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Abstract: Vegetation plays a fundamental role within terrestrial ecosystems, serving as a corner-
stone of their functionality. Presently, these crucial ecosystems face a myriad of threats, including
deforestation, overgrazing, wildfires, and the impact of climate change. The implementation of
remote sensing for monitoring the status and dynamics of vegetation ecosystems has emerged as
an indispensable tool for advancing ecological research and effective resource management. This
study takes a comprehensive approach by integrating ecosystem monitoring indicators and aligning
them with the objectives of SDG15. We conducted a thorough analysis by leveraging global 500 m
resolution products for vegetation Leaf Area Index (LAI) and land cover classification spanning the
period from 2016 to 2020. This encompassed the calculation of annual average LAI, identification of
anomalies, and evaluation of change rates, thereby enabling a comprehensive assessment of the global
status and transformations occurring within major vegetation ecosystems. In 2020, a discernible
rise in the annual Average LAI of major vegetation ecosystems on a global scale became evident
when compared to data from 2016. Notably, the ecosystems demonstrating a slight increase in area
constituted the largest proportion (34.23%), while those exhibiting a significant decrease were the
least prevalent (6.09%). Within various regions, such as Eastern Europe, Central Africa, and South
Asia, substantial increases in both forest ecosystem area and annual Average LAI were observed.
Furthermore, Eastern Europe and Central America recorded significant expansions in both grassland
ecosystem area and annual average LAI. Similarly, regions experiencing notable growth in both
cropland ecosystem areas and annual average LAI encompassed Southern Africa, Northern Europe,
and Eastern Africa.

Keywords: vegetation status; global distribution; leaf area index; remote sensing monitoring

1. Introduction

Vegetation is an important component of terrestrial ecosystems, playing a crucial role
in climate regulation, the water cycle, soil conservation, and other aspects. It provides
essential ecosystem services [1], and also provides habitats for many threatened and endan-
gered species. However, at present, many vegetated areas are threatened by continuous
deforestation, overgrazing, fires, climate change, and various other factors, leading to
the degradation of vegetation ecosystem services [2]. Therefore, continuous large-scale
monitoring of vegetation conditions is needed.

Remote sensing monitoring of vegetation ecosystem conditions and change character-
istics has become an essential tool for ecological research and resource management. In
September 2015, the United Nations adopted the “2030 Agenda for Sustainable Develop-
ment” during the Sustainable Development Summit, which set 17 Sustainable Development
Goals (SDGs) to be achieved by 2030 [3]. The results of ecological environmental remote
sensing monitoring for vegetation ecosystems can provide accurate and effective infor-
mation support for countries to fulfill their SDGs on sustainable development, ecological
environmental protection, and the development and utilization of natural resources.
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Remote sensing indicators of vegetation conditions are often used for ecological and
biodiversity monitoring. As early as 1968, Carneggie released a report on the application
of remote sensing in forestry, discussing methods and technological systems for forestry
resource management and monitoring using remote sensing data [4]. Noss proposed a set
of long-term biodiversity monitoring indicators, categorized into compositional, structural,
and functional indicators, and the methods for obtaining these indicators include ground
measurements and remote sensing [5]. Murtaugh subsequently proposed a statistical
assessment system for ecological indicators [6]. Lawley reviewed ground measurement and
remote sensing methods and indicators used in Australia’s vegetation condition monitoring
program, suggesting that a monitoring approach combining ground observations and
remote sensing can accurately describe vegetation conditions. Furthermore, the integration
of multiple sources and scales, including data from unmanned aerial vehicles and laser
scanning, can provide important data support for natural resource management in the
future [2]. Tehrany reviewed various methods and attributes for assessing vegetation
conditions, including vegetation cover, canopy height, and leaf area. Remote sensing
methods can efficiently obtain information on vegetation attributes, but they also have
limitations in terms of observation capabilities, and cannot observe under cloudy conditions.
However, with the continuous development of remote sensing technology, these issues
are gradually being addressed [7]. Oliver proposed a new vegetation integrity index
for quantifying the loss and benefits of terrestrial biodiversity value, which can better
capture the diversity and complexity of vegetation composition and structure [8].David
reviewed the analytical research on dry forests in southern Africa from 1997 to 2020. The
combination of remote sensing technology helps assess and monitor forest ecosystems,
and the most commonly used products include biomass, LAI, NDVI, etc., in addition to
long-term monthly data with high resolution, is the future of forest dynamic monitoring [9].

Vegetation condition monitoring based on remote sensing data has been applied and
developed at different regional scales worldwide. Zainal assessed the potential of Landsat
satellite data for monitoring changes in marine habitats of coral reefs along the eastern
coast of Bahrain [10]. Sims and Colloff used MODIS NDVI data to conduct long-term
monitoring of vegetation in floodplain areas of the Paroo River wetlands in Australia,
quantifying the vegetation’s response to flooding [11]. Karfs generated land condition
monitoring data using Landsat TM and SPOT5 satellite data and conducted comprehensive
land monitoring in two pastoral regions of Queensland, Australia [12]. Willis applied
multi-source remote sensing data to detect changes in land use, land cover, vegetation
phenology, and other key parameters in U.S. protected areas [13]. Pond monitored forest
cover changes in Ontario, Canada, between 1990 and 2000, showing an overall increase
ranging from 1.7% to 10.9% [14]. Liu studied the spatiotemporal changes and driving factors
of vegetation cover in the “Mountain-Oasis-Desert” coupled system and its 11 subsystems
in Xinjiang, China, from 1982 to 2013, using GIMMS-NDVI3g and traditional climate
data [15]. Campos used ground-based measurements and Landsat 8 satellite remote
sensing data to obtain dry forest composition and structural indicators in Argentina’s
Iguazú National Park and its surrounding area, demonstrating that remote sensing data
can indicate plant species richness and serve as an effective tool for resource management
and conservation [16]. Zhao utilized NDVI, land cover, and climate data to conduct trend
analysis and regression analysis, studying vegetation changes in the Guanzhong Basin in
northwestern China from 2000 to 2020 and their response to climate change and human
activities [17]. Krtalic extracted and analyzed forest cover conditions in Zagreb, Croatia,
using Sentinel-2 multi-temporal image data, calculating vegetation indices such as NDVI,
RVI, and GRVI, and detecting changes in vegetation index classification values [18]. Suir
constructed a method that combined ground observation and remote sensing inversion,
used hyperspectral images to estimate wetland plant-community quality and vegetation
biomass, and developed a wetland vegetation condition indictor system for three Lake
Ontario wetland areas [19]. Kayet evaluated the health of vegetation around a mining area
using airborne hyperspectral data, simultaneously quantifying the impact of mining on
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vegetation health [20]. Amputu developed indicators for potential forage biomass and
pasture cover types and used drone data to monitor the semi-arid grassland conditions in
central Namibia [21]. Remote sensing techniques have evolved from the initial assessment
of vegetation classification and composition indicators to the current precise monitoring of
various indicators such as coverage, Leaf Area Index (structural indicators) and primary
productivity, vegetation health, and phenology (functional indicators).

Most of the above-mentioned studies focused on the remote sensing monitoring of
ecological environments at small regional scales. Since 2012, the Chinese Ministry of Science
and Technology has been publishing the “Global Ecological Environment Remote Sensing
Monitoring Report” annually for ten consecutive years, which includes reports for the
years 2015, 2017, and 2021 [22–24]. These reports describe the remote sensing monitoring
of global and regional ecological environments. The “Global Ecosystems and Environment
Observation Analysis Report Cooperation for the Year 2017” analyzed indicators such
as the annual maximum Leaf Area Index and annual maximum vegetation coverage to
assess the vegetation ecosystem status and its changes from 2010 to 2015 in ten regions
along the “Belt and Road” initiative [25,26]. The “Global Ecosystem and Environment
Observation Analysis Research Cooperation for the Year 2021” analyzed indicators such as
the maximum vegetation coverage, annual cumulative net primary productivity (NPP), and
vegetation growth condition index, to assess the vegetation growth status and its changes
from 2015 to 2020 in 19 global regions, covering both terrestrial and aquatic ecosystems [27].
Starting in 2016, the Aerospace Information Research Institute of the Chinese Academy of
Sciences has been continuously releasing the “Green Book of Remote Sensing Monitoring:
China Sustainable Development Remote Sensing Monitoring Report,” which focuses on
the remote sensing monitoring of vegetation conditions in China [28–32].

2. Research Area and Data
2.1. Research Area

To analyze the status and characteristics of global vegetation ecosystems, this paper
divides the global terrestrial ecosystem into 19 geographic regions: East Asia, North Asia,
Southeast Asia, South Asia, Central Asia, West Asia, Oceania, Eastern Europe, Northern
Europe, Western Europe, Southern Europe, Northern Africa, Eastern Africa, Western Africa,
Central Africa, Southern Africa, North America, Central America, and South America.
For each of these regions (as shown in Figure 1), indicator calculations and analyses are
conducted separately.
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2.2. Data

The Leaf Area Index (LAI) is defined as one-half of the total green leaf area per unit
horizontal ground surface area [33]. It is an essential parameter for describing the function
of vegetation canopies and a significant biophysical parameter that influences vegetation
photosynthesis, transpiration, and land surface energy balance. It has been listed as an
Essential Climate Variable (ECV) by the global climate change research community [34]. It
is not difficult to see from the definition that the LAI is a dimensionless parameter. Based
on observational data, the global average LAI values range from 1.98 to 2.31; the annual
average LAI based on global remote sensing LAI products is approximately 1.50, and the
annual average LAI during the peak growth period reaches approximately 2.0 [35]. LAI is
often used in global vegetation change, vegetation phenology investigation, climate change,
land surface model, crop yield estimation, biodiversity tracking, forest management, and
other fields [35].

This study utilizes the Multi-source data Synergized Quantitative remote sensing
production system (MuSyQ) LAI product version 2.0 from 2016 to 2020 for the analysis
of the main vegetation ecosystem status and change characteristics. The MuSyQ LAI
product was developed by the Aerospace Information Research Institute, Chinese Academy
of Sciences. It has a temporal resolution of 5 days and a spatial resolution of 500 m.
The product employs an LAI inversion algorithm that considers vegetation mixed pixels
and a neural network-based LAI reconstruction algorithm driven by meteorological data.
FY-3A/B MERSI data and MODIS data are used synergistically for global LAI inversion
and product generation. The MuSyQ LAI product is validated based on high-resolution
ground LAI reference maps, and the average relative error is 15.22%, with a validation
accuracy of 85% [36–38].

In order to extract the main vegetation ecosystems from the global terrestrial ecosys-
tem, this study used the MuSyQ land cover product. The MuSyQ land cover product is
constructed using existing 2020 high-resolution global land cover classification products as
a sample set. A random forest model is employed, and the product is generated through a
combination of global geographical partitioning, sample migration, and model migration
methods using FY-3A/B MERSI data and MODIS data. The product includes ten categories:
cropland, forest, grassland, shrubland, wetland, water body, tundra, impervious surface,
and permanent ice and snow. The overall accuracy of the product’s direct validation in the
Chinese region is 90.78%, with a Kappa coefficient of 0.86 [39]. The main analysis subjects
chosen in this study are forest ecosystems, grassland ecosystems, and cropland ecosystems.
Forest ecosystems are characterized by biotic communities dominated by trees and shrubs,
corresponding to the land cover types of forest and shrubland. Grassland ecosystems
consist mainly of herbaceous plants and correspond to the land cover types of grassland
and tundra. Cropland ecosystems correspond to the land cover type of cropland.

3. Method

The United Nations’ Sustainable Development Goal (SDG) 15 explicitly focuses on
protecting, restoring, and promoting the sustainable use of terrestrial ecosystems, sustain-
able forest management, combating desertification, halting and reversing land degradation,
and halting biodiversity loss. This study combines ecosystem monitoring indicators with
the requirements of SDG15. It utilizes a global 500 m resolution vegetation Leaf Area Index
product from 2016 to 2020 to calculate annual average Leaf Area Index, anomaly values,
and change rates. These indicators are used to assess the status and changes in major
vegetation ecosystems globally. The technical route is shown in Figure 2.
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(1) Annual Average Leaf Area Index

The annual Average Leaf Area Index (ALAI) is used to represent the annual average
level of vegetation growth. This study used the MuSyQ LAI global 5-day products to
calculate the average Leaf Area Index for the entire globe and 19 regions for the years 2016
and 2020, respectively. The calculation formula is as follows:

ALAI =

n
∑

i=1
LAIi

n
(1)

where n represents the number of LAI values for a particular pixel in one year, LAIi refers
to the i-th value of LAI, and ALAI is the average LAI value for that pixel over the year.

(2) Annual Maximum Leaf Area Index

Using the maximum Leaf Area Index for a year to represent the most vigorous vegeta-
tion growth during that year. This article is based on the MuSyQ LAI global 5-day product
to calculate the maximum Leaf Area Index for the entire world and 19 regions for the years
2016 and 2020.

(3) Anomaly of the annual average Leaf Area Index

Using the anomaly of the annual average Leaf Area Index (LAI) to depict the spa-
tiotemporal variations in vegetation growth. This method refers to the difference between
the annual average LAI and the long-term average LAI. The article is based on the MuSyQ
LAI global 5-day product to calculate the annual average LAI anomaly for the entire world
and 19 regions from 2016 to 2020. The formula for calculating the LAI anomaly is as follows:

Bias = LAIm −

m
∑

j=1
LAIj

m
(2)

where m represents the number of years, LAIj denotes the LAI value of the corresponding
pixel in the j-th year, and Bias is the anomaly value of that pixel.

(4) Annual average Leaf Area Index change rate

The change rate is used to study the long-term variations in vegetation parameters.
Based on the least squares method, the regression line of vegetation’s annual average LAI
against time is calculated, resulting in a slope image. The specific calculation process
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involves taking the change rate over the five years for each pixel based on the 2016–2020
MuSyQ LAI product. The formula for calculating the change rate is as follows:

K =
m × ∑m

j=1 j × LAIj − (∑m
j=1 j)(∑m

j=1 LAIj)

m × ∑m
j=1 j2 − (∑m

j=1 j)2 (3)

where m represents the number of years, which is 5 in this study. LAIj denotes the vegeta-
tion’s Leaf Area Index value of the corresponding pixel in the year, and K represents the
change trend of that pixel during the five-year period from 2016 to 2020.

To evaluate the annual average Leaf Area Index change rate, this study classifies
the change rates into different levels: 0.1 < K ≤ 1 indicates a significant increase,
0.01 < K ≤ 0.1 indicates a slight increase, −0.01 < K ≤ 0.01 indicates no significant
change, −0.1 < K ≤ −0.01 indicates a slight decrease, and K ≤ −0.1 indicates a significant
decrease.

4. Monitoring Results

The distribution of the global annual Average Leaf Area Index in 2016 and 2020
(Figure 3) reveals the following: in 2016, the total coverage area of forests, grasslands, and
croplands worldwide was 102.929 million square kilometers, accounting for approximately
69.13% of the global land surface area. The maximum value of the annual ALAI was
6.88. By 2020, the global vegetation coverage area decreased to 102.8018 million square
kilometers, representing approximately 69.04% of the global surface area. The vegetation
coverage area was reduced by approximately 127,200 square kilometers, accounting for
approximately 0.85‰ of the global land surface area. The maximum value of the annual
ALAI was 6.89. These data indicate that, during this five-year period, global vegetation
coverage decreased slightly, while the annual ALAI showed a slight increase.
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The distribution of the global annual average Leaf Area Index anomalies from 2016 to
2020 (Figure 4) shows that the anomalies for the annual average LAI of major vegetation
ecosystems ranged from 0.007 to 0.045. The positive anomalies covered approximately
54.86% of the area of major vegetation ecosystems, while the negative anomalies covered
approximately 45.14% of the area. Furthermore, the spatial distribution of the global LAI
change rates from 2016 to 2020 (Figure 5) indicates that the annual average LAI of major
vegetation ecosystems increased during this period, with change rates averaging between
0.2% to 1.9%. The proportion of ecosystems exhibiting slight increases was the highest
at 34.23%, while the proportion of significantly decreased areas was the lowest at 6.09%
(Figure 6).
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4.1. Global Forest Ecosystem Status and Changes

The global forest ecosystem corresponds to forest and shrubland in terms of land cover
types and is mainly distributed in Southeast Asia, northern South America, Central Africa,
northern Asia, northern North America, and the eastern coastal regions of Oceania. The
distribution of the global average Leaf Area Index in 2020 (Figure 7), and the annual average
and annual Maximum Leaf Area Index (Figure 8), show extensive tropical rainforests in
Southeast Asia, northern South America, and Central Africa, located near the equator. Due
to abundant sunlight and water conditions, these tropical rainforests remain evergreen
throughout the year, with an annual ALAI Index exceeding 3.5, and the highest value in
the Southeast Asia region (4.15). Southern Africa mainly consists of tropical dry forests,
where the loss of leaves during the dry season leads to a decrease in the Leaf Area Index.
Hence, despite the widespread distribution of tropical dry forests, the annual ALAI is
the lowest in Southern Africa (0.57). Boreal forests, apart from tropical rainforests, are
the most extensive forest type and are mainly found in northern Europe, northern Asia,
and northern North America. These forests consist mainly of evergreen coniferous trees
due to their long and cold winters, resulting in a relatively lower Leaf Area Index ranging
from 1.17 to 1.48. However, they accumulate a high above-ground biomass due to the long
lifespan of tree species.
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Figure 8. Annual ALAI and maximum LAI of the forest ecosystem in sub-regions for the years 2016
and 2020.

In 2020, among the 19 global geographical sub-regions, 12 of them experienced a
decrease in the area of forest ecosystems compared to 2016. The region with the highest
proportion of forest area reduction was Northern Africa (6.6%), followed by Central Asia
(4.60%). Conversely, the regions with the highest proportion of forest area increase were
South Asia (4.57%) followed by Eastern Europe (1.91%) (Figure 9).The spatial distribution
maps of the global annual average Leaf Area Index anomalies and change rates for the
period 2016–2020 (Figures 10 and 11 and Table 1) show that the regions with a significant
increase in forest LAI included Eastern Europe (with a change rate of 5.3%), Central Africa
(4.98%), and Western Africa (4.55%), among others. Regions with a significant decrease
in forest LAI included Oceania (−1.77%), Central Asia (−0.84%), and North America
(−0.11%), among others. The regions with the highest proportion of significant forest area
increase were Southeast Asia (35.15%), Central Africa (27.22%), and South Asia (26.88%),
while the regions with the highest proportion of significant forest area decrease were
Southeast Asia (23.48%), South America (14.95%), and South Asia (11.16%) (Figure 12).
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Table 1. List of annual average Leaf Area Index anomalies and change rates of forest ecosystem.

Region Change
Rate

LAI
Anomaly Region Change

Rate
LAI

Anomaly Region Change
Rate

LAI
Anomaly

Eastern Europe 5.30% 0.140 East Africa 3.17% 0.060 North Asia 0.98% 0.010

Central Africa 4.98% 0.131 Southeast Asia 3.00% 0.007 Southern Africa 0.80% 0.041

West Africa 4.55% 0.071 Southern Europe 2.77% 0.066 North America −0.11% −0.001

Northern Europe 4.13% 0.128 South America 2.61% 0.102 Central Asia −0.84% −0.045

South Asia 4.09% 0.086 East Asia 2.52% 0.010 Oceania −1.77% −0.033

North Africa 3.62% 0.038 West Asia 2.37% 0.021

Western Europe 3.28% 0.069 Central America 2.00% 0.040
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Figure 12. The area proportion of graded annual average LAI change rates for the forest ecosystem
of 19 regions.

Eastern Europe, Central Africa, and South Asia showed significant increases in both the
forest ecosystem area and annual ALAI. This can be attributed to the proactive reforestation
and afforestation policies adopted by various countries in these regions, as well as forest
protection efforts like land restoration. Additionally, the rising temperatures and increased
precipitation in recent years has provided favorable conditions for forest growth in Eastern
Europe. On the other hand, both Central Africa and Central Asia experienced noticeable
decreases in both forest ecosystem area and ALAI.

4.2. Global Grassland Ecosystem Status and Changes

The grassland ecosystem, corresponding to the surface cover types of grasslands and
tundra, is mainly distributed in regions such as Northern Asia, Oceania, South America,
North America, East Asia, Central Asia, and Central Africa. The spatial distribution of
the global average Leaf Area Index for grasslands in 2020 (Figure 13) and annual average
and annual maximum LAI (Figure 14) show that grassland ecosystems have lower LAI
values compared to forest ecosystems, with annual averages ranging from 0.32 to 2.22. The
region of Central America exhibits the highest annual ALAI value for grassland ecosystems
(2.22), followed by Central Africa (1.60). Regions with higher LAI values are primarily
located at the border zones between tropical rainforests and tropical grasslands, where
precipitation is abundant, and the grasslands are dense. Central Asia has the lowest annual
ALAI value (0.32), followed by South Asia (0.33). Regions with lower LAI values are mainly
situated closer to deserts, characterized by limited precipitation and arid climates, resulting
in sparse and short grasslands.
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for the Years 2016 and 2020.

In 2020, among the 19 global geographical sub-regions, 13 experienced a decrease in
the area of grassland ecosystems compared to 2016. The region with the highest proportion
of grassland area reduction was Western Europe (6.46%), followed by Southeast Asia
(5.73%). On the other hand, the regions with the highest proportion of grassland area
increase were Central America (36.10%) followed by Eastern Europe (9.26%) (Figure 15).
The spatial distribution maps of the global annual average Leaf Area Index anomalies and
change rates for grassland ecosystems during the period 2016–2020 (Figures 16 and 17 and
Table 2) show that regions with a significant increase in grassland LAI included Eastern
Europe (with a change rate of 3.61%), Eastern Africa (3.56%), and Central Africa (1.78%),
among others. Regions with a significant decrease in grassland LAI included Southeast
Asia (−5.08%), Oceania (−1.75%), and Central Asia (−1.47%), among others. The regions
with the highest proportion of significant grassland area increase were Central America
(17.76%), Eastern Europe (16.77%), and Eastern Africa (16.54%), while the regions with the
highest proportion of significant grassland area decrease were Southeast Asia (19.70%),
Central America (10.93%), and South America (7.28%) (Figure 18).
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Table 2. List of annual average Leaf Area Index anomalies and change rates of grassland ecosystem.

Region Change
Rate

LAI
Anomaly Region Change

Rate
LAI

Anomaly Region Change
Rate

LAI
Anomaly

Eastern Europe 3.61% 0.119 Northern Europe 1.18% 0.030 West Africa 0.16% 0.022

East Africa 3.56% 0.072 East Asia 1.14% 0.009 Western Europe −0.22% 0.013

Central Africa 1.78% 0.061 South America 1.06% 0.008 Central Asia −1.47% −0.032

Central America 1.61% 0.067 West Asia 0.57% 0.004 Oceania −1.75% −0.008

Southern Europe 1.52% 0.057 North Asia 0.52% 0.011 Southeast Asia −5.08% −0.083

Southern Africa 1.49% 0.049 North America 0.40% 0.002

North Africa 1.18% 0.027 South Asia 0.27% 0.000
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Figure 18. The area proportion of graded annual average LAI change rates for the grassland ecosystem
of 19 regions.

Eastern Europe and Central America showed significant increases in both the grassland
ecosystem area and annual ALAI, while Southeast Asia, Central Asia, and Western Europe
showed noticeable decreases in both grassland ecosystem area and annual ALAI. These
trends are closely related to the changes in global precipitation. Currently, regions such as
Oceania and Central Asia are experiencing a decrease in precipitation, leading to increased
aridity and a subsequent reduction in grassland LAI. Conversely, higher latitudes like
Eastern Europe are experiencing temperature increases and higher precipitation, leading to
an increase in grassland LAI.

4.3. Global Cropland Ecosystem Status and Changes

The global cropland ecosystem is mainly distributed in regions such as South Asia,
East Asia, South America, Northern Asia, and Eastern Europe. The spatial distribution
of the global annual Maximum Leaf Area Index for cropland in 2020 (Figure 19) and the
table of annual maximum LAI values (Table 3) show that the cropland ecosystem’s LAI is
generally lower than that of forest and grassland ecosystems due to the seasonal cultivation
of crops. The average LAI values range from 0.43 to 1.81. The maximum LAI values range
from 7.17 to 8.57. The region of Northern Europe exhibits the highest annual ALAI value
for cropland (1.81), followed by Southeast Asia (1.54). The region of South America exhibits
the highest annual maximum LAI value for cropland (8.57), followed by Oceania (8.24).
Conversely, the regions of Central Asia and Western Asia have the lowest annual ALAI
values (0.43 and 0.50, respectively). The lowest annual maximum LAI values are in Central
Asia and Southern Europe (7.17 and 7.40 respectively). Regions with higher LAI values are
typically characterized by warm and humid climates, abundant rainfall, and intensive crop
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cultivation. In contrast, regions with lower LAI values are mostly found in arid areas with
high temperatures and limited precipitation, which are unfavorable for crop growth.
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Figure 19. Distribution of annual maximum Leaf Area Index of the global cropland ecosystem in 2020.

Table 3. Annual maximum Leaf Area Index and coverage area of the cropland ecosystem in different
regions for the years 2016 and 2020.

Region 2016 2020

ALAI LAImax Area (104 km2) ALAI LAImax Area (104 km2)

South America 1.36 8.28 176.04 1.38 8.57 178.11

Oceania 1.2 7.99 63.03 1.11 8.24 61.19

East Africa 1.06 8.09 86.21 1.15 8.24 89.02

South Asia 0.79 7.9 259.54 0.93 8.22 255.99

Southeast Asia 1.52 8.3 88.8 1.54 8.21 89.66

Central Africa 0.88 7.78 11.71 0.85 8.03 12.41

Central America 1.37 8.2 33.36 1.28 7.89 32.95

Western Europe 1.37 7.58 58.97 1.49 7.88 58.96

Eastern Europe 0.9 7.64 105.78 0.99 7.82 104.36

Northern Europe 1.47 8.03 32.44 1.81 7.81 33.33

North America 1.02 8.04 242.95 1.02 7.78 240.28

North Asia 0.79 7.75 123.24 0.82 7.78 120.5

East Asia 0.96 7.85 187.3 1.03 7.7 188.48

Southern Africa 0.7 7.13 12.35 0.81 7.59 15.37

West Africa 0.73 7.54 79.51 0.72 7.58 79.27

North Africa 0.47 7.31 46.04 0.55 7.58 47.91

West Asia 0.47 7.52 68.55 0.5 7.57 70.75

Southern Europe 0.9 7.67 53.27 0.95 7.4 54.98

Central Asia 0.5 7.2 39.84 0.43 7.17 38.35
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In 2020, 9 of the 19 global geographical sub-regions experienced a decrease in the
area of cropland ecosystems compared to 2016. The region with the highest proportion
of cropland area reduction was Central Asia (3.74%), followed by Oceania (2.91%). The
regions with the highest proportion of cropland area increase were Southern Africa (24.51%),
followed by Central Africa (5.97%) (Figure 20). The spatial distribution maps of the global
annual average Leaf Area Index anomalies and change rates for cropland ecosystems
during the period 2016–2020 (Figures 21 and 22 and Table 4) show that regions with a
significant increase in cropland LAI included Northern Europe (with a change rate of
7.60%), Eastern Africa (4.69%), and South Asia (3.30%), among others. Regions with a
significant decrease in cropland LAI included Oceania (−1.86%), Central Asia (−1.29%),
and Southeast Asia (−1.08%), among others. The regions with the highest proportion of
significant cropland area increase were Northern Europe (33.15%), Eastern Africa (18.34%),
and Western Europe (12.91%), while the regions with the highest proportion of significant
cropland area decrease were Southeast Asia (13.91%), Oceania (13.59%), and South America
(8.34%) (Figure 23).
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Northern Europe 7.60% 0.193 North Africa 1.97% 0.017 North Asia 0.28% 0.018
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Cropland ecosystems in Southern Africa, Northern Europe, and Eastern Africa showed
significant increases in both area and annual ALAI, while Oceania and Central Asia ex-
perienced noticeable decreases in both cropland area and annual ALAI. The increase in
cropland area in Northern Europe, mainly concentrated in countries like Denmark and
Sweden, is attributed to the government’s strong focus on agriculture and the implementa-
tion of policies like the “Agriculture Law” to protect agricultural land. Conversely, regions
in Western Oceania and Central Asia have experienced severe drought due to continuous
declines in precipitation, resulting in a significant reduction in the annual ALAI.

5. Conclusions

This paper used MuSyQ global Leaf Area Index products from 2016 and 2020 to
calculate the annual Average Leaf Area Index, annual maximum Leaf Area Index, annual
average Leaf Area Index anomaly, and annual average Leaf Area Index change rate, and
analyzed the global status and changing characteristics of forest, grassland and farmland
ecosystems in 19 geographical sub-regions. The results show that in 2020, the annual
Average Leaf Area Index of major vegetation ecosystems in the world showed an overall
increase compared with 2016. The annual Average Leaf Area Index of global forests,
grasslands and cropland ecosystems in 2020 increased compared with 2016, and the increase
has reached 5%. The area of forest and grassland ecosystems has decreased compared with
2016. This is due to man-made and natural causes such as deforestation and fires. The
monitoring indicators and technical routes used in this article to analyze and monitor the
status and change characteristics of the vegetation ecosystem can provide analytical ideas
for remote sensing monitoring of the ecological environment at a large regional scale and
even globally; the analytical data and conclusions can serve as a basis for judging the quality
of the ecological environment and the effectiveness of ecological environment protection. In
the future, while continuing to monitor the status and changing characteristics of vegetation
ecosystems, we should also add functional indicators and increase the length of time series,
and analyze the changing characteristics and causes of various vegetation ecosystems,
including global change, climate warming, and other scales.
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