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Abstract: This paper introduces a new bidirectional integration approach that combines fiber sen-
sor/free space optics (FSO) communication using an intensity and wavelength division multiplexer
(IWDM) techniques-based long-distance fiber Bragg grating (FBG) sensor strain-sensing system. By
implementing coarse wavelength division multiplexing (CWDM), the system achieves the simultane-
ous transmission of optical communication and fiber optical sensor (FOS) sensing signals, resulting
in a highly capable, flexible, and cost-effective solution. The proposed FSO transmission technique
addresses complex fiber cable installation concerns with topographical limitations. This bidirectional
structure ensures the reliability and stability of the long-distance FBG sensor system, supported by
extensive research and experimentation. A hybrid stacked gated recurrent units and long short-term
memory (SGRU-LSTM) model is proposed to enhance strain measurement accuracy by predicting
and measuring the central wavelength of overlapped strain-sensing FBG sensor signals. The results
demonstrate the superiority of the proposed model in peak wavelength detection accuracy. The
primary benefit of integrating communication and sensing is the significant reduction in construction
costs by eliminating the requirement for two individual fiber optic systems, as the integration allows
for a single system to fulfill both functions, resulting in more efficient and cost-effective implementa-
tion. Overall, this paper contributes to advancing long-distance FBG sensor systems by integrating
fiber sensor/FSO communication and deep learning techniques, improving transmission distance,
multiplexing capacity, measurement accuracy, system survivability, and cost-effectiveness.

Keywords: fiber Bragg grating; strain; free space optics (FSO); remote sensing; optical sensor system;
intensity wavelength division multiplexing; central wavelength detection; sensing signal detection;
deep learning; hybrid stacked gated recurrent units and long short-term memory (SGRU-LSTM)

1. Introduction

Over the recent several decades, fiber optic sensors have undergone rapid develop-
ment and emerged as a promising technology with widespread use for measuring various
physical and chemical parameters [1–3]. These sensors utilize optical fibers as the detecting
element, allowing them to detect changes in temperature, strain, pressure, and other quan-
tities. The optical fibers are modified to enable the measurement of these parameters and
are connected to a light source for detection purposes. Fiber optic sensors are commonly
used in industrial settings for their ability to function in tight spaces and provide precise
measurements. Optical fiber sensors have become increasingly important in various indus-
tries due to their reliability, sensitivity, and versatility in measuring various physical and
chemical parameters.

In remote sensing applications, one type of sensor that has been widely employed is
the fiber Bragg grating (FBG) sensor. This highly versatile sensor is extensively utilized
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in various applications to monitor and track an array of physical parameters. These pa-
rameters include slope, strain, pressure, acceleration, temperature, displacement, and load.
These measurements are crucial for gathering valuable data in a remote sensing setting [2,4].
Additionally, the FBG sensor has emerged as a highly prospective technology within the
IoT realm. This sensor offers the unique advantage of multipoint sensing, allowing for the
precise measurement of a wide range of parameters. It excels in monitoring infrastructure
and performing structural health monitoring (SHM) in diverse applications [2–6]. The FBG
sensor effectively collects data from objects and accurately measures changes in the environ-
ment, ensuring high signal quality and providing valuable features [4,6]. When comparing
FBG sensors to conventional electrical and mechanical sensors, it becomes evident that FBG
sensors offer a multitude of advantages [4,7]. These include their inherent resistance to
electromagnetic interference (EMI), high resolution, precise detection and measurement
of physical parameters, lightweight design, high sensitivity, high multiplexing capacity,
the ability to integrate multiple sensors into a single fiber, and low installation complex-
ity and cost. These exceptional features of FBG sensors position them as the preferred
choice for a wide range of applications in industries such as aerospace, oil and gas, civil
engineering, and telecommunications, where precise and reliable sensing capabilities are
imperative [4,7,8].

In these above-mentioned industrial setting applications, various parameters need
to be measured using FBG sensors in remote areas, including vibration, strain, current,
pressure, temperature, deformation, acceleration, voltage, and humidity [4,7,8]. These
physical parameters are obtained by stretching or compressing the fiber, which modifies the
refractive index and the periodic distance between the FBG sensor’s gratings. Additionally,
the high multiplexing capacity of FBG sensors enables the simultaneous measurement of
multiple parameters [7–12]. However, the design of a high-capacity, cost-effective, and
reliable network relies heavily on the choice of multiplexer techniques and the transmission
channel. Among the available multiplexer techniques for FBG sensor systems, the intensity
and wavelength division multiplexer (IWDM) method is widely recognized as one of the
most superior approaches. It allows for the multiplexing of FBGs into multiple arrays with a
simple structure and a wide range of operational wavelengths [4,7,8]. However, the IWDM
approach can create unmeasurable gaps and cross-talk between neighbor FBGs when the
bandwidth of one FBG slightly exceeds that of its neighbor. To address this issue, several
machine learning algorithms have been proposed [4,7,10,13–15]. However, it is crucial to
consider that these algorithms do have inherent limitations specifically related to their
training speed and learning capacity, which should be carefully evaluated and accounted
for to ensure their effective implementation and successful outcomes.

On the other hand, in the integration of optical communication and sensor networks,
challenges arise concerning the flexibility and reliability of the network when installing
fiber cables in geographically challenging areas, like mountains, rivers, rocks, and other
obstacles, to transmit communication and sensing signals in long-distance transmission
systems. Fiber cables are commonly used as the standard transmission medium for long-
distance communication due to their ability to provide high data rates and minimal signal
loss in both rural and urban areas [4,7,16,17]. However, there are certain drawbacks asso-
ciated with the use of fiber cables. These include high maintenance costs, the presence
of non-linear effects, and challenges in overcoming geographical obstacles. Despite their
advantages, it is important to consider these drawbacks when implementing fiber cables for
communication purposes. To address these challenges, researchers have proposed the use
of free space optics (FSO) transmission channels even in high atmospheric turbulence [17].
The emergence of FSO transmission channels has provided a solution to these geographical
constraints, such as mountains, rivers, and other obstacles, enabling the transmission of op-
tical and sensing signals [17,18]. FSO technology is a method that utilizes light to transmit
data through the atmosphere or free space. It offers several advantages, including secure
spectrum licenses, high transmission speeds, low power consumption, cost-effectiveness,
and ease of deployment [19,20]. However, FSO is typically limited to short-distance com-
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munication due to its vulnerability to atmospheric turbulence. To combine the benefits of
both fiber and FSO transmission channels, there have been proposals for integrating these
technologies. This integration offers a promising solution for creating reliable, flexible,
cost-effective networks supporting optical access and sensor network technologies.

This paper presents a novel bidirectional communication system that integrates
fiber and FSO technology with an IWDM base FBG sensor network. The system utilizes
a coarse wavelength division multiplexing (CWDM) multiplexer/demultiplexer (CWDM
Mux/Demux) to enable the simultaneous transmission of optical communication signals
and sensing signals. The utilization of CWDM technologies within an integrated fiber and
FSO transmission channel serves as a cornerstone in the design of a cost-effective and
flexible network, facilitating an increase in the coverage of transmission distances [21].
Simultaneously, the implementation of a bidirectional structure of fiber and FSO transmis-
sion channels is vital in reducing signal loss, particularly in the context of long-distance
FBG sensor systems [22]. This proposed bidirectional structure integration of a combined
fiber sensor and optical communication system also addresses the issue of signal loss that
occurs after 25 km of single-mode fiber (SMF) due to Rayleigh backscattering (RB). The in-
tegration aims to enhance reliability and extend the transmission distance of the fiber/FSO
communication system with the sensor network, reaching remote optical network units
(ONUs) and remote FBG sensing systems. CWDM Mux/Demux technology possesses
an impressive capacity when it comes to effectively combining or separating signals that
are traditionally considered incompatible, as reported by researchers references [23,24].
This remarkable capability of the CWDM Mux/Demux makes it an efficient and reliable
technique for seamlessly integrating communication and an FBG-based sensor system. As
a result of this integration, the overall system achieves notable advantages in terms of its
cost-effectiveness, high data capacity, and exceptional adaptability, as further evidenced by
the aforementioned research references [23]. Thus, employing the CWDM Mux/Demux
technology as a vital component in this integrated system not only ensures optimal signal
compatibility and functionality but also contributes to the overall efficiency, capacity, and
adaptability of the entire system architecture.

To address the signal detection issues of the FBG sensor mentioned earlier, a hybrid
deep learning approach is proposed. This approach integrates two powerful deep learning
techniques, namely the hybrid stacked gated recurrent units and long short-term memory
(SGRU-LSTM). By integrating these two models, the hybrid approach aims to improve
the accuracy and effectiveness of signal detection. The SGRU model offers the capability
to capture complex temporal dependencies, while the LSTM model excels at capturing
long-term dependencies in the data. This combination of models creates a synergistic
effect, enabling the better handling of signal detection challenges in the FBG sensor. This
innovative hybrid deep learning approach shows promising potential for enhancing the
performance and capabilities of the FBG sensor in various practical applications. These
combined algorithms are selected for their simplicity, strong generalization ability, high
tolerance to input noise, and faster training process [25]. These qualities make it well-suited
for addressing the signal detection issues in the FBG sensor. The simplicity of the algorithm
allows for easy implementation and understanding, reducing the likelihood of errors. Its
strong generalization ability enables it to effectively handle various types of data and adapt
to different scenarios, making it a versatile solution. The algorithm’s high tolerance to input
noise ensures reliable performance even in the presence of noisy data. Additionally, the
faster training process enables quicker development and deployment of the model. Overall,
these factors contribute to the algorithm’s suitability for addressing the signal detection
issues in the FBG sensor. The experimental results validate the successful integration of
optical fiber/FSO communication and the FBG sensor system. This integration enables the
efficient multiplexing of sensors, simultaneous transmission of communication and sensing
signals, and the capability to overcome geographical limitations.
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2. Conceptual Structure of the Bidirectional Integration of the Fiber/FSO Sensor
System

Figure 1 depicts the schematic diagram of the proposed bidirectional communication
integrated IWDM-based sensor network, which aims to enhance communication reliability
within the sensor network. As shown in the figure, the bidirectional structure consists of
the central office (CO), a deep learning application, and a remote access unit (RAU) that
encompasses both the communication component and the remote sensing system. The
CO includes a tunable laser source (TLS), broadband light source (BLS), Mach–Zehnder
modulator (MZM), optical amplifier (OA), four FBG sensors, optical signal analyzer (OSA),
optical circulators (C), photodetector (PD) (for communication applications), and, for the
FBG sensing system, a personal computer (PC) (i.e., light source and receivers), CWDM
Mux/Demux, and an artificial intelligence (AI) application. The CO is responsible for
generating light sources for both the communication and sensor components. FBG sensor
components, using IWDM-based techniques, can be implemented into real-world objects
such as dams, bridges, gas and oil industries, and other sectors. This integration enables
the effective monitoring and measurement of various parameters, facilitating accurate and
reliable data collection for improved operations and maintenance. Within this conceptual
framework, the utilization of the FSO link is crucial. It serves the purpose of simplifying
the installation process and overcoming geographical obstacles, such as wide rivers and
large mountains, where laying fiber cables is impractical. The FSO transmission channel
acts as an alternative solution, circumventing the limitations of fiber optics while requiring
less labor, time, and cost without the need for specific licenses. Furthermore, the mea-
sured reflected spectra or sensing signals obtained through FBG sensor components are
subsequently analyzed using the implementation of an AI application. This analysis is
carried out to assess the health conditions of the objects, thus enhancing the overall mon-
itoring capabilities of the system. Within the proposed conceptual structure, the signal
undergoes transmission using CWDM techniques, serving both the communication and
sensor parts. Additionally, the sensor part connects to a network capable of expanding
to accommodate pxn FBG sensors. This design enables the simultaneous distribution of
both the communication and sensor parts of the signal to multiple remote ONU and FBG
sensors. As a result, it facilitates the monitoring and measurement of diverse parameters
across the ONU and sensor network. The integration of such a system allows for enhanced
efficiency and effectiveness in data collection and analysis.

Experimental Setup of the Bidirectional Integration of the Fiber/FSO Sensor System

Based on the conceptual structure in Figure 1 is the experimental configuration for
integrating bidirectional optical fiber/FSO communication and a long-distance FBG sensor
system using CWDM. The experimental setup consists of four main components, namely
the CO, RAU, data preprocessing unit, and a hybrid stack GRU-LSTM network structure.
The CO is composed of various devices including a TLS, BLS, MZM, OA, OSA, C, and
CWDM. The CO is responsible for managing the light source and monitoring sensing
information. The RAU component includes devices such as C, CWDM, FBG sensors, OC,
and PD. The third component is the data preprocessing unit, which is responsible for
data preparation and normalization for further analysis purposes. The experimental setup
also incorporates a deep learning segment, which is responsible for signal detection. This
segment involves several devices, such as TLS, BLS, MZM, OA, four FBG sensors, OSA,
four OC, three C, 25 km and 10 km SMF, two collimator lenses, and two CWDMs. The
overall setup enables the efficient integration and simultaneous transmission of optical
communication signals and sensor data.
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The TLS-generated light is utilized to transmit signals in the optical communication
segment, while the BLS is employed to illuminate the sensor array. In this research paper,
a 2 m free space optical (FSO) transmission distance is employed between two collimator
lenses (CL) due to the limitation of laboratory space. These collimator lenses consist of col-
limators and doublet lenses. The main purpose of this paper is to demonstrate the proof of
the concept through a simplified experiment. In the proposed communication and sensing
system, a bidirectional MF access network is used, with a signal transmission distance of
25 km before utilizing FSO and 10 km after FSO. Within the FSO setup, the two collima-
tor lenses are separated by a 2 m transmission distance in a free atmospheric turbulence
environment, which is necessary due to the available laboratory space. Furthermore, to
overcome the impact of atmospheric turbulence in free space optical (FSO) communica-
tion systems, a variety of mechanisms have been proposed. These mechanisms include
approaches such as wavelength division multiplexing (WDM), buffering, retransmission,
reconfiguration, and re-routing. In the context of this study, the experiment is conducted in
an environment where the atmospheric turbulence effect is absent. This favorable condition
allows for the transmission of data using the FSO transmission channel over distances of
up to 1 km, as indicated by previous research [26]. Both the sensor and communication
signals are transmitted through the FSO link, starting from the first CL and ending at
the second CL. The signal transmitted by the second CL in the FSO1 link continues to
propagate through another 10 km SMF toward C3. Upon reaching C3, the signal enters
another device that utilizes CWDM technology. The signal output from C3 is then split into
the communication and sensor signals using CWDM technology. The sensor signals are
directed to the four multiplexed fiber FBG sensors in the sensing unit. On the other hand,
the communication signal continues to propagate toward a photodetector (PD), where it is
analyzed for parameters such as error vector magnitude (EVM) and constellation diagram.
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Simultaneously, the sensing signal is distributed into an optical coupler, such as OC1,
OC2, OC3, and OC4, based on IWDM techniques, and the optical power propagates toward
the λ11, λ21, λ31, and λ41 sensors. Furthermore, the reflected signal is combined with the
second CWDM and enters C3, where it takes a lower-side alternate route back to the CO.
The signal is transmitted over a 10 km SMF, followed by the second FSO transmission
channel, and another 25 km SMF before entering C2. From there, it propagates into the
first CWDM through the remaining output port of C2. Subsequently, the first CWDM
splits the signal, directing the reflected signal to C1, which allows it to propagate into the
optical spectrum analyzer (OSA) within the FBG sensor system. The integration of the FBG
sensor system and OSA data is achieved by capturing the reflected spectra of the four FBGs
using Python code on a PC. Finally, the captured reflected spectra data can be transferred
to the PC for further analysis and training of the proposed stack GRU-LSTM model. In
the experimental setup, the integrated OF/FSO communication system incorporates four
FBG sensors based on the IWDM technique. These sensors operate by exploiting the
wavelength-dependent characteristics of the periodic refractive index within the core of the
optical fiber. When there is a strain-induced change in the fiber’s refractive index, it leads
to a shift in the sensor’s wavelength. These sensors occupy distinct wavelength ranges,
allowing for the precise and simultaneous measurement of various physical parameters,
such as temperature, and strain-sensing measurements. In the proposed scheme to address
the issues of signal power loss and ensure a reliable output signal in long-distance FBG
sensor systems, a bidirectional fiber-based structure is implemented. This approach enables
alternative signal transmission in both directions, optimizing data acquisition reliability.
Additionally, the incorporation of the FSO transmission technique is crucial for overcoming
topographical constraints. FSO technology utilizes optical signals to transmit data through
the atmosphere, offering an alternative solution in areas where wired or fiber optic networks
are impractical. By using FSO, FBG sensor systems can overcome geographical obstacles,
ensuring wireless communication links and data transfer over long distances without
a physical infrastructure. Moreover, FSO enhances security and provides immunity from
interference, making it suitable for applications requiring data privacy and integrity. The
integration of a bidirectional fiber-based structure and FSO transmission technique ensures
reliable and uninterrupted data transfer for accurate monitoring and analysis in various
industries and applications. This integration minimizes signal loss and Rayleigh scattering.
Moreover, in the proposed scenario, there is no issue with the mentioned problem. This is
because the wavelength used in the communication part is different from the wavelength
used in the sensing part. Additionally, the adjacent channel isolation is more than 30 dB,
ensuring effective separation and minimal interference between neighboring channels.
During the experiment, it was found that the wavelengths collected in the communication
part were different from those in the sensing part. Therefore, this difference did not affect
the normalization process or the prediction performance of the proposed GRU-LSTM
method on the sensor system. To ensure the accurate and reliable estimation of sensing
signals, the experimental process involves several crucial steps. Firstly, the reflected spectra
data obtained from the sensors are recorded and stored for further analysis. Subsequently,
these spectra data undergo preprocessing to enhance their quality and prepare them for the
subsequent stages. This preprocessing step may include techniques such as reorganizing,
normalization, and feature extraction. Once the data are appropriately preprocessed, hybrid
deep learning models are employed to analyze and estimate the sensing signals based on
the input spectra data. The data preprocessing and integration of the hybrid stacked GRU-
LSTM deep learning technique are illustrated in Figure 1c,d, highlighting the significance
of this approach in the experimental setup. In the experiments, the spectra of the sensors,
namely λ11, λ21, λ31, and λ41, are sampled at 2001 points within a specific wavelength range
of 1544 nm to 1548 nm.
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3. The Proposed Methodology
Data Collection and Data Preprocessing

The data collection process is conducted in a real experiment using the proposed
structure. The experiment described in this research is conducted using the experimental
setup illustrated in Figure 1. During the experiment, the reflected fiber grating spectra are
observed and analyzed using an OSA. This allows for the visualization and monitoring
of the spectral characteristics of the fiber grating. To generate the training and testing
sensor spectral datasets, specific parameters are recorded within the experimental setup.
These parameters include the peak power of each FBG, the wavelength shift range, and the
number of sample points. During the data collection phase, consecutive strain steps are
systematically applied to the λ11 sensor. This process enables the collection of strain-sensing
data for a total of four FBGs. It is important to note that while the strain is applied to
the λ11 sensor, causing its central wavelength to shift within a specified range, the central
wavelengths of the other FBGs remain fixed. The FBG sensor data collected during the
experiment are sampled at a total of 2001 sample points, covering a wavelength range of
1544 nm to 1548 nm. This particular wavelength range is carefully chosen to encompass
the relevant spectral information required for accurate strain sensing.

Figure 2 visually presents the sampled spectra obtained from the experiment. It demon-
strates various situations that occur during the strain process, ranging from the original
spectrum to cases of gradual partial overlap, complete overlap, and complete separation.
These observed scenarios provide valuable insights into the behavior and response of the
FBG sensors under different strain conditions and enhance the understanding of the strain-
sensing process. By conducting this experiment and accurately recording the associated
data, a deeper understanding of the behavior and performance of FBG sensors can be
gained. This knowledge contributes to the advancement of strain-sensing technology and
facilitates further research in this field.
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During the data collection process, these strain spectral data are collected for both the
training and testing proposed in the subsequent prediction model. Accordingly, 263 and
25 strain steps spectral data are collected for training and testing sets, respectively, for the
proposed prediction deep learning model. Once the spectral data are collected, prepro-
cessing techniques are applied to obtain a well-prepared dataset and to train subsequent
prediction models. Data preprocessing is a crucial step in the data analysis pipeline that
helps to ensure the accuracy and reliability of the results obtained from data analysis. The
primary goal of data preprocessing is to improve the quality of the data, remove inconsis-
tencies, and ensure that the data is in a format that can be easily used by data analysts and
machine learning algorithms. The spectral datasets are arranged based on input features
spectra and target values of each record. Data normalization is an important preprocessing
step in deep learning. There are several reasons why normalization is important for deep
learning models. First, normalization can help the model converge faster during training
by avoiding large weight updates. Second, normalization can help prevent the satura-
tion of activation functions, which can occur when the input values are too large. Finally,
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normalization can help make the model more robust to changes in the input distribution,
which can improve the generalization performance of the model. Normalization refers to
scaling the input features to a standard range. Next, feature scaling of relevant attributes is
required to perform, which enhances the efficiency of the fitting to the prediction model.
Consecutively, normalization is also one of the important data preparation techniques
that can effectively reduce the loss function and speed up the gradient descent to find the
optimal solution. To normalize the data, the min-max normalization method is computed
in Equation (1) as follows [27]:

ynorm =
y− ymin

ymax − ymin
, (1)

where ynorm is the normalized dataset feature, y is the original dataset feature, ymin is the
minimum value in the y feature, and ymax is the maximum value in the y feature. This
MinMaxScaler is the most common normalization technique. Using the MinMaxScaler stan-
dardization technique, all of the feature values are changed between 0 and 1. Subsequently,
once the data preprocessing and normalization phases have been completed, the entire
263 strain spectral data are then provided to the proposed method to train a hybrid GRU
and LSTM network. This approach combines the strengths and capabilities of both GRU
and LSTM models, enabling enhanced performance and flexibility in handling complex
features of data. The detailed operating principle and functioning of this hybrid model will
be elaborated in the following section.

4. The Proposed Stacked GRU-LSTM Model Training

The primary objective of the proposed method is to improve the measurement accu-
racy in the FBG sensor system. This is achieved by predicting and determining the central
wavelength of each sensor through the detection of overlap spectra and the evaluation
of detection errors. This method aims to address the limitations of traditional signal pro-
cessing techniques by using advanced deep learning models, such as GRU and LSTM
networks. These models are capable of capturing complex relationships in sequential data-
based regression, learning the features of the sequential inputs, making them suitable for
accurately determining the central wavelength of FBG sensors [28,29]. By enhancing the
detection accuracy of wavelength measurements, the proposed method contributes to the
overall performance and reliability of the FBG sensor system, enabling its application in
various domains, including structural health monitoring and industrial process control.

In this work, a hybrid stacked GRU-LSTM model is proposed to predict the central
wavelength sensor from the overlap spectra, measure the detection error, and improve the
measurement accuracy sensor system. Stacked GRU-LSTM is a type of neural network
architecture that combines both GRU and LSTM layers in a stacked manner. GRU and
LSTM are both types of recurrent neural networks (RNNs) that are commonly used for
processing sequential data, such as text, speech, or time series data.

The GRU is a simpler variant of the LSTM, which was introduced to reduce the number
of parameters and computational complexity of the LSTM. Both GRU and LSTM layers
use gates to selectively forget or remember information from the previous time step, which
helps the model handle long-term dependencies in sequential data. In a stacked GRU-LSTM
architecture, multiple layers of GRU and LSTM are stacked on top of each other, with the
output of each layer fed as input to the next layer. This allows the model to learn more
complex and abstract representations of the input data, as each layer can capture different
levels of abstraction. Multi-layer neural networks are a common powerful approach to
improving a model’s performance in machine learning [30,31]. By stacking multiple layers
of neurons, these models can learn increasingly complex representations of data, leading to
better accuracy and performance. One popular type of multi-layer model is the deep neural
network, which typically consists of multiple layers of densely connected neurons. Each
layer in the network takes in the output of the previous layer and uses it to compute a new
set of outputs. By combining these layers, deep neural networks can learn intricate and
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highly non-linear relationships between input and output data. Moreover, adding more
layers to a neural network can help the model learn more complex representations of the
data and can lead to better accuracy and predictive results.

As illustrated in Figure 3, once real experiment-based collected spectral training
datasets are preprocessed and normalized, the data are split into a training set and an un-
seen testing set. In deep learning applications, the validation set and unseen test set both
play crucial roles in evaluating the performance of a trained model, but they operate in
different stages and with distinct datasets. The validation dataset is a key component uti-
lized during model training. It is typically a subset of the labeled dataset that is partitioned
specifically for validation purposes. During the training process, the model is trained
on a separate training dataset, and the validation dataset is used to assess the model’s
performance after each epoch or iteration. The validation data allow for the evaluation of
model performance on data that it has not seen during training. This evaluation helps in
monitoring the model’s progress, fine-tuning hyperparameters, and making adjustments
to improve its performance.
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On the other hand, unseen datasets are entirely independent and not used during both
the training and validation stages. It is carefully preserved and serves as a final evaluation
of the trained model’s effectiveness in real-world scenarios. The unseen test data should
be representative of the data the model might encounter after deployment. By evaluating
the model on this unseen test data, researchers and practitioners can obtain an unbiased
evaluation of the model’s generalization and capability to perform on new, previously
unseen instances. Generally, the goal of utilizing both the validation and unseen dataset
is to ensure that the trained model performs well not only on the data it was trained and
validated on but also on new, unseen instances. By using the validation dataset for iterative
improvements and the unseen test dataset for final evaluation, practitioners aim to build
reliable and robust models that can effectively handle real-world challenges. Before the
proposed stacked GRU-LSTM network training started, the training set spectral data were
split into an 80:20 ratio of training and validation sets. Accordingly, the training process of
the stacked GRU-LSTM network is initiated by initializing the GRU layer to receive the
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training samples of all four FBG spectra sequentially as input features. During the training
of the proposed stacked GRU-LSTM network, several crucial parameters were carefully
adjusted to optimize the performance of the model. These involved the most suitable
activation function, optimizer algorithm, batch size, number of iterations (or epochs),
and hidden units. By iteratively tuning these parameters, the model aimed to achieve
the highest possible accuracy and effectively capture the underlying patterns within the
FBG spectra.

Figure 4 demonstrates the proposed hybrid stacked GRU-LSTM architecture, which
incorporates four GRU and three LSTM stacked layers. The basic architectural structure
of our designed Stacked GRU-LSTM network operates as follows: It utilizes the GRU
layers to handle the sequential data, capturing and retaining relevant information from
preceding time steps. The output of the GRU layers is then passed on to the LSTM layers,
which further process the information by incorporating memory cells and gates to manage
the flow of information. This combined architecture allows for the enhanced modeling
and understanding of time-dependent data, facilitating more accurate predictions and
useful insights.
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As shown in Figure 4, the basic architectural structure of the proposed stacked GRU-
LSTM network involves several key steps. Firstly, the training data comprising reflection
spectra of FBGs at different strain steps are collected and formatted into a training dataset.
The figure provides a visual representation of the inputs and target values used in the
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proposed hybrid stacked GRU-LSTM model. To prepare the data for the model, a series of
preprocessing and data structuring steps are applied. These steps ensure that the inputs
and target values adhere to the required formats for deep learning. In this particular case,
the target values correspond to the peak wavelength of the utilized four FBGs. These peak
wavelength values are crucial in the context of the model, as they serve as the desired
outputs or targets for prediction. The inputs, on the other hand, consist of the reflected
spectra of the same FBGs. By analyzing these reflected spectra, the hybrid stacked GRU-
LSTM model can learn to capture the underlying patterns and relationships that enable the
accurate prediction of the peak wavelength values. Overall, the preprocessing and data
structuring steps facilitate the proper alignment of the inputs and target values, enabling
the hybrid stacked GRU-LSTM model to effectively learn and make accurate predictions in
the given scenario.

Accordingly, the various parameters, including epochs, hidden layers, batch sizes,
optimizers, and activation functions, are adjusted to find the optimal values. To enhance
the prediction accuracy of the peak wavelength for FBGs and evaluate estimation error,
the proposed model undergoes multiple parameter adjustments until it achieves optimal
values. During training, various activation functions, such as Tanh, ReLU, softmax, and
sigmoid, are employed to aid the convergence of the hybrid stacked GRU-LSTM model’s
output. These activation functions play a crucial role in introducing non-linear features to
the model. Through extensive training and evaluation using different activation functions,
it is determined that both the ReLU and Tanh activations consistently yield lower RMSE
values compared to other functions. Consequently, the optimal model incorporates both
ReLU and Tanh activations to effectively capture non-linear characteristics and improve
performance in peak wavelength prediction for the FBGs. Once the model is developed, it
is tested on unseen test datasets to evaluate its performance and generalization capabilities.
The prediction outputs generated by the network are compared against the actual values
using a loss function, with metrics such as mean squared error (MSE), mean absolute error
(MAE), and root means squared error (RMSE) used to evaluate the prediction performance.

Furthermore, the effectiveness of the stacked GRU-LSTM model is compared to other
algorithms to validate its superiority. By following this architectural structure and con-
ducting comprehensive evaluations, valuable insights into the prediction capabilities of the
stacked GRU-LSTM network for FBG reflection spectra analysis are gained. This analysis
allows for the assessment of the network’s performance and highlights its strengths and
advantages in this domain.

In the training phase of the stacked GRU-LSTM network, the selection of the most suit-
able optimizer holds great significance in assessing the performance of the proposed model.
To evaluate and determine the model’s effectiveness, various evaluation metrics, such as
MSE, MAE, and RMSE, are employed in the regression models. These evaluation metrics
play a vital role in comparing and contrasting the performance of different variations of
the stacked GRU-LSTM model, allowing for the identification of the model that proves
superior performance. These performance evaluation metrics, MSE, MAE, and RMSE, are
computed in Equations (2)–(4) [32], respectively, as follows:

MSE =
1
r ∑r

i=1

(
ai − p

)2 , (2)

MAE =
1
r ∑r

i=1|(ai − p)|, (3)

RMSE =

√
∑r

i=1
(
ai − p

)2

r
, (4)

where the number of test data values is specified by r, ai means the actual central wave-
length of the FBG sensor measured by OSA, and p is the estimated center wavelength
output of the FBG by the proposed system. The smaller the values of the RMSE, MSE, and
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MAE, the lower the model’s wavelength interrogation error. Therefore, to identify the best
optimizers, the proposed stacked GRU-STM network is trained repetitively. To compare
the proposed model performance of different optimizers, the loss values are compared as
shown in Figure 5.
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sets to select optimal optimizer.

As demonstrated in the figure, these optimizers achieved different RMSE values. As
seen in the figure, the RMSE value of Adam is lower. Through extensive analysis and
comparison, it has been determined that the Adam optimizer consistently produces the
lowest RMSE values in comparison to the other optimizers. Therefore, the decision has been
made to select the Adam optimizer as the optimal choice for training the proposed hybrid
stacked GRU-LSTM model. The selection of the Adam optimizer is better able to facilitate
the rapid convergence of both the training and validation loss, resulting in reduced RMSE
values. In direct comparison with alternative optimizers, the Adam optimizer has proven
to be highly effective in achieving superior performance and minimizing RMSE values [8].
To enhance training efficiency and introduce non-linearity, the network is compiled using
the Adam optimization algorithm, along with the ReLU and Tanh activation functions.
In the proposed stacked GRU-LSTM model, GRU and LSTM hidden units are combined
to accurately measure the strain-sensing signal of the FBGs. During the training process,
various parameters such as the number of epochs, hidden units, hidden layers, optimizer,
and activation function are tuned to optimize the model’s performance. As a result, the
proposed algorithm produces different training times, as well as varying values of RMSE,
MAE, and MSE.

To identify the optimal value, several numbers of training are implemented on the
proposed model until the optimal results are achieved. As a result, the optimal values
are achieved in 200 batch size, 1800 epochs size, seven hidden layers, and 824 hidden
units. Moreover, the proposed stacked GRU-LSTM network is compiled using the Adam
optimizer, ReLU, and Tanh activation functions. In addition to this, the performance of the
proposed model is evaluated by training the network using a different number of layers.
When the number of layers increases in a neural network, the prediction accuracy and
ability to learn more complex features can be better. Figure 6, demonstrated the performance
of the stacked GRU-LSTM model in terms of RMSE and a different number of layers. As
shown in the figure, when the number of stacked GRU-LSTM network layers increases, the
model significantly increases the learning capability and reduces the RMSE values. This
indicates the performance of the proposed model is boosted when the number of layers
increases. Thus, the proposed stacked GRU-LSTM model has achieved better performance
at seven layers compared to the two layers, three layers, four layers, five layers, and six
layers stacked GRU-LSTM model performance.
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5. Results and Discussion

In this chapter, a new bidirectional integration of fiber sensor/FSO communication
with an IWDM-based long-distance FBG sensor system is proposed. This integration allows
for the simultaneous transmission of optical communication and sensing signals using
CWDM technology. The integration of communication and sensing systems offers a distinct
advantage by significantly reducing construction costs. In the absence of an integrated
communication and sensing system, two separate fiber optic systems would be required.
However, through the integration of these functionalities, only one fiber optic system is
needed. This integration empowers the system to concurrently support communication and
sensing, resulting in notable cost savings. Consolidating communication and sensing into
a single system brings multiple cost-effective benefits. It eliminates the need for additional
infrastructure and equipment, reducing material and installation costs. The simplified
system architecture makes managing and maintaining easier. An integrated system allows
for optimized resource allocation. With separate systems, redundant resources are needed.
Integration enables more efficient resource utilization, leading to cost reductions. In general,
integrating communication and sensing is a cost-effective solution. It reduces construction
costs, optimizes resource utilization, and streamlines workflows, maximizing the benefits
of simultaneous capabilities. The results of this research are discussed by categorizing them
into two distinct cases, each highlighting different aspects of the proposed system.

In the first case, which pertains to an IWDM-based long-distance FBG sensor system,
a hybrid stacked GRU-LSTM algorithm was proposed to predict the central wavelength of
the FBG sensor system. By implementing this hybrid deep learning algorithm, the peak
wavelength of the FBG sensor was effectively deep learning model predicted, and the
detection errors were estimated. To evaluate the performance of the proposed hybrid
stacked GRU-LSTM model, several performance metrics were utilized, including loss or
MSE, accuracy, MAE, RMSE, and testing time.

According to the results illustrated in Figure 7, the training and validation losses of the
proposed stacked GRU-LSTM method are illustrated as a consistent decrease with an in-
crease in the number of epochs. The figure demonstrates that the training and validation
losses started to converge after reaching 750 epochs; however, their stability is not achieved
until 1000 epochs.

It is the optimal result that even though the training and validation losses had com-
pletely converged after 1300 epochs, the optimal values for these losses were obtained at
1800 epochs. This suggests the importance of prolonging the training process to achieve the
best possible results. Additionally, the performance of the proposed stacked GRU-LSTM
network was evaluated by training it using real experiment spectral training datasets.
The evaluation aimed to determine the minimum model detection error values. Accord-
ingly, the model achieved impressive results, with the minimum MSE value recorded at
0.00046015 and the minimum RMSE value recorded at 0.02145102. These outcomes high-
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light the effectiveness of the proposed approach in accurately predicting spectral data and
minimizing the error between predicted and actual values. The use of real experiment
spectral training datasets further enhances the reliability and applicability of the proposed
stacked GRU-LSTM network in practical scenarios.
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To further validate the proposed model’s ability to detect wavelengths, a comparison
was made between the peak wavelength detection performance of the hybrid stacked GRU-
LSTM approach and other deep learning methods, like GRU and LSTM. This comparison
was carried out using an identical training dataset size and within the same experimental
working environment. As depicted in Figure 8, when the models are individually trained
using real experiment-based spectral datasets, the MSE values consistently decrease with
the increasing of several epoch sizes. Interestingly, the results demonstrate that the stacked
GRU-LSTM model outperformed the other models, demonstrating its superior accuracy in
wavelength detection. These findings provide compelling evidence of the effectiveness of
the stacked GRU-LSTM model in accurately detecting wavelengths. This further validates
the effectiveness and superiority of the proposed approach in wavelength detection tasks.
The outcomes of the proposed hybrid model are presented to demonstrate its effectiveness
in predicting the central wavelength of FBG sensors and estimating the detection error.
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The performance evaluation metrics provide valuable insights into the accuracy and
reliability of the hybrid stacked GRU-LSTM model. Moreover, the proposed hybrid stacked
deep learning is validated even though the power variations occurred within the λ11, λ21,
λ31, and λ41 sensor wavelengths. Therefore, the power variations had no significant impact
on the proposed AI system. The testing time was also considered to assess the efficiency of
the proposed model in real-world applications. Overall, this chapter provides a compre-
hensive analysis of the bidirectional integration of fiber sensor/FSO communication with
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the IWDM-based long-distance FBG sensor sensing system, highlighting the capabilities
and performance of the proposed hybrid stacked GRU-LSTM algorithm.

Figure 9 illustrates the results of the predictive performance analysis of three deep
learning models, stacked GRU-LSTM, GRU, and LSTM, in the detection of peak wavelength
values of overlapped FBG sensors. These models were evaluated using performance metrics
such as MAE, RMSE, and testing time. The evaluation metrics were computed and tested
using the same amount of spectral training datasets and under identical environmental
conditions. The validity of the well-trained deep learning models was assessed using new,
unseen test sets.
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time using stacked GRU-LSTM with other models.

Based on the predictive analysis of peak wavelength values of overlapped FBG sensors,
the MAE values varied among the three models. The stacked GRU-LSTM model achieved
the lowest MAE value of 0.01248531, indicating a higher level of accuracy in its predic-
tions. Whereas, the LSTM model displayed the highest MAE value of 0.0391585, implying
a relatively lower accuracy in its predictions. In terms of the RMSE values, the stacked
GRU-LSTM model achieved the lowest value of 0.017185, indicating a higher precision in
its predictions. Conversely, the LSTM model yielded the highest RMSE value of 0.052951,
suggesting a comparatively lower precision. Furthermore, the testing time for making
predictions varied among the models. The stacked GRU-LSTM model displayed the lowest
testing time value of 0.062, indicating a shorter processing duration for making predictions.
In contrast, the LSTM model exhibited the highest testing time value of 0.101, implying
a relatively longer processing duration. Overall, the results presented in Figure 9 highlight
the superior performance of the stacked GRU-LSTM model compared to the GRU and
LSTM models in terms of MAE, RMSE, and testing time. This model consistently achieved
better accuracy, precision, and faster processing in predicting the peak wavelength values
of overlapped FBG sensors.

To evaluate the performance of the proposed hybrid stacked GRU-LSTM model, a com-
prehensive comparison was conducted with various models based on the error distribution
between the actual and predicted strain-sensing signals. This evaluation utilized a new
experimental unseen test set, ensuring unbiased and robust analysis. The measured error
distribution was carefully examined and compared, offering insights into the accuracy
and effectiveness of the proposed model compared to others. The comparison results are
visually illustrated in Figure 10, providing a clear reference for evaluating the model’s suit-
ability for strain-sensing applications. This particular evaluation, combined with the visual
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representation, enhances the credibility and reliability of the comparison, strengthening
our understanding of the proposed hybrid stacked GRU-LSTM model’s performance. The
measurement error distribution was calculated by determining the difference between the
actual central wavelength value and the predicted central wavelength value. To provide
a comprehensive understanding of this error distribution, Figure 10 presents a statistical
representation that includes information on maximum errors, minimum errors, and the
mean of errors in the prediction error distributions. Accordingly, the proposed hybrid
stacked GRU-LSTM model excels across these performance indicators. It achieved a maxi-
mum error, minimum error, and mean error of 0.029, 0.0003, and 0.029, respectively. This
outstanding performance outshines that of the other algorithms under consideration, un-
derscoring the superior predictive ability of the proposed model. Its ability to accurately
estimate the central wavelength value showcases its effectiveness and reliability compared
to alternative models. In contrast, when comparing the maximum error values for the GRU
and LSTM models, we found that they are 0.067 and 0.098, respectively. This comparison
highlights that the proposed stacked GRU-LSTM model outperforms the other methods in
measuring the central wavelength, as it achieved a significantly smaller maximum error.
Impressively, the maximum error for the proposed model was only 0.029, demonstrat-
ing its superior accuracy and reliability in predicting strain-sensing signals. Based on the
results depicted in Figure 10, it is evident that the proposed hybrid stacked GRU-LSTM
model excels in terms of the error distribution analysis between the actual and predicted
strain-sensing signals. This comparison proves the model’s remarkable performance, as
it consistently outperformed other algorithms by achieving smaller maximum errors and
delivering higher precision in measuring the central wavelength. These findings validate
the superiority of this proposed model and accentuate its potential to improve the accuracy
and reliability of strain-sensing applications.
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Figure 10. Performance comparison of measured error distribution between the actual and the mea-
sured wavelengths in between stacked GRU-LSTM, GRU, and LSTM models.

In Figure 3, it is shown that the training phase of the stacked GRU-LSTM method has
been completed, resulting in the acquisition of a well-trained model. This model, built upon
the stacked GRU-LSTM architecture, has undergone rigorous training to acquire proficiency
in capturing intricate temporal patterns within sequential data. To validate the reliability
and efficacy of the trained model in handling unexplored and unseen data, a comprehensive
testing process was conducted. This involved subjecting the well-trained stacked GRU-
LSTM model to novel and original experimental spectral testing sets that were not part of
the training datasets. By employing these new experimental test datasets, researchers can
assess the model’s ability to generalize and make accurate predictions beyond the context
of its training data. This testing phase serves as a critical step in measuring the model’s
robustness and its potential to perform effectively in real-world scenarios.
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The analysis of the model’s performance is presented in Figure 11; the estimated
wavelengths of four FBG sensor spectra of the test sets are demonstrated in comparison
to their actual wavelengths by utilizing the stacked GRU-LSTM technique. The figure
demonstrates the relationship between the actual and predicted wavelength values, with
the x-axis representing the actual values and the y-axis representing the predicted values of
the test sets. The red line serves as an indication of the proximity of the ideal point to the
line of best fit. Upon closer examination of the figure, it becomes evident that the actual
and predicted peak wavelengths validate a strong correlation and are aligned more closely
with the line of best fit in the case of the stacked GRU-LSTM model. Particularly, when
evaluating the RMSE values, it is observed that the stacked GRU-LSTM model achieved
the lowest RMSE value of 0.017185, indicating a minimal level of detection error.
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The second case pertains to demonstrating the results analysis of the optical communi-
cation system. The performance evaluation of the integrated fiber/FSO communication
system involved analyzing key parameters such as EVM and constellation diagrams. This
performance analysis system involved evaluating the EVM and constellation diagram
values, which consider various transmission distances and FSO links. To demonstrate
the results, Figure 12 shows the EVM curve and constellation diagram for various sce-
narios, including back-to-back (BTB), FSO, 25 km SMF, 25 km SMF with FSO, and 25 km
SMF combined with an additional 10 km SMF integrated with FSO transmission channels.
Throughout all scenarios, the received optical power level was set at −9 dBm, resulting
in corresponding EVM values of 1.36%, 1.76%, 2.41%, 3.3%, and 4.03%, respectively. The
higher EVM values could be due to factors such as dispersion and minor reflections within
the fiber links. However, the constellation diagrams obtained from the measurements
demonstrate the successful propagation of signals even when integrating different trans-
mission channels. This important observation indicates the effectiveness of the proposed
hybrid fiber sensor/FSO communication network, which incorporates sensor integration.
It also signifies the network’s ability to overcome geographical limitations and achieve
improved performance while extending the transmission distance. Overall, the commu-
nication results provide a comprehensive evaluation of the integrated fiber sensor/FSO
communication system. The utilization of EVM measurements and constellation diagrams
confirms the system’s capability to maintain reliable signal transmission, even in challeng-
ing conditions. The integration of fiber and FSO technologies within the proposed hybrid
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network shows its potential as a viable solution, offering enhanced performance, extended
transmission distance, and the ability to overcome geographical barriers.
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Figure 12. The measurement output of performance parameters for the communication system at
different distances of the transmission channels.

6. Conclusions

In this paper, a new bidirectional integration approach was introduced to combine fiber
sensor/FSO communication with an IWDM techniques-based long-distance strain-sensing
FBG sensor system. By implementing CWDM, the system can transmit optical communi-
cation and FOS sensing signals simultaneously, leading to the creation of a system that is
highly capable, flexible, and cost-effective. This bidirectional structure is a preferential op-
tion and an optimal solution for ensuring the reliability and stability of a long-distance FBG
sensor system. Extensive research and experimentation support this conclusion. Addition-
ally, a hybrid approach that merges stacked GRU and LSTM deep learning algorithms was
proposed. This hybrid stacked GRU-LSTM model outperforms individual GRU and LSTM
models in peak wavelength detection accuracy. This hybrid approach greatly enhances the
precision of peak wavelength detection in FBGs that have overlapping spectra.
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