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Abstract: Multi-object pedestrian tracking plays a crucial role in autonomous driving systems,
enabling accurate perception of the surrounding environment. In this paper, we propose a com-
prehensive approach for pedestrian tracking, combining the improved YOLOv8 object detection
algorithm with the OC-SORT tracking algorithm. First, we train the improved YOLOv8 model on
the Crowdhuman dataset for accurate pedestrian detection. The integration of advanced techniques
such as softNMS, GhostConv, and C3Ghost Modules results in a remarkable precision increase of
3.38% and an mAP@0.5:0.95 increase of 3.07%. Furthermore, we achieve a significant reduction of
39.98% in parameters, leading to a 37.1% reduction in model size. These improvements contribute to
more efficient and lightweight pedestrian detection. Next, we apply our enhanced YOLOv8 model
for pedestrian tracking on the MOT17 and MOT20 datasets. On the MOT17 dataset, we achieve
outstanding results with the highest HOTA score reaching 49.92% and the highest MOTA score reach-
ing 56.55%. Similarly, on the MOT20 dataset, our approach demonstrates exceptional performance,
achieving a peak HOTA score of 48.326% and a peak MOTA score of 61.077%. These results validate
the effectiveness of our approach in challenging real-world tracking scenarios.

Keywords: multi-object pedestrian tracking; YOLOv8; GhostNet; OC-SORT; object detection

1. Introduction

In recent years, the surge in traffic accident fatalities has been partly attributed to the
growing vehicle populace. In response, considerable endeavors have been directed towards
advancing pedestrian detection [1] and crosswalk tracking systems [2]. Multiple-Object
Tracking (MOT), a computer vision task that identifies objects in videos and assigns distinct
identities [3], has gained prominence. The advent of You Only Look Once (YOLO) in
2016, combined with the DeepSORT tracking algorithm, has found diverse applications
in industries, agriculture, transportation, and beyond [4]. However, the realm of MOT is
accompanied by several challenges. These encompass object occlusion and intersection,
varying lighting conditions, a proliferation of targets, resembling appearances, and camera
motion. In intricate scenes, objects might be concealed by occluders or other entities, im-
peding precise tracking. Changes in illumination can alter object characteristics, adversely
influencing tracker performance. Scenarios housing numerous targets can impact tracking
speed and precision. Similar object appearances can lead to confusion and tracking discrep-
ancies. Lastly, camera movement can alter target views and positions, thereby affecting
tracking accuracy.

Visual target tracking has been a dynamic research focus over the past decade. Initial
classical approaches such as Meanshift [5] and particle filters [6] are primarily tailored for
single-target tracking. However, their precision is modest, posing challenges in addressing
intricate scenes. Nevertheless, the realm has witnessed rapid strides in deep learning,
substantially elevating target detection performance and fostering the rise of detection-
based tracking (DBT) methods. In DBT, objects are detected in each frame and then
associated based on estimated instance similarity. Effective object detection leads to strong
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spatial proximity cues between objects across consecutive frames as gauged by metrics such
as Intersection over Unions (IoUs) or center distances. However, while this approach thrives
in simpler scenarios, it can falter in crowded or occluded environments. The drive toward
heightened accuracy has prompted the development of more intricate and comprehensive
networks in object recognition and tracking [7]. Nonetheless, it is important to note that
greater accuracy does not always correlate with improved efficiency, particularly in terms
of scalability and speed. In many industrial applications, such as automatic transmission,
object counting, and video surveillance, the practical deployment of complex network
models is hindered by factors such as cost constraints and the constrained availability of
suitable chips. This scenario poses challenges in efficiently implementing these models on
smaller processors with limited resources for real-time detection.

This paper propose a YOLOv8-OCSORT network model with improved accuracy
and complexity balance for pedestrian target tracking. The contributions of this paper are
summarized as follows:

1. SoftNMS for improved pedestrian detection. In pedestrian detection, occlusion poses a
common challenge, and traditional NMS techniques often result in missed detections.
To address this issue, we introduce SoftNMS to enhance the performance of pedes-
trian detection under occlusion conditions. SoftNMS effectively handles overlapping
bounding boxes and improves the accuracy of pedestrian detection.

2. GhostNet for optimized model complexity. Traditional deep neural network models
are typically complex and challenging to deploy on resource-constrained devices. In
this study, we leverage a GhostNet module to optimize the YOLOv8 architecture. By
sharing weights across multiple convolutional layers, it reduces model complexity while
maintaining performance, enabling efficient execution on resource-limited devices.

3. Integration of OCSORT tracking algorithm and REID model. We combine the OCSORT
(GIOU) tracking algorithm with a mobileNetV2-based REID model. The OCSORT
algorithm effectively handles occlusion, while the REID model ensures robust iden-
tity verification and tracking consistency. By integrating object detection and object
tracking, our approach achieves outstanding performance in pedestrian tracking in
complex scenarios.

2. Related Works

Multi-object tracking algorithms focus on tracing the trajectories of objects of interest,
such as people and vehicles, across various frames in a video sequence [8]. Recent trends
in multi-object tracking have been extensively reviewed by Guo et al. [9]. In their survey,
the authors categorize these methods into three core groups: tracking-by-detection, joint
detection and tracking, and transformer-based tracking. The tracking-by-detection frame-
work is more commonly employed in industrial applications. In the tracking-by-detection
paradigm, the MOT algorithm initially performs target detection on each frame of the video
sequence. It subsequently refines the targets based on the context of the frame, effectively
capturing all targets within the image. The process then transforms into an object associa-
tion challenge between consecutive frames. This is achieved by constructing a similarity
matrix using metrics such as the Intersection over Union (IOU) and appearance, followed
by solving through algorithms such as the Hungarian algorithm or greedy algorithm.

The integration of Convolutional Neural Networks (CNNs) [10] has played a pivotal
role in advancing detection algorithms, enhancing both accuracy and speed [11]. This
progress has paved the way for the seamless integration of robust detection algorithms
into target-oriented tracking systems, culminating in heightened tracking performance.
RetinaNet, a notable object detector, harnesses CNNs alongside Feature Pyramid Networks
(FPN) [12] and two Fully Convolutional Networks (FCNs) [13]. It effectively employs the
focal loss function to assign greater weightage to challenging samples, skillfully balancing
positive and negative samples.

YOLO detectors have evolved from V1 to V8, with the latest iterations achieving an
optimal equilibrium between accuracy and speed. This evolution has positioned YOLO as
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a favored choice in numerous research endeavors [14]. The YOLO series provides efficient
object detection with real-time processing capabilities, making it an appealing option
for integration into tracking systems. The SORT algorithm leverages a simple Kalman
filter for frame-by-frame data relevance and the Hungarian algorithm for association
measurement. This simplicity empowers SORT to achieve commendable performance at
high frame rates. However, due to its disregard for the object’s surface features, SORT’s
accuracy is compromised when object state estimation uncertainty is high. Consequently,
the introduction of cascade matching and other enhancements has given rise to DeepSORT,
which exhibits superior performance on the foundation of SORT’s simplicity.

Joint detection and tracking algorithms commonly operate by detecting two consec-
utive frames in a video and subsequently employing diverse strategies to evaluate the
similarity between targets in both frames. This facilitates simultaneous tracking and pre-
diction. Prominent algorithms in this category include FairMOT [15], CenterTrack [16], and
QDTrack [17]. On the other hand, transformer-based tracking integrates the Transformer
architecture into multi-object tracking. Presently, two principal approaches stand out:
TransTrack [18] and TrackFormer [19]. In TransTrack, the feature map of the current frame
serves as the Key, while the Query is a composition of the target feature from the previous
frame and a collection of target features acquired from the current frame. These inputs
drive the entire network’s operation.

3. Proposed Method

Our proposed method consists of two main components: Enhanced YOLOv8 with
softNMS and Ghost modules, and OC-SORT with GIOU for multi-object tracking.

3.1. The Proposed Network Structure

The YOLOv8 detection algorithm represents a notable progression within the YOLO
series, integrating cutting-edge techniques and design principles to accomplish precise and
efficient object detection. YOLOv8 builds upon the foundational architecture of YOLOv5
while introducing significant enhancements. The C3 module of YOLOv5 is substituted by
the C2f module, drawing inspiration from the Cross-Stage Partial (CSP) concept. This amal-
gamation harnesses the strengths of the C3 module and the Efficient Lightweight Attention
Network (ELAN) from YOLOv7, yielding refined gradient flow insights and a lightweight
configuration. The YOLOv8 backbone adopts a Spatial Pyramid Pooling Fusion (SPPF)
module, employing three successive max-pooling layers with a size of 5 × 5. These pooled
feature maps are then concatenated, effectively encompassing objects of diverse scales. This
blueprint ensures accurate detection prowess while upholding computational efficiency.
In the neck component, the Path Aggregation Network and Feature Pyramid Network
(PAN-FPN) methodology is embraced for feature fusion. This approach optimizes the
integration and utilization of feature layers across varying scales, consequently enhancing
overall detection performance. The neck module seamlessly integrates two upsampling
operations, multiple C2f modules, and a decoupled head structure inspired by YOLOx.
This combination accentuates object localization and classification precision.

To further improve the performance of YOLOv8, an improved YOLOv8 algorithm is
proposed which combines the soft Non-Maximum Suppression (softNMS), GhostConv,
and C3Ghost Modules. This combination aims to enhance the spatial awareness, suppress
redundant detections, and optimize the network architecture. The network architecture of
the proposed Network Structure is depicted in Figure 1.
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Figure 1. The structure of the Improved-YOLOv8.

3.1.1. Softnms Implementation

In the original YOLOv8 framework, Non-Maximum Suppression (NMS) is employed
to refine candidate boxes. However, the selection of the NMS threshold significantly
influences the accuracy of pedestrian detection. A threshold set too conservatively may
suppress valid positive instances, while an excessively lenient threshold could contribute
to a rise in false positive instances. In light of the prevalent challenge of occlusion in
pedestrian detection, conventional NMS often results in missed detections. To overcome
this limitation, we integrated SoftNMS [20] to enhance pedestrian detection performance
in occluded scenarios. SoftNMS is strategically tailored to address occlusion cases, and is
mathematically expressed as follows:

si =

{
si(1− IOU(M, ti)), IOU(M, ti) ≥ Nt,

si, IOU(M, ti) < Nt.
(1)

where si denotes the score of the i-th candidate box, M and ti denote the coordinates of
the candidate box with the highest score and the coordinates of the i-th candidate box,
respectively, the function IOU(.) quantifies the intersection over union ratio between the
i-th candidate box and M, and Nt designates a predetermined threshold.

3.1.2. GhostNet Module Utilization

GhostNet stands out as a neural network architecture that strategically balances
heightened accuracy with minimal computational overhead. It specifically addresses
the limitations inherent in conventional deep neural network models, which tend to be
excessively intricate for deployment on resource-limited devices. In this study, we harness
the potential of the GhostNet module to amplify the performance of the YOLOv8 framework
within scenarios constrained by resources. Our strategy involves optimizing the YOLOv8
architecture by replacing the original C2f module with a C3Ghost module sourced from
GhostNet. By integrating the C3Ghost module, computational complexity is diminished
through weight sharing across multiple convolution layers. Consequently, this adaptation
culminates in a model that boasts fewer parameters without compromising on accuracy.
This refinement is particularly advantageous for real-time applications such as pedestrian
detection. Additionally, we replace the conventional conv module with the Ghostconv
module, a streamlined alternative to traditional convolutional layers. This transition curtails
the count of model parameters, thereby enabling the effective allocation of computational
resources. Refer to Figure 2 for a visual representation of the GhostNet module.



Sensors 2023, 23, 8439 5 of 16

Figure 2. Schematic diagram of the convolutional layer and the GhostNet module [21].

In our study, we utilize the notation X∈Rc×h×w to represent the input feature map,
where c denotes the number of channels and h and w respectively represent the height and
width of the feature map. The conventional convolution is defined as follows:

Y = X ∗ f + b. (2)

Equation (2), X∈Rc×h′×w′ signifies a feature map with n output channels, where h′

and w′ respectively correspond to the height and width of the output feature map. The
convolution operation is denoted by *, with a kernel size of k ∗ k, while b represents the
bias term. The computational complexity of regular convolution, excluding the bias term,
is approximately equal to h× w× c× n× w′ × h′. In the network’s shallower layers, h′

and w′ are larger, whereas in deeper layers n and c possess greater values. Motivated
by this observation, the concept of Ghost convolution was introduced. It consists of two
components: a conventional convolutional kernel that yields a limited number of feature
maps, and the creation of surplus feature maps in a lightweight linear transformation layer,
and can be expressed as follows:

Y′ = X ∗ f ′ + b. (3)

Equation (3) represents a conventional convolutional layer that outputs a small num-
ber of feature maps, where Y∈Rh′×w′×m represents the output feature and f∈Rc×k×k×m

represents the size of this convolutional kernel. The number of channels of the output
feature map is smaller than that of the conventional convolutional layer, i.e., m < n.

Yij = φij(y′i). (4)

Furthermore, Equation (4) represents the linear transformation layer that generates
surplus feature maps. Here, yi signifies the m feature maps of Y′. Each feature map
within Y′ undergoes a lightweight linear transformation φij(j = 1, 2, ..., s), yielding s
feature maps. If convolution serves as the linear transformation, the final transformation
is set as a constant transformation, resulting in m feature maps after transformation of
m× (s− 1) feature maps. The cumulative computation with Ghost convolution equates to
(s− 1)×m× h′ × w′ × k× k. Refer to Figure 3 for a comprehensive depiction of YOLOv8
with GhostNet’s intricate structure.
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Figure 3. The structure of YOLOv8 with GhostNet: (a) Ghost module and (b) C3Ghost.

3.1.3. GIOU Loss Function

The Intersection over Union (IOU) distance is a widely adopted metric for evaluating
the proximity between prediction and detection boxes within the detection space. This
measure accurately characterizes the extent of their overlap while being independent
of frame scaling. However, the IOU value remains static at 0 when no overlap exists
between the boxes, which can lead to challenges in determining their correspondence.
Moreover, even when the IOU values between trajectory prediction boxes and detection
boxes are equal, their overlap positions might diverge significantly. This drawback is vividly
illustrated in Figure 4, underscoring the insufficiency of the IOU distance in gauging the
matching degree between detection and prediction frames.

Figure 4. Coincident position relationship between detection frame and prediction frame: (a) hori-
zontal overlap and (b) cross overlap.

As illustrated in Figure 4a,b, the IOU value remains consistent, while the overlapping
positions between the detection frame and prediction frame exhibit notable dissimilarities.
To mitigate this concern, the evaluation of frame intersection integrates position informa-
tion. To this end, the Generalized Intersection over Union (GIOU) distance is introduced,
which leverages the minimum bounding boxes of the detection and prediction frames to
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encapsulate their spatial positional relationship. The computation process of the GIOU
distance is elucidated as follows:

GIOU = IOU − C− A ∪ B
C

(5)

where C is the minimum frame area used to surround the detection frame and prediction
frame, A is the area of the target trajectory prediction frame, and B is the area of the
pedestrian detection frame.

Equation (5) highlights that the GIOU value remains invariable when the IOU equals
0, denoting an absence of intersection between the detection frame and prediction frame. A
heightened value of parameter C, signifying increased separation between the detection and
prediction frames, leads to a diminished GIOU value, and subsequently to an augmented
GIOU distance. This phenomenon indicates a reduced level of correspondence between
the frames. Conversely, a smaller GIOU distance indicates a higher degree of alignment
between the frames.

3.1.4. Evaluation Index

For the evaluation of the improved YOLOv8 algorithm, two main aspects were con-
sidered, namely, pedestrian detection and pedestrian tracking. The following evaluation
indices were utilized to assess the performance of the algorithm in each aspect:

• Pedestrian Detection Evaluation: (a) Precision (P): denotes the ratio of correctly pre-
dicted positive detections to the total predicted positive detections. It gauges the
algorithm’s capability to minimize false positives. (b) Recall (R): represents the ratio
of correctly predicted positive detections to all actual positive instances in the ground
truth. It assesses the algorithm’s effectiveness in minimizing false negatives. (c) Mean
Average Precision (mAP): mAP serves as a widely utilized metric in object detection
tasks. It computes the average precision across various object categories and IoU
thresholds. This metric offers a comprehensive evaluation of the algorithm’s accuracy
in object detection. The computation of these metrics is demonstrated as follows:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

AP =
∫ 1

0
P(R)dR (8)

mAP =
1
N

n

∑
i=1

APi (9)

In these equations, TP (true positives) denotes the count of positive samples correctly
predicted as positive, while FP (false negatives) corresponds to the number of positive
samples erroneously predicted as negative. FP (false positives) represents the instances
where negative samples are incorrectly predicted as positive. In this study, the total
number of categories is set to 2. Moreover, the number of parameters, model size,
and FLOPs serve as benchmarks for assessing the lightweight nature of a model. The
quantity of parameters and model size primarily hinges on the network architecture.
FLOPs, on the other hand, quantifies the computational complexity of the model by
representing the number of calculations required for its operation.

• Pedestrian Tracking Evaluation: for object tracking, we used the CLEAR [22] evalua-
tion indicator, which comprehensively considers FP, FN, and ID-Switch, and is a more
common known as MOTA. CLEAR reflects the tracking quality of the tracker more
comprehensively; however, as CLEAR ignores the ID characteristics of multiple targets,
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we additionally introduce IDF1 [23] to make up for the lack of MOTA in this regard. In
addition, HOTA [24] is an indicator that has been proposed in recent years; it can reflect
the effects of detection and matching in a balanced manner.

4. Experiments

In this section, we assess the performance of the improved YOLOv8 algorithm by
conducting experiments on various datasets. Through comparisons with the baseline
YOLOv8 and real-world experiments, we verify the algorithm’s effectiveness in improving
object detection accuracy and enhancing tracking performance.

4.1. Datasets

The improved detector is trained on the CrowdHuman dataset [25]. The CrowdHuman
dataset has a relatively large amount of data, with 15,000 images in the training set, 5000
in the testing set, and 4370 in the validation set. The proposed algorithm was evaluated
on the MOT17 [26] and MOT20 [27] benchmark dataset. MOT17 has a total of 14 video
sequences, of which seven sequences were used for training, with a total of 5316 frames,
and seven sequences were used for testing, with a total of 5919 frames. MOT20 was set
up for highly crowded challenging scenes, with four sequences and 8931 frames used for
training and four sequences and 4479 frames for testing.

4.2. Experimental Settings

The experimentation was carried out on a high-performance computing setup encom-
passing an Intel(R) Xeon(R) Platinum 8255C CPU operating at 2.50 GHz and equipped
with twelve vCPUs. An NVIDIA GeForce RTX 3080 GPU endowed with 10GB of VRAM,
was employed. The system boasted a 40GB RAM configuration. These experiments were
conducted on an Ubuntu 18.04 operating system, utilizing PyTorch 1.7.0 as the chosen deep
learning framework, and GPU acceleration was facilitated through CUDA version 11.0.
Python 3.8 served as the programming language. The training process incorporated the
SGD optimizer with an initial learning rate of 0.01, which remained constant throughout
training. A batch size of 16 was adopted for training, extending across 300 epochs. To avert
overfitting, an early stopping strategy was implemented with a patience of 50 epochs.

4.3. Experimental Settings
4.3.1. Pedestrian Detection Result

The training results for the improved YOLOv8 model are presented in Figure 5,
showcasing the changes in metrics such as train loss, val loss, precision, recall, mAP@0.5,
and mAP@0.5:0.95 as the number of epochs increases. The training loss and validation
loss decrease over time, indicating improved model learning. Precision, recall, mAP@0.5,
and mAP@0.5:0.95 exhibit an upward trend, showcasing the model’s enhanced detection
performance. These results demonstrate the effectiveness of the pedestrian detection model
in accurately identifying pedestrians in various scenarios.

As shown in Table 1, we evaluated our proposed model against the baseline YOLOv8
network. The integration of the SoftNMS technique yielded significant improvements
across various performance metrics. Notably, we observed a 0.93% increase in precision,
a 1.55% increase in recall, a 0.61% increase in mAP@0.5, and a remarkable 10.17% in-
crease in mAP@0.5:0.95. Furthermore, the incorporation of GhostNet resulted in notable
reductions in model complexity. We achieved a reduction of 39.98% in the number of
parameters, corresponding to a 37.1% decrease in model size. Additionally, the FLOPs
were reduced by 35.8%. The combined utilization of SoftNMS and GhostNet led to 3.38%
increase in precision and 3.07% increase in mAP@0.5:0.95. These findings underscore the
effectiveness of these improvement techniques in optimizing the YOLOv8n model, enabling
enhanced object detection capabilities while maintaining a balance between accuracy and
lightweight design.
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Figure 5. Training results of the the improved YOLOv8 model.

Table 1. Detection performance comparison.

Model Precision Recall mAP0.5 mAP0.5:0.95 Parameters Size/MB FLOPs/G

YOLOv8n 0.857 0.710 0.820 0.521 3,005,843 6.2 8.1
+SoftNMS 0.865 0.721 0.825 0.574 3,005,843 6.2 8.1

+Ghost 0.841 0.682 0.789 0.467 1,804,031 3.9 5.2
+SoftNMS+Ghost 0.886 0.653 0.793 0.537 1,804,031 3.9 5.2

Despite the individual performance degradation of the Ghost convolution, the combi-
nation of SoftNMS and Ghost convolutions results in improved performance compared
to the baseline. This is due to the complementary nature of the two techniques. SoftNMS
suppresses duplicate detections, compensating for the slight performance decrease caused
by Ghost convolution. Moreover, the integration of Ghost convolution provides benefits
such as reduced complexity and computation cost, enhanced feature representation, and
increased receptive field, contributing to the overall improved performance.

Figure 6 illustrates the detection results of YOLOv8 and the improved models on
sample pedestrian images. The images showcase various scenarios, including crowded
streets and pedestrian crossings. The bounding boxes, along with the corresponding class
labels and confidence scores, indicate the detected pedestrians and their associated certainty
levels. The improved models demonstrate the ability to detect a higher number of pedestri-
ans, including those in densely crowded areas. The bounding boxes accurately localize the
pedestrians, even in challenging scenarios where individuals are closely packed together.
Furthermore, the improved models show improved sensitivity in detecting pedestrians at
various scales. They can successfully detect both small and large pedestrians, allowing for
comprehensive coverage across different sizes and distances. This capability is particularly
important in real-world scenarios where pedestrians may appear at varying scales.

In order to further validate the efficacy of the proposed model, we conducted a
comparison of the visual effects using Grad-CAM. Grad-CAM is a technique that generates
a heatmap representing the network’s attention to different regions of the input image. By
applying Grad-CAM to both the original YOLOv8 and the improved model, we obtained
the heatmaps illustrating their attention towards the target recognition, as depicted in
Figure 7. The analysis of the heatmaps reveals that the improved model exhibits a higher
intensity in the heatmap corresponding to the detection target area compared to the original
YOLOv8. This observation suggests that the enhanced model is capable of extracting and
leveraging the feature information of the detection target more effectively to a certain extent.
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Figure 6. The detection results of the baseline model (left) and the improved model (right).

Figure 7. The heatmap of the baseline model (left) and the improved model (right).

4.3.2. Pedestrian Tracking Result

To assess the algorithm’s effectiveness, we utilized various detectors and trackors in
the tracking process. Additionally, we utilized the ReID model mobilenetv2 for person
re-identification.

For the ByteTrack tracker, the pedestrian tracking results on MOT17 are shown in Table 2.
When combined with the public YOLOv8n detector, the MOTA was 33.599%, while the MOTP
reached 81.432%. The IDF1 was 44.349%, while the HOTA score stood at 37.604%. Additionally,
the FP (false positive) and FN (false negative) values were 3076 and 71,246, respectively. When
the private YOLOv8n detector was used, the performance improved significantly. The MOTA
increased to 50.529% and the IDF1 score rose to 57.377%, indicating improved detection
and tracking accuracy. The HOTA score increased to 45.715%, showing enhanced overall
performance. The FP and FN values decreased to 2222 and 53,026, respectively.
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Table 2. Tracking performance comparison on MOT17 when using ByteTrack.

Detector MOTA (↑) MOTP (↑) IDF1 (↑) IDSW (↓) HOTA (↑) FP (↓) FN (↓) AssA (↑) AssR (↑)

Pub_yolov8n 33.599 81.432 44.349 244 37.604 3076 71,246 47.195 50.919
Pvt_yolov8n 50.529 80.127 57.377 307 45.715 2222 53,026 50.391 55.168

+SN 50.248 80.343 57.473 297 45.808 2142 53,431 50.668 55.668
+GH 43.759 80.602 52.362 233 41.725 1349 61,575 48.763 52.636

+SN+GH 42.746 80.347 50.948 246 41.053 1567 62,481 47.964 52.268

Pub_yolov8n indicates public YOLOv8n, Pvt_yolov8n indicates private YOLOv8n, SN indicates SoftNMS, GH
indicates Ghost.Same goes for the following.

By integrating the SoftNMS technique into YOLOv8n, several metrics showed en-
hancements. The MOTP increased to 80.343%, indicating improved precision in object
tracking. The IDF1 score improved to 57.473%, suggesting better detection and tracking ca-
pabilities. Additionally, the HOTA score reached 45.808%, demonstrating the effectiveness
of the SoftNMS integration. The IDSW value decreased to 297, indicating a reduction in the
number of identity switches and better tracking consistency. Incorporating GhostNet into
the YOLOv8n architecture resulted in slightly lower MOTA of 43.759%, while maintaining
a high MOTP of 80.602%; moreover, the FP value decreased to 1349, indicating a reduction
in false positives. However, the IDSW value decreased to 233, indicating a reduction in the
number of identity switches and better tracking consistency. The integration of both the
SoftNMS and GhostNet techniques into the YOLOv8 algorithm led to a slight decrease in
performance metrics. This can be attributed to the trade-off between detection accuracy
and model complexity introduced by these techniques.

For the OCSORT tracker, similar performance trends were observed in Table 3. The
combination with different YOLOv8n detectors consistently improved the tracking perfor-
mance compared to the baseline YOLOv8. By integrating the private YOLOv8n detector
into the OCSORT tracker, significant improvements were observed across multiple metrics.
The MOTA increased to 56.546%, indicating enhanced tracking accuracy. The IDF1 score
significantly improved to 62.324%, demonstrating enhanced detection and tracking capabil-
ities. The HOTA score increased to 49.462%, indicating better overall tracking performance.
Notably, the IDSW value decreased to 594, indicating a reduced number of identity switches.
This yielded better tracking results compared to the baseline YOLOv8n detector. Incor-
porating the SoftNMS further improved the tracking performance. The MOTP improved
to 80.013%. The IDF1 score reached 62.733%, indicating enhanced detection and tracking
accuracy. The HOTA score increased to 49.889%, demonstrating the effectiveness of the
combined approach. Moreover, the IDSW value decreased to 591, suggesting fewer identity
switches, which is beneficial for maintaining consistent object identities throughout the
tracking process.

Table 3. Tracking performance comparison on MOT17 when using OCSORT.

Detector MOTA (↑) MOTP (↑) IDF1 (↑) IDSW (↓) HOTA (↑) FP (↓) FN (↓) AssA (↑) AssR (↑)

Pub_yolov8n 39.698 81.278 48.346 689 40.639 4889 62,139 45.895 50.669
Pvt_yolov8n 56.546 79.884 62.324 594 49.462 4046 44,157 52.255 57.625

+SN 56.224 80.013 62.733 591 49.889 4068 44,500 53.096 58.286
+GH 50.911 80.119 56.216 555 44.839 2516 52,054 48.285 53.351

+SN+GH 49.593 79.907 56.201 490 44.675 2852 53,263 48.787 54.081

When evaluating the OCSORT with GIOU tracker using different YOLOv8n detectors,
as shown in Table 4, the overall performance was slightly better compared to using the
original IOU.
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Table 4. Tracking performance comparison on MOT17 when using OCSORT with GIOU.

Detector MOTA (↑) MOTP (↑) IDF1 (↑) IDSW (↓) HOTA (↑) FP (↓) FN (↓) AssA (↑) AssR (↑)

Pub_yolov8n 39.698 81.279 48.392 686 40.644 4886 62,145 45.899 50.659
Pvt_yolov8n 56.547 79.884 62.278 592 49.471 4044 44,160 52.308 57.682

+SN 56.215 80.015 62.823 598 49.915 4068 44,503 53.136 58.324
+GH 50.907 80.119 56.127 557 44.794 2516 52,057 48.192 53.229

+SN+GH 49.592 79.906 56.615 489 44.857 2852 53,266 49.190 54.300

Figure 8 depicts the variation of different performance metrics with respect to the
alpha values, allowing us to identify optimal alpha values that strike a balance between
these factors and make informed decisions for optimizing the multi-object tracking system.

Figure 8. Graph of different performance indicators relative to alpha values.

The pedestrian tracking results on MOT20 dataset are shown in Tables 5–7. The
ByteTrack tracker achieved an MOTA of 21.4% when combined with the Public YOLOv8n
detector. However, this performance significantly improved to an MOTA of 57.436% when
using the Private YOLOv8n detector. On the other hand, the OCSORT tracker demonstrated
even higher performance, achieving an MOTA of 30.032% and 64.933% with the Public and
Private YOLOv8n detectors, respectively. Similar to the findings on the MOT17 dataset, the
OCSORT tracker with GIOU consistently outperformed the original OCSORT tracker across
various metrics. These results highlight the effectiveness of using advanced trackers and
improved detectors in pedestrian tracking tasks, emphasizing the importance of selecting
appropriate configurations for achieving higher accuracy and reliability in tracking systems.

Table 5. Tracking performance comparison on MOT20 when using ByteTrack.

Detector MOTA (↑) MOTP (↑) IDF1 (↑) IDSW (↓) HOTA (↑) FP (↓) FN (↓) AssA (↑) AssR (↑)

Pub_yolov8n 21.400 72.685 28.313 1648 20.495 7500 882,658 26.067 27.431
Pvt_yolov8n 57.436 78.622 55.998 2944 42.254 7691 472,297 40.142 43.498

+SN 53.543 78.901 53.613 2799 40.490 6792 517,516 39.287 42.305
+GH 45.576 78.746 46.547 2799 35.491 4594 610,104 35.339 37.921

+SN+GH 43.353 78.937 45.068 2652 34.334 4330 635,744 34.721 37.173
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Table 6. Tracking performance comparison on MOT20 when using OCSORT.

Detector MOTA (↑) MOTP (↑) IDF1 (↑) IDSW (↓) HOTA (↑) FP (↓) FN (↓) AssA (↑) AssR (↑)

Pub_yolov8n 30.032 72.559 36.127 4359 25.419 17,586 771924 28.226 30.146
Pvt_yolov8n 64.933 79.036 64.315 4208 48.306 14,361 379,311 46.106 50.363

+SN 61.077 79.323 61.731 3761 46.362 11720 426,143 44.939 49.040
+GH 54.595 79.115 54.547 4562 41.087 9511 501,098 39.501 43.403

+SN+GH 53.357 79.259 53.765 4287 40.570 9237 515,697 39.257 42.938

Table 7. Tracking performance comparison on MOT20 when using OCSORT with GIOU.

Detector MOTA (↑) MOTP (↑) IDF1 (↑) IDSW (↓) HOTA (↑) FP (↓) FN (↓) AssA (↑) AssR (↑)

Pub_yolov8n 30.056 72.555 36.606 4250 25.625 17658 771,688 28.648 30.745
Pvt_yolov8n 64.933 79.035 64.322 4190 48.326 14352 379,334 46.136 50.338

+SN 61.077 79.323 61.824 3757 46.400 11711 426,160 45.003 49.029
+GH 54.595 79.115 54.557 4544 41.094 9508 501,120 39.506 43.365

+SN+GH 53.358 79.259 53.788 4269 40.632 9229 515,708 39.372 43.015

According to Tables 8 and 9, compared to other methods, our approach demonstrates
superior performance in terms of numerous metrics, including the MOTA, IDF1, MOTP,
HOTA, and IDSW scores. These results validate the effectiveness of our method in achieving
accurate and robust multiple object tracking.

Table 8. Performance comparison with preceding SOTAs on MOT17.

Method MOTA (↑) MOTP (↑) IDF1 (↑) IDSW (↓)

CCC(2018) [28] 51.200 / / 1851
GN(2020) [29] 50.200 / 47.000 5273

BLLSTM(2021) [30] 51.500 / 54.900 2566
STN(2021) [31] 50.000 76.300 51.000 3312
DET(2022) [32] 43.210 / 51.910 799
Pub_yolov8n 39.398 81.278 48.346 689

Ours 56.215 80.015 62.823 598
The ‘/’ character represents “not available” value.

Table 9. Performance comparison with preceding SOTAs on MOT20.

Method MOTA (↑) MOTP (↑) IDF1 (↑) IDSW (↓)

FairMOT(2021) [33] 61.800 / 67.300 5243
TransCenter(2021) [34] 62.300 79.900 50.300 4545
DET(2022) [32] 57.700 / 48.900 7303

MTrack(2022) [35] 63.500 / 69.200 6031
LADE(2022) [36] 54.900 79.100 59.100 1630

Pub_yolov8n 30.032 72.559 36.127 4359
Ours 64.933 79.035 64.322 4190

The ‘/’ character represents “not available” value.

4.3.3. Tracking Effect Visualization

Figure 9 shows the tracking results of the proposed algorithm on real driving data.
The results show the effectiveness of the proposed method in complex traffic scenarios.
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Figure 9. The pedestrian tracking effect of three consecutive frames in the video.

5. Discussion

In summary, in this paper we conducted a comprehensive investigation into pedes-
trian detection and tracking by leveraging a fusion of YOLOv8-based methodologies and
advanced techniques. The proposed enhanced YOLOv8 algorithm incorporating soft-NMS
and Ghost modules exhibited notable enhancements in object detection performance. It
achieved elevated precision, recall, and mAP when compared to the baseline YOLOv8
model. Our empirical assessment on the MOT17 and MOT20 datasets underscored the
proposed algorithm’s effectiveness in detecting and tracking pedestrians across different
demanding real-world contexts. The results underscored the superiority of the enhanced
YOLOv8 algorithm in terms of both detection accuracy and speed, positioning it as a
promising solution for real-time applications. Furthermore, the object tracking outcomes
attained through the integrated framework of enhanced YOLOv8n, OC-SORT, and the
MobileNetV2 model for REID showcased advancements in tracking accuracy, localization
precision, and identity consistency. The lightweight and optimized characteristics of the
proposed techniques coupled with their enhanced performance position them as viable
options for deployment in resource-constrained environments and mobile applications.
Our experimental findings not only validate the effectiveness of the proposed methods,
they emphasize their potential to bolster pedestrian detection and tracking across diverse
real-world scenarios.

Looking ahead, several promising avenues warrant exploration in future research.
First, there exists an opportunity for further fine-tuning and optimization of the proposed
algorithms to achieve even higher levels of detection and tracking performance. This
refinement becomes especially crucial for addressing intricate and heavily occluded scenes.
Second, expanding the applicability of the proposed techniques to object categories beyond
pedestrians, such as vehicles or animals, can significantly broaden the utility of these
methods across various domains. Third, evaluating the robustness and generalizability of
the proposed algorithms on larger-scale datasets would provide valuable insights into their
performance across diverse scenarios. In addition, exploring the integration of multi-modal
data, such as depth information or thermal imaging, holds the potential to bolster detection
and tracking accuracy, particularly in challenging environments. Furthermore, delving into
real-time object tracking fused with high-level reasoning and decision-making algorithms
could lead to more intelligent and context-aware tracking systems. Lastly, optimizing the
proposed algorithms to align with hardware constraints and deployment contexts, such as
embedded systems or edge devices, would enable their effective utilization in resource-
constrained scenarios. By charting these future research directions, we can propel the
field of pedestrian detection and tracking forward, resulting in more precise and efficient
computer vision systems across domains such as surveillance, autonomous vehicles, and
smart cities.
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