 1.48
3000 47,189.01 32,950.91 1.43



Sensors 2023, 23, 8456 19 of 23

Table 9. Result of computation time according to the number epochs in the update particles part.

Number of Epochs PS Only (ms) PS + PL (ms) Acceleration (×)

5 9603.01 7146.623 1.34
10 24,290.23 16,392.51 1.48
15 41,529.85 25,573.33 1.62
20 62,120.61 39,063.76 1.59
25 81,150.53 48,362.21 1.68

Tables 6 and 7 show the experimental results according to the number of particles and
the number of epochs in the Method #2 predicted measurements and associated likelihood
functions part. First, Table 6 shows the experimental results according to the number of particles
when the number of epochs is 10. The results show an acceleration of about 5.94 to 7.11 times.
Table 7 shows the computation time results according to the number of particles when the
number of particles is 1500. The results show an acceleration of about 5.3 to 7.2 times.

Tables 8 and 9 show the results of the experiment according to the number of particles
and the number epochs in the Method #3 update particles part. First, Table 8 shows the
experimental results according to the number of particles when the number of epochs is 10.
From Table 8, we can see that the acceleration is about 1.40 to 1.48 times. Table 9 shows the
computation time as a function of the number of epochs when the number of particles is
1500. It shows a time accelerated by about 1.34 to 1.68 times.

Table 10 shows a comparison of the execution time of the PSO algorithm as a func-
tion of the number of particles when the number of epochs is 10. When comparing the
performance of parallel acceleration based on the execution time of PSO, the acceleration is
about 3.01 to 3.24 times. Table 11 shows the comparison of the execution time of the PSO
algorithm according to the number of epochs when the number of particles is 1500. The
results show a speedup of about 2.34 to 3.89 times.

Table 10. When the number of epochs is 10, the particle swarm optimization algorithm execution
time according to the number of particles.

Number of Particles PS Only (ms) PS + PL (ms) Acceleration (×)

500 24,796.47 8256.29 3.25
1000 50,601.06 16,767.23 3.16
1500 77,585.86 25,727.49 3.12
2000 102,039.91 34,199.77 3.08
2500 129,611.31 43,473.34 3.06
3000 153,392.16 52,223.67 3.01

Table 11. When the number of particles is 1500, the particle swarm optimization algorithm execution
time according to the number of epochs.

Number of Epochs PS Only (ms) PS + PL (ms) Acceleration (×)

5 52,384.83 13,459.42 3.89
10 77,585.86 25,724.92 3.02
15 105,879.64 39,467.58 2.68
20 137,987.21 57,831.46 2.39
25 169,369.51 72,241.48 2.34

Table 12 shows the execution time comparison for the entire target tracking algorithm
according to the number of particles when the number of epochs is 10. When comparing
the performance of the parallel acceleration based on the total algorithm execution time,
we can see that the acceleration is about 2.63× to 2.83×. Table 13 shows the execution
time comparison for the entire target tracking algorithm as a function of the number of
epochs when the number of particles is 1500. When comparing the performance of parallel
acceleration based on the total algorithm execution time, we can see a speedup of about
2.30× to 3.43×.
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Table 12. When the number of epochs is 10, the entire algorithm execution time according to the
number of particles.

Number of Particles PS Only (ms) PS + PL (ms) Acceleration (×)

500 26,790.02 10,168.72 2.63
1000 52,984.94 19,031.35 2.78
1500 80,338.84 28,373.23 2.83
2000 105,170.13 37,193.46 2.82
2500 133,116.34 46,854.30 2.84
3000 157,289.37 55,978.17 2.81

Table 13. When the number of particles is 1500, the entire algorithm execution time according to the
number of epochs.

Number of Epochs PS Only (ms) PS + PL (ms) Acceleration (×)

5 55,014.56 16,033.68 3.43
10 80,338.84 28,361.65 2.83
15 108,783.71 42,171.31 2.58
20 140,860.32 60,564.57 2.33
25 172,240.61 74,963.45 2.30

5.4. Analysis and Discussion

First, in Table 2, which shows the hardware platform design results, the proposed
heterogeneous co-designed application uses about 7.45% to 41.67% of the total resources
of the FPGA part, xc7z045ffg900-2. In the acceleration part of the ballistic trajectory target
tracking algorithm, the size of the output data is small compared to the amount of data
computation, and it contains a large number of addition, multiplication, and trigonometric
function operations. Therefore, it can be seen that the computational resources, such as
LUT and DSP, are consumed more than the memory resources, such as LUTRAM, FF, and
BRAM. Next, check Table 3 to see the power consumption of the designed hardware. The
PS, which corresponds to the CPU, is about 1.568 W, which accounts for about 50.4% of
the total power consumption, and the remaining 1.540 W, or 49.6%, is used to operate the
FPGA. From this, it is clear that the overall power consumption remains the same or lower
at 3.108 W, and the amount of power used by the FPGA is very low.

Next, Figure 9 shows that the PSO-based ballistic trajectory target tracking algorithm
fails to track the target when the number of particles and epochs are insufficient. As men-
tioned before, due to the sampling-based nature of the algorithm, the performance of the
algorithm decreases rapidly if a sufficient number of iterations are not provided. However,
in Figure 10, it is clear that, when enough iterations are performed, the tracking is successful
in all directions.

Next, looking at Tables 5–7, the three parts of the algorithm that account for 64.87%
of the total algorithm, excluding the update particles, show a significant acceleration of
5.30 to 7.49 times. However, if looking at Tables 8 and 9, the update particles part, which
accounts for about 30% of the total algorithm, is accelerated by about 1.34 to 1.68 times.
The reason for the lower acceleration of the update particles part compared to the other
parts is that the input data are huge compared to the previous parts, and therefore it takes
a long time for the CPU to flatten the two-dimensional array into a one-dimensional array
in order to move the data between PS and PL using the AXI protocol. While Method
#1 takes the position information of a single initialized particle and Method #2 takes the
position information of all particles as input, the update particles part requires the position
information, velocity information, acceleration information, global optimum point, and
local optimum point of all particles as input, so it takes a great deal of time to flatten from
the data structure used by the CPU to a one-dimensional array.

As a result, checking Tables 12 and 13, applying the parallelized particle swarm
optimization method results in an acceleration of about 2.34 to 3.89 times over the PSO al-
gorithm alone and about 2.30 to 3.43 times over the ballistic target tracking algorithm as a
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whole. The reasons why the acceleration increases when the number of particles increases
and decreases when the number of epochs increases are analyzed as follows: first, the
amount of non-parallelized parts of ballistic trajectory target tracking increases when the
number of epochs increases, and the amount of acceleration decreases because the share
of update particles parts that do not have a large effect increases. However, even with
all of these limitations, it can be concluded that, for ballistic target tracking, designing
heterogeneous devices with FPGA increases realtime performance because it takes less
computation time than using only CPU to track the target’s state.

6. Conclusions

In designing a guided missile for intercepting ballistic missiles, an accurate target esti-
mation algorithm is essential to track and intercept the target missile. PSO algorithms can
be a solution to this problem because they can overcome the challenges of the nonlinear and
non-Gaussian nature of real-world noise and can handle a wide range of error distributions.
In practice, the performance of PSO-based ballistic trajectory target tracking algorithms
has been verified and showed that they can accurately estimate altitude, crossrange, and
downrange. However, due to the nature of sampling-based optimization algorithms, the
computational time burden increases significantly as the number of particles increases or
the number of particle movements increases, so a large number of iterations greatly reduces
the realtime performance of the algorithm. To solve these problems, this paper overcomes
the limitations through the mutual optimal design of heterogeneous devices such as CPU
and FPGA. The computation time of the ballistic trajectory target tracking algorithm was
analyzed on the CPU, and the part that takes a long time due to the iteration structure was
parallelized on the FPGA. Four parts of the ballistic trajectory target tracking algorithm
were selected as targets, and they were accelerated by 1.34 to 7.45 times. As a result, the
algorithm was accelerated by 2.30 to 3.43 times, and the computation time was significantly
reduced, improving realtime performance. We also verified the results in terms of power
consumption. Using the low power consuming characteristics of the FPGA, the result
was about 3.109 W, which is significantly lower than the typical power consumption of
a GPU, which is a typical device with parallel processing characteristics. However, the
limitation of this study is that it focused on parallelization through pipelining of tasks. This
parallelization method proved to be effective in accelerating the algorithm, but there is still
potential for other parallelization methods, such as vectorization and systolic. Our future
work will be to experimentally apply various parallelization methods to the parallelization
of the target estimation algorithm and to apply better methods to increase the acceleration
of the algorithm.

Author Contributions: Methodology, J.P.; software, Y.H.; formal analysis, H.-H.K.; investigation,
H.L.; writing—original draft, J.P.; writing—review & editing, H.L.; supervision, W.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by Theatre Defense Research Center funded by Defense
Acquisition Program Administration under Grant UD200043CD, and in part by the MSIT (Ministry
of Science and ICT), Korea, under the Grand Information Technology Research Center support
program (IITP-2023-2020-0-01612) supervised by the IITP (Institute for Information & communications
Technology Planning & Evaluation).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Siouris, G.M. Missile guidance and control systems. Appl. Mech. Rev. 2004, 57, 113–119. [CrossRef]
2. Hewer, G.A.; Martin, R.D.; Zeh, J. Robust preprocessing for Kalman filtering of glint noise. IEEE Trans. Aerosp. Electron. Syst.

1987, 1, 120–128. [CrossRef]
3. Dong, L.; Xu, H.; Feng, X.; Han, X.; Yu, C. An adaptive target tracking algorithm based on EKF for AUV with unknown

Non-Gaussian process noise. Appl. Sci. 2020, 10, 3413. [CrossRef]
4. Arulampalam, M.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian

tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [CrossRef]

https://doi.org/10.1115/1.1849174
https://doi.org/10.1109/TAES.1987.313340
https://doi.org/10.3390/app10103413
https://doi.org/10.1109/78.978374


Sensors 2023, 23, 8456 22 of 23

5. Ge, B.; Zhang, H.; Jiang, L.; Li, Z.; Butt, M.M. Adaptive unscented Kalman filter for target tracking with unknown time-varying
noise covariance. Sensors 2019, 19, 1371. [CrossRef] [PubMed]

6. Han, Y.; Lee, H.; Gwon, H.; Choi, W.; Jeong, B. Parallelized Particle Swarm Optimization with GPU for Real-Time Ballistic Target
Tracking. J. Korean Soc. Embed. Eng. 2022, 17, 355–365.

7. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 1942–1948.

8. Eberhart; Shi, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 Congress on
Evolutionary Computation (IEEE Cat. No. 01TH8546), Seoul, Republic of Korea, 27–30 May 2001; IEEE: Piscataway, NJ, USA, 2001;
pp. 81–86.

9. Song, M.-P.; Gu, G.-C. Research on particle swarm optimization: A review. In Proceedings of the 2004 International Conference on
Machine Learning and Cybernetics (IEEE Cat. No. 04EX826), Shanghai, China, 26–29 August 2004; IEEE: Piscataway, NJ, USA, 2004;
pp. 2236–2241.

10. Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle Swarm Optimization: A
Comprehensive Survey. IEEE Access 2022, 10, 10031–10061. [CrossRef]

11. Rafi, S.; Kumar, A.; Singh, G. An improved particle swarm optimization method for multirate filter bank design. J. Frankl. Inst.
2013, 350, 757–769. [CrossRef]

12. Kaveh, A.; Izadifard, R.; Mottaghi, L. Optimal design of planar RC frames considering CO2 emissions using ECBO, EVPS and
PSO metaheuristic algorithms. J. Build. Eng. 2020, 28, 101014. [CrossRef]

13. Bacanin, N.; Antonijevic, M.; Bezdan, T.; Zivkovic, M.; Venkatachalam, K.; Malebary, S. Energy efficient offloading mechanism
using particle swarm optimization in 5G enabled edge nodes. Clust. Comput. 2023, 26, 587–598. [CrossRef]

14. Singh, A.; Sharma, A.; Rajput, S.; Bose, A.; Hu, X. An investigation on hybrid particle swarm optimization algorithms for
parameter optimization of PV cells. Electronics 2022, 11, 909. [CrossRef]

15. Ding, W.; Fang, W. Target tracking by sequential random draft particle swarm optimization algorithm. In Proceedings of the 2018 IEEE
International Smart Cities Conference (ISC2), Kansas City, MI, USA, 16–19 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7.

16. Rayala, S.S.; Kumar, N.A. Ashok. Particle Swarm Optimization for robot target tracking application. Mater. Today Proc. 2020, 33,
3600–3603. [CrossRef]

17. Keshavarz-Mohammadiyan, A.; Khaloozadeh, H. PSO-PF target tracking in range-based Wireless Sensor Networks with distance-
dependent measurement noise. In Proceedings of the 2015 23rd Iranian Conference on Electrical Engineering, Tehran, Iran,
10–14 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 911–915.

18. Wu, Y.; Wu, C.; Wang, L.; Sun, L.; Wang, D. Radar Target Tracking Algorithm Based on New Particle Swarm Optimization Particle
Filter. In Proceedings of the 2021 10th International Conference on Networks, Communication and Computing, Athens, Greece,
19–22 July 2021; pp. 91–96.

19. Cheng, Z.; Fan, L.; Zhang, Y. Multi-agent decision support system for missile defense based on improved PSO algorithm. J. Syst.
Eng. Electron. 2017, 28, 514–525.

20. Xu, Z.; Gao, Y.; Jing, W.; Wang, Y. Multidisciplinary integrated design of long-range ballistic missile using PSO algorithm. J. Syst.
Eng. Electron. 2020, 31, 335–349.

21. Zhang, Z.; Seah, H.S.; Quah, C.K.; Sun, J. GPU-accelerated real-time tracking of full-body motion with multi-layer search. IEEE
Trans. Multimed. 2012, 15, 106–119. [CrossRef]

22. dos Santos JÚnior, J.G.; do Monte Lima, J.P.S. Particle swarm optimization for 3D object tracking in RGB-D images. Comput.
Graph. 2018, 76, 167–180. [CrossRef]

23. Rymut, B.; Kwolek, B. Real-time multiview human pose tracking using graphics processing unit-accelerated particle swarm
optimization. Concurr. Comput. Pract. Exp. 2015, 27, 1551–1563. [CrossRef]

24. Huang, H.-C. A Taguchi-based heterogeneous parallel metaheuristic ACO-PSO and its FPGA realization to optimal polar-space
locomotion control of four-wheeled redundant mobile robots. IEEE Trans. Ind. Inform. 2015, 11, 915–922. [CrossRef]

25. Li, S.-A.; Hsu, C.-C.; Wong, C.-C.; Yu, C.-J. Hardware/software co-design for particle swarm optimization algorithm. Inf. Sci.
2011, 181, 4582–4596. [CrossRef]

26. Ettouil, M.; Smei, H.; Jemai, A. Particle swarm optimization on fpga. In Proceedings of the 2018 30th International Conference on
Microelectronics (ICM), Sousse, Tunisia, 16–19 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 32–35.

27. Tavares, Y.M.; Nedjah, N.; de Macedo Mourelle, L. Hardware/software co-design system for template matching using Particle
Swarm Optimization and Pearson’s Correlation Coefficient. In Proceedings of the 2016 IEEE Latin American Conference on
Computational Intelligence (LA-CCI), Bariloche, Argentina, 20–23 February 2017; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6.

28. Weitz, L.A. Derivation of a Point-Mass Aircraft Model Used for Fast-Time Simulation; MITRE Corporation: Bedford, MA, USA, 2015.
29. Singer, R.A. Estimating optimal tracking filter performance for manned maneuvering targets. IEEE Trans. Aerosp. Electron. Syst.

1970, 4, 473–483. [CrossRef]
30. Li, X.R.; Jilkov, V.P. Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Trans. Aerosp. Electron. Syst. 2003, 39,

1333–1364.
31. Yager, R.J. Army research lab aberdeen proving ground md weapons and materials research directorate. In Generating Pseudorandom

Numbers from Various Distributions Using C++; US Army Research Laboratory: Aberdeen Proving Ground, MD, USA, 2014.
32. Wright, D.C.; Kadyshev, T. An analysis of the North Korean Nodong missile. Sci. Glob. Secur. 1994, 4, 129–160. [CrossRef]

https://doi.org/10.3390/s19061371
https://www.ncbi.nlm.nih.gov/pubmed/30893837
https://doi.org/10.1109/ACCESS.2022.3142859
https://doi.org/10.1016/j.jfranklin.2013.01.006
https://doi.org/10.1016/j.jobe.2019.101014
https://doi.org/10.1007/s10586-022-03609-z
https://doi.org/10.3390/electronics11060909
https://doi.org/10.1016/j.matpr.2020.05.660
https://doi.org/10.1109/TMM.2012.2225040
https://doi.org/10.1016/j.cag.2018.09.011
https://doi.org/10.1002/cpe.3329
https://doi.org/10.1109/TII.2015.2440173
https://doi.org/10.1016/j.ins.2010.07.017
https://doi.org/10.1109/TAES.1970.310128
https://doi.org/10.1080/08929889408426397


Sensors 2023, 23, 8456 23 of 23

33. Nasr, M.; Farouk, O.; Mohamedeen, A.; Elrafie, A.; Bedeir, M.; Khaled, A. Benchmarking meta-heuristic optimization. arXiv 2020,
arXiv:2007.13476. [CrossRef]

34. Ghambari, S.; Lepagnot, J.; Jourdan, L.; Idoumghar, L. A comparative study of meta-heuristic algorithms for solving UAV path
planning. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bengaluru, India, 18–21
November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 174–181.

35. Abdor-Sierra, J.A.; Merchán-Cruz, E.A.; Rodríguez-Cañizo, R.G. A comparative analysis of metaheuristic algorithms for solving
the inverse kinematics of robot manipulators. Results Eng. 2022, 16, 100597. [CrossRef]

36. Sahin, O.; Akay, B. Comparisons of metaheuristic algorithms and fitness functions on software test data generation. Appl. Soft
Comput. 2016, 49, 1202–1214. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.35444/IJANA.2020.11063
https://doi.org/10.1016/j.rineng.2022.100597
https://doi.org/10.1016/j.asoc.2016.09.045

	Introduction 
	Background 
	Problem Description 
	The Problem of Target Tracking 
	The Problem of Real Time 

	Proposed Method 
	Overview of the Proposed Method 
	Computation Time Profiling 
	Parallelization Method #1: Random Value to Particles 
	Parallelization Method #2: Predicted Measurement and Associated Likelihood Functions 
	Parallelization Method #3: Update Particles 
	Hardware Platform Design 

	Results 
	Hardware Platform Design Results 
	Simulation Results 
	Results of Algorithm Acceleration with FPGA 
	Analysis and Discussion 

	Conclusions 
	References

