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Abstract: Spoofing interference is one of the most emerging threats to the Global Navigation Satellite
System (GNSS); therefore, the research on anti-spoofing technology is of great significance to im-
proving the security of GNSS. For single spoofing source interference, all the spoofing signals are
broadcast from the same antenna. When the receiver is in motion, the pseudo-range of spoofing
signals changes nonlinearly, while the difference between any two pseudo-ranges changes linearly.
Authentic signals do not have this characteristic. On this basis, an anti-spoofing method is proposed
by jointly monitoring the linearity of the pseudo-range difference (PRD) sequence and pseudo-range
sum (PRS) sequence, which transforms the spoofing detection problem into the sequence linearity
detection problem. In this paper, the model of PRD and PRS is derived, the hypothesis based on the
linearity of PRD sequence and PRS sequence is given, and the detection performance of the method is
evaluated. This method uses the sum of squares of errors (SSE) of linear fitting of the PRD sequence
and PRS sequence to construct detection statistics, and has low computational complexity. Simulation
results show that this method can effectively detect spoofing interference and distinguish spoofing
signals from authentic signals.

Keywords: Global Navigation Satellite System (GNSS); security; spoofing interference; pseudo-range
difference (PRD); pseudo-range sum (PRS); linearity; sum of squares of errors (SSE)

1. Introduction

Global Navigation Satellite System (GNSS) has the unique technical characteristics of
all-weather, all-day, and global coverage and has become the most widely used space-based
radio positioning system at present [1,2]. While it is widely used, the security of GNSS
has been paid more attention [3]. Due to the inherent vulnerability of GNSS, such as weak
signal power, publicly known civil signal structure, slow message update, etc., GNSS is vul-
nerable to external interference, and its security is seriously threatened [4,5]. In its current
form, the main types of GNSS interference include suppression interference and spoofing
interference. Suppression interference interferes with the target receiver by transmitting
high-power signals, which reduces its positioning performance and even makes it impos-
sible to locate [6]. However, the effect of suppressing interference is dominant. It is easy
for the attacked receiver to find out that it has been suppressed and take countermeasures
accordingly. The more covert spoofing interference induces the receiver to output wrong
positioning results by broadcasting false signals with the same structural characteristics
and different parameters as GNSS signals [7]. Compared with suppression interference,
spoofing interference does not require high power, and its interference effect is more con-
cealed, so its potential harm is higher [8]. The research on anti-spoofing technology is of
great significance to improving the security of GNSS, which has gradually been widely
valued by academic circles and has become a new research hotspot [9,10].
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According to the number of spoofing sources, spoofing interference can be divided
into two modes: single spoofing source interference and multiple spoofing sources inter-
ference [11]. Single spoofing source interference means that a spoofing source transmits
multiple spoofing signals, which is the most common spoofing interference mode at present.
In this way, the spoofing signals can be consistent without knowing the target receiver
position [12]. Multiple spoofing sources interference means that each spoofing source
produces a spoofing signal, and all the spoofing signals are transmitted to the receiver
from different directions. This way is closer to the actual scene. Nevertheless, to make
the spoofing signals meet the consistency, the receiver position should be known, and the
spoofing sources need to synchronize accurately through the communication link, which
requires high implementation cost and technical level. Up to now, the interference mode of
multiple spoofing sources cooperative spoofing is still in the theoretical research stage, and
there is no public report in the literature.

Because of the complexity of spoofing interference, the principles of anti-spoofing
methods are quite different. The anti-spoofing method based on C/N0 monitoring as-
sumes that the C/N0 of spoofing signals exceeds the normal range, but if the spoofing
signals are broadcast together with noise, this method will be invalidated [13]. The signal
quality monitoring method can detect the traction spoofing interference based on the fact
that overlapping correlation peaks in the traction process will lead to distortion of the
autocorrelation function but is ineffective when correlation peaks are separated [14]. The
receiver autonomous integrity monitoring method detects spoofing interference accord-
ing to the consistency of authentic signals, but it will fail when spoofing signals tend to
be consistent [15].

For single spoofing source interference, an important feature is that all spoofing signals
are broadcast from the same antenna. Therefore, the incidence angles of all spoofing signals
are the same, while those of authentic signals are different. According to this, methods based
on multiple antennas or multiple receivers can effectively detect spoofing interference [16–21].
However, these methods not only need to synchronize the observations of all antennas or
receivers but also need to add extra hardware, which leads to high complexity and cost.
In addition, methods based on mobile receivers are also effective [22–24]. All spoofing
signals have the same propagation path, while the authentic signals from different satellites
have different propagation paths. Therefore, when the receiver moves, some observations
of the authentic signals and the spoofing signals will show different changes. Previous
studies assumed that the channel gains or carrier Doppler shifts of all the spoofing signals
are correlated, so spoofing interference can be detected by monitoring the correlation of
channel gains or carrier Doppler shifts between different signals. However, the change in
channel gain is related to the distance between the spoofing source and the receiver. The
farther the distance, the less obvious the channel gain variation caused by the receiver
motion [11]. In addition, the change in carrier Doppler shift is related to the velocity change
in the receiver. The smaller the velocity change, the less obvious the carrier Doppler shift
variation caused by the receiver motion.

Based on the above considerations, this paper proposes an anti-spoofing method for
single spoofing source interference, which jointly monitors the linearity of the pseudo-
range difference (PRD) sequence and pseudo-range sum (PRS) sequence. In a short time,
the pseudo-range variation caused by the satellite motion is linear. For spoofing signals,
although the variations in pseudo-ranges caused by the receiver motion are nonlinear,
these variations are the same. Consequently, the pseudo-range of spoofing signals changes
nonlinearly, while the difference between any two pseudo-ranges changes linearly. For
authentic signals, it does not have this characteristic. Therefore, we can detect spoofing
interference by monitoring the linearity of the PRD sequence and PRS sequence and
distinguishing between authentic signals and spoofing signals. Compared with the existing
research, the proposed method can effectively solve the problem of spoofing detection
even when the distance between the spoofing source and the receiver is far away or the
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velocity of the receiver changes slowly, which shows that the performance of the method is
more robust.

Subsequent sections of this paper are arranged as follows. In Section 2, the models of
PRD and PRS are derived, and their linear problems are analyzed. In Section 3, hypothesis
testing is given, linearity detection statistics are constructed, and false alarm probability
and detection probability are analyzed. Section 4 shows the simulation results. Section 5
summarizes the content of this paper.

2. Linearity Analysis
2.1. Pseudo-Range Sequence Linearity Analysis

The pseudo-range measurement value ρ of the authentic signal is as shown in Equation (1):

ρ = r + c(δtu − δts + I + T) + ε, (1)

where r represents the geometric distance between satellite and receiver; c represents the
speed of light; δtu and δts represent receiver clock error and satellite clock error, respectively;
I is ionospheric delay; T is tropospheric delay; and ε represents pseudo-range measurement
noise, which can be considered as Gaussian white noise.

Define the pseudo-range sequence
→
ρ i =

[
ρi(0), · · · ρi(k), · · · ρi(K− 1)

]
. ρi(k)

denotes the pseudo-range measurement value of the signal i at the k-th measurement time.
The measurement time interval is ∆t, and the sequence length is K. In a short time, the
changes in ionospheric delay, tropospheric delay, and satellite clock error are very small
and can be ignored. In addition, since the distance between the satellite and receiver is far
enough, the position change of the satellite and receiver in a short time is very small relative

to the distance between them. Therefore, the unit observation vector
→
l i of the satellite at

the receiver can be considered constant. Thus, ρi(k) can be approximately expressed as

ρi(k) ≈ ∆
→
r s,i(k) ·

→
l i − ∆

→
r u(k) ·

→
l i + c · δtu(k) + εi(k) + Cni. (2)

In Equation (2), Cni = ρi(0) − c · δtu(0) − εi(0) is a constant; ∆
→
r s,i(k) and ∆

→
r u(k)

represent the position vectors of the satellite and the receiver from time 0 to time k, respectively.

∆
→
r s,i(k) ·

→
l i means the radial projection component of the satellite position change.

The radial acceleration of the satellite is less than 2× 10−5 m/s3 [11]. The radial acceleration
is so small that it has little effect on radial velocity. Therefore, in a short time, it can be

considered that the radial velocity is constant, which means that ∆
→
r s,i(k) ·

→
l i varies linearly.

The receiver is driven by a stable clock, and its clock drift does not change obviously with
time [25]. Therefore, the receiver clock difference δtu(k) can also be considered to vary

linearly in a short time. When the receiver velocity is constant, ∆
→
r u(k) ·

→
l i changes linearly

with time. When its velocity changes, ∆
→
r u(k) ·

→
l i changes nonlinearly. According to the

above analysis, the elements in
→
ρ i are linear when the receiver moves at a uniform velocity,

and nonlinear when the receiver moves at a variable velocity.
In case of spoofing signal, under the assumption that the position of the spoofing

source is unchanged, ρi(k) can be approximately expressed as

ρi(k) ≈ ∆
→
r s,i(k) ·

→
l

p

i − ∆
→
r u(k) ·

→
l

u
(k) + ∆ρp,i(k) + c · δtu(k) + εi(k) + Cni, (3)

where
→
l

p

i represents the unit observation vector of the satellite at the spoofing source,
→
l

u
(k)

represents the unit observation vector of the spoofing source at the receiver, and ∆ρp,i(k)
represents the difference between the additional component of the spoofing source at time
k and time 0. It should be emphasized that in addition to the assumption that the spoofing
source is stationary, we also need to assume that the additional component of the spoofing
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source to any signal changes linearly, which is the prerequisite for the effectiveness of the
proposed method. Thus, ∆ρp,i(k) can be considered to vary linearly.

Since the distance between the satellite and the spoofing source is far enough,
→
l

p

i

can be considered to be constant in a short time, so that ∆
→
r s,i(k) ·

→
l

p

i varies linearly with

time. While for
→
l

u
(k), due to the distance between the spoofing source and the receiver

being relatively close,
→
l

u
(k) will change continuously with the movement of the receiver.

Therefore, whether the receiver is moving at a uniform velocity or not, ∆
→
r u(k) ·

→
l

u
(k) is

nonlinear with time, and then the elements in
→
ρ i are nonlinear.

2.2. PRD Sequence Linearity Analysis

Defining ∆
→
ρ ij =

[
∆ρij(0), · · · ∆ρij(k), · · · ∆ρij(K− 1)

]
is the sequence of

measured pseudo-range differences between the signal i and the signal j, where ∆ρij(k) can
be denoted as

∆ρij(k) = ρi(k)− ρj(k). (4)

If the two signals are authentic signals, ∆ρij(k) can be derived as

∆ρij(k) ≈ ∆
→
r s,i(k) ·

→
l i − ∆

→
r s,j(k) ·

→
l j − ∆

→
r u(k) ·

(→
l i −

→
l j

)
+ εi(k)− ε j(k) + ∆Cnij, (5)

where ∆Cnij = (ρi(0)− εi(0))−
(
ρj(0)− ε j(0)

)
is a constant. The pseudo-range variation

c · δtu(k) caused by the change in the receiver clock difference is eliminated in the calculation

process. In a short time, ∆
→
r s,i(k) ·

→
l i and ∆

→
r s,j(k) ·

→
l j change linearly, and

→
l i −

→
l j can be

considered unchanged. Therefore, it is not difficult to conclude that the elements in ∆
→
ρ ij

are linear when the receiver moves at a uniform velocity and nonlinear when the receiver
moves at a variable velocity.

If the two signals are spoofing signals, ∆ρij(k) can be derived as

∆ρij(k) ≈ ∆
→
r s,i(k) ·

→
l

p

i − ∆
→
r s,j(k) ·

→
l

p

j + ∆ρp,i(k)− ∆ρp,j(k) + εi(k)− ε j(k) + ∆Cnij. (6)

The pseudo-range change ∆
→
r u(k) ·

→
l

u
(k) caused by the change in receiver position is

eliminated in the calculation process. In this case, the elements in ∆
→
ρ ij are linear regardless

of whether the receiver is moving at a uniform velocity or a variable velocity.
If one of the two signals is an authentic signal and the other is a spoofing signal, ∆ρij(k)

can be derived as

∆ρij(k) ≈ ∆
→
r s,i(k) ·

→
l i − ∆

→
r s,j(k) ·

→
l

p

j − ∆
→
r u(k) ·

(→
l i −

→
l

u
(k)
)

−∆ρp,j(k) + εi(k)− ε j(k) + ∆Cnij

. (7)

Since
→
l

u
(k) will change during the motion of the receiver, ∆

→
r u(k) ·

→
l

u
(k) changes

nonlinearly with time regardless of whether the receiver moves at a uniform velocity, which
means that the elements in ∆

→
ρ ij are nonlinear.

2.3. PRS Sequence Linearity Analysis

Defining Σ
→
ρ ij =

[
Σρij(0), · · · Σρij(k), · · · Σρij(K− 1)

]
is the sequence of

measured pseudo-range sums between the signal i and the signal j, where Σρij(k) can
be denoted as

Σρij(k) = ρi(k) + ρj(k). (8)



Sensors 2023, 23, 8418 5 of 17

If the two signals are authentic signals, Σρij(k) can be derived as

Σρij(k) ≈ ∆
→
r s,i(k) ·

→
l i + ∆

→
r s,j(k) ·

→
l j − ∆

→
r u(k) ·

(→
l i +

→
l j

)
+ 2c · δtu(k)

+εi(k) + ε j(k) + ΣCnij

, (9)

where ΣCnij = (ρi(0)− c · δtu(0)− εi(0)) +
(
ρj(0)− c · δtu(0)− ε j(0)

)
is a constant. In a

short time, ∆
→
r s,i(k) ·

→
l i and ∆

→
r s,j(k) ·

→
l j change linearly, and

→
l i +

→
l j can be considered

unchanged. Therefore, it is not difficult to conclude that the elements in Σ
→
ρ ij are linear

when the receiver moves at a uniform velocity and nonlinear when the receiver moves at a
variable velocity.

If the two signals are spoofing signals, Σρij(k) can be derived as

Σρij(k) ≈ ∆
→
r s,i(k) ·

→
l

p

i + ∆
→
r s,j(k) ·

→
l

p

j − 2∆
→
r u(k) ·

→
l

u
(k) + ∆ρp,i(k) + ∆ρp,j(k)

+2c · δtu(k) + εi(k) + ε j(k) + ΣCnij
. (10)

If one of the two signals is an authentic signal and the other is a spoofing signal, Σρij(k)
can be derived as

Σρij(k) ≈ ∆
→
r s,i(k) ·

→
l i + ∆

→
r s,j(k) ·

→
l

p

j − ∆
→
r u(k) ·

(→
l i +

→
l

u
(k)
)
+ ∆ρp,j(k)

+2c · δtu(k) + εi(k) + ε j(k) + ΣCnij

. (11)

For the two cases, since
→
l

u
(k) will change during the motion of the receiver, ∆

→
r u(k) ·

→
l

u
(k) will change with time regardless of whether the receiver moves at a uniform velocity,

which means that the elements in Σ
→
ρ ij are nonlinear.

2.4. Analysis Summary

Based on all the above analysis, we can draw a conclusion, as shown in Table 1. Case 1
indicates that the two signals are authentic signals. Case 2 indicates that the two signals are
spoofing signals. Case 3 indicates that one of the two signals is an authentic signal and the
other is a spoofing signal.

Table 1. Linearity analysis results of PRD sequence and PRS sequence.

Case 1 Case 2 Case 3

Constant Variational Constant Variational Constant Variational

∆
→
ρ ij linear nonlinear linear linear nonlinear nonlinear

Σ
→
ρ ij linear nonlinear nonlinear nonlinear nonlinear nonlinear

3. Anti-Spoofing Method

From the analysis in Section 2, it can be seen that when the two signals are spoofing
signals, the PRD sequence ∆

→
ρ ij is linear, while the PRS sequence Σ

→
ρ ij is nonlinear. In other

cases, this characteristic is not satisfied. Accordingly, the detection result ∆
→
ρ ij is linear and

Σ
→
ρ ij is nonlinear, indicating that the signal i and the signal j are spoofing signals from

the same spoofing source. Although no definite conclusion can be obtained from other
detection results, all authentic signals and spoofing signals can still be distinguished with
traversal detection.

The specific detection process includes the following two steps.
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G Step 1: Randomly select two signals and use the proposed method to detect whether
they are both spoofing signals. If yes, proceed to Step 2. If not, we will reselect
two signals for detection until two spoofing signals are selected.

G Step 2: For the other signals, except the two spoofing signals, one of them is selected
in turn to be jointly detected with any one of the spoofing signals.

For Step 2, on the premise that one signal is a spoofing signal, the proposed method
can directly determine whether the other signal is an authentic signal or a spoofing signal.
As a result, all authentic signals and spoofing signals can be judged.

The above spoofing detection process is represented with a flowchart, as shown in
Figure 1. Next, this section will introduce the detection method of the linearities of PRD
sequence ∆

→
ρ ij and PRS sequence Σ

→
ρ ij involved in the spoofing detection process.
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Figure 1. Flowchart corresponding to spoofing detection process.

3.1. PRD Sequence Linearity Detection

In the linearity detection of the PRD sequence, two hypotheses for PRD sequence ∆
→
ρ ij

are as follows: {
H∆,0 : ∆

→
ρ ij is nonlinear

H∆,1 : ∆
→
ρ ij is linear

. (12)

For ∆
→
ρ ij, we can calculate its least square linear regression model:

∆
_
ρ ij(k) =

_
a ∆,ij × k +

_
b ∆,ij, (13)

where
_
a ∆,ij and

_
b ∆,ij are the estimated model parameters and ∆

_
ρ ij(k) represents the

estimated value of ∆ρij(k) obtained with a linear model.
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Under the H∆,0 hypothesis, ∆ρij(k) can be expressed as

∆ρij(k) = g∆,ij(k) + w∆,0(k), (14)

where g∆,ij(k) represents a nonlinear equation and w∆,0(k) is Gaussian white noise. The
variance of w∆,0(k) is σ2

ij:

σ2
ij = σ2

i + σ2
j . (15)

σ2
i and σ2

j denote the pseudo-range measurement noise variance of the signal i and the
signal j, respectively. In this case, the difference between the actual value and the estimated
value ∆xij(k) can be deduced as follows:

∆xij(k) = ∆ρij(k)− ∆
_
ρ ij(k)

=
(

g∆,ij(k) + w∆,0(k)
)
−
(
_
a ∆,ij × k +

_
b ∆,ij

)
= µ∆,ij(k) + w∆,0(k)

. (16)

Therefore, ∆xij(k) obeys the Gaussian distribution with mean value µ∆,ij(k) and vari-
ance σ2

ij.
Under the H∆,1 hypothesis, ∆ρij(k) can be expressed as

∆ρij(k) = a∆,ij × k + b∆,ij + w∆,1(k), (17)

where a∆,ij and b∆,ij are model parameters, w∆,1(k) is Gaussian white noise, and its variance
is also σ2

ij. Thus, the difference between the actual value and the estimated value ∆xij(k)
can be deduced as follows:

∆xij(k) = ∆ρij(k)− ∆
_
ρ ij(k)

=
(
a∆,ij × k + b∆,ij + w∆,1(k)

)
−
(
_
a ∆,ij × k +

_
b ∆,ij

)
=
(

a∆,ij −
_
a ∆,ij

)
× k +

(
b∆,ij −

_
b ∆,ij

)
+ w∆,1(k)

≈ w∆,1(k)

. (18)

Compared with w∆,1(k), a∆,ij−
_
a ∆,ij and b∆,ij−

_
b ∆,ij are very small and can be ignored.

Therefore, ∆xij(k) obeys the Gaussian distribution with zero mean and σ2
ij variance.

∆
→
x ij =

[
∆xij(0), · · · ∆xij(k), · · · ∆xij(K− 1)

]
is called the fitting error se-

quence of the PRD sequence. The effect of linear fitting can be evaluated using the sum of
squares of errors (SSE) between actual data and estimated data. The smaller the SSE, the
better the linear fitting effect. Based on this, we construct the linearity detection statistic
∆Tij corresponding to the PRD sequence:

∆Tij =
1
K

K−1

∑
k=0

∆xij(k)
2 =

K−1

∑
k=0

(∆xij(k)√
K

)2

. (19)

It can be proved that under the hypothesis of H∆,0, ∆Tij obeys the non-central chi-
square distribution with the degree of freedom K and the non-central parameter λ∆,ij. And
under the H∆,1 hypothesis, ∆Tij obeys the central chi-square distribution with the degree
of freedom K. 

H∆,0 : ∆Tij ∼ χ2
(

K, λ∆,ij,
σ2

ij
K

)
H∆,1 : ∆Tij ∼ χ2

(
K, 0,

σ2
ij

K

) . (20)
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The non-central parameter λ∆,ij is as follows:

λ∆,ij =
K−1

∑
k=0

(
µ∆,ij(k)√

K

)2

=
1
K

K−1

∑
k=0

(
µ∆,ij(k)

)2. (21)

When the degree of freedom is large enough, the chi-square distribution can be
approximately Gaussian distribution [26]. According to this characteristic of chi-square
distribution, the distribution of ∆Tij under the H∆,0 hypothesis and the H∆,1 hypothesis
can be approximately expressed as

H∆,0 : ∆Tij ∼ N
(

σ2
ij + λ∆,ij,

2σ4
ij

K +
4σ2

ij
K λ∆,ij

)
H∆,1 : ∆Tij ∼ N

(
σ2

ij,
2σ4

ij
K

) . (22)

Figure 2 shows the probability density function of the linearity detection statistic
∆Tij under different hypotheses, where the solid lines are the theoretical curves calculated
according to the Equation (22), and the star points are the statistical results obtained through
10,000 Monte Carlo random experiments. Figure 2a,b correspond to the H∆,0 hypothesis,
where their central parameters are λ∆,ij = 100 and λ∆,ij = 200, respectively, while Figure 2c
corresponds to the H∆,1 hypothesis. It can be found that the simulation results are very
close to the theoretical results. Under the H∆,1 hypothesis, ∆Tij is closer to zero, and the
smaller the noise variance and the longer the sequence length, the more concentrated the
distribution of ∆Tij. Under the H∆,0 hypothesis, the mean and variance of ∆Tij increase
with the increase in central parameters.
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Figure 2. Probability density function of the linearity detection statistic corresponding to PRD
sequence under different hypotheses.
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3.2. PRS Sequence Linearity Detection

In the linearity detection of the PRS sequence, two hypotheses for PRS sequence Σ
→
ρ ij

are as follows: {
HΣ,0 : Σ

→
ρ ij is linear

HΣ,1 : Σ
→
ρ ij is nonlinear

. (23)

Similarly, the difference between the actual value and the estimated value obtained
with linear fitting Σ

→
ρ ij is represented by Σxij(k). Under the HΣ,0 hypothesis, Σxij(k)

obeys the Gaussian distribution with zero mean and σ2
ij variance. Under the HΣ,1 hypoth-

esis, Σxij(k) obeys the Gaussian distribution with mean value µΣ,ij(k) and variance σ2
ij.

Σ
→
x ij =

[
Σxij(0), · · · Σxij(k), · · · Σxij(K− 1)

]
is called the fitting error sequence

of the PRS sequence. Constructing the linearity detection statistic ΣTij corresponding to the
PRS sequence:

ΣTij =
1
K

K−1

∑
k=0

Σxij(k)
2 =

K−1

∑
k=0

(Σxij(k)√
K

)2

. (24)

It can be proved that under the hypothesis of HΣ,0, ΣTij obeys the central chi-square
distribution with the degree of freedom K. And under the H∆,1 hypothesis, ΣTij obeys
the non-central chi-square distribution with the degree of freedom K and the non-central
parameter λΣ,ij. 

HΣ,0 : ΣTij ∼ χ2
(

K, 0,
σ2

ij
K

)
HΣ,1 : ΣTij ∼ χ2

(
K, λΣ,ij,

σ2
ij

K

) . (25)

The non-central parameter λΣ,ij is as follows:

λΣ,ij =
K−1

∑
k=0

(
µΣ,ij(k)√

K

)2

=
1
K

K−1

∑
k=0

(
µΣ,ij(k)

)2. (26)

Combined with the previous analysis, when the degree of freedom is large enough,
the chi-square distribution can be approximately Gaussian distribution. Therefore, the
distribution of ΣTij under different hypotheses can be derived:

HΣ,0 : ΣTij ∼ N
(

σ2
ij ,

2σ4
ij

K

)
HΣ,1 : ΣTij ∼ N

(
σ2

ij + λΣ,ij ,
2σ4

ij
K +

4σ2
ij

K λΣ,ij

) . (27)

Figure 3 shows the probability density function of the linearity detection statistic
ΣTij under different hypotheses, where the solid lines are the theoretical curves calculated
according to the Equation (27), and the star points are the statistical results obtained through
10,000 Monte Carlo random experiments. Figure 3a corresponds to the HΣ,0 hypothesis,
while Figure 3b,c correspond to the HΣ,1 hypothesis, where their central parameters are
λΣ,ij = 100 and λΣ,ij = 200, respectively. It can be found that the simulation results are
very close to the theoretical results. Under the HΣ,0 hypothesis, ΣTij is closer to zero, and
the smaller the noise variance and the longer the sequence length, the more concentrated
the distribution of ΣTij. Under the HΣ,0 hypothesis, the mean and variance of ΣTij increase
with the increase in central parameters.
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Figure 3. Probability density function of the linearity detection statistic corresponding to PRS
sequence under different hypotheses.

3.3. Detection Performance Analysis

From the analysis in Section 2, it can be seen that the noise contained with the PRD
∆ρij(k) is εi(k) − ε j(k), and the noise contained with PRS Σρij(k) is εi(k) + ε j(k). εi(k)
and ε j(k) are not correlated. Therefore, the variance of εi(k)− ε j(k) and εi(k) + ε j(k) is
σ2

ij = σ2
i + σ2

j . The correlation coefficient ηij between them can be derived as

ηij =
cov
(
εi(k)− ε j(k), εi(k) + ε j(k)

)√
var
(
εi(k)− ε j(k)

)
· var

(
εi(k) + ε j(k)

) =
σ2

i − σ2
j

σ2
i + σ2

j
. (28)

When the pseudo-range measurement noise variances σ2
i and σ2

j are equal, the correla-

tion coefficient is ηij = 0, which means that the PRD sequence ∆
→
ρ ij is not correlated with

the noise contained in the PRS sequence Σ
→
ρ ij. When σ2

i 6= σ2
j , ∆

→
ρ ij is correlated with the

noise contained in Σ
→
ρ ij, and the greater the difference between the two noise variances,

the higher the correlation. Considering that the spoofing signals broadcast by the same
spoofing source have similar power, to simplify the problem, it is assumed that the noises
contained in ∆

→
ρ ij and Σ

→
ρ ij are not correlated. That is to say, the detection of PRD sequence

linearity is independent of the detection of PRS sequence linearity.
For the PRD sequence and PRS sequence linearity detection, since the noise variance is

σ2
ij and the detection length is K, the same detection threshold γ can be set. In the linearity

detection of the PRD sequence, the H∆,0 hypothesis is considered to be valid when ∆Tij > γ,
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and the H∆,1 hypothesis is considered to be valid when ∆Tij ≤ γ. Combined with the
Equation (22), the false alarm probability P∆,fa and the detection probability P∆,d can be
derived as follows:

P∆,fa = P
(
∆Tij ≤ γ|H∆,0

)
≈ 1−Q

 γ−
(

σ2
ij+λ∆,ij

)
√

2σ4
ij

K +
4σ2

ij
K λ∆,ij


P∆,d = P

(
∆Tij ≤ γ|H∆,1

)
≈ 1−Q

 γ−σ2
ij√

2σ4
ij

K

 . (29)

where Q(·) is the right tail probability function. In the linearity detection of the PRS
sequence, the HΣ,0 hypothesis is considered to be valid when ΣTij ≤ γ, and the HΣ,1
hypothesis is considered to be valid when ΣTij > γ. Combined with the Equation
(27), the false alarm probability PΣ,fa and the detection probability PΣ,d can be derived
as follows: 

PΣ,fa = P
(
ΣTij > γ|HΣ,0

)
≈ Q

(
γ−σ2

ij

σ2
ij

√
2
K

)

PΣ,d = P
(
ΣTij > γ|HΣ,1

)
≈ Q

 γ−
(

σ2
ij+λΣ,ij

)
√

2σ4
ij

K +
4σ2

ij
K λΣ,ij

 . (30)

For the method proposed in this paper, the false alarm probability Pfa and detection
probability Pd of joint detection can be expressed as{

Pfa = P
(
∆Tij ≤ γ and ΣTij > γ|(H∆,0 or HΣ,0)

)
Pd = P

(
∆Tij ≤ γ and ΣTij > γ|(H∆,1 and HΣ,1)

) . (31)

Since it is assumed that the PRD sequence linearity detection is independent of the
PRS sequence linearity detection, Pfa and Pd can be further derived:

Pfa = P
(
∆Tij ≤ γ|H∆,0

)
· P
(
ΣTij > γ|HΣ,0

)
+ P

(
∆Tij ≤ γ|H∆,1

)
· P
(
ΣTij > γ|HΣ,0

)
+P
(
∆Tij ≤ γ|H∆,0

)
· P
(
ΣTij > γ|HΣ,1

)
= P∆,fa · PΣ,fa + P∆,d · PΣ,fa + P∆,fa · PΣ,d

, (32)

Pd = P
(
∆Tij ≤ γ|H∆,1

)
· P
(
ΣTij > γ|HΣ,1

)
= P∆,d · PΣ,d. (33)

The false alarm probability Pfa and detection probability Pd of joint detection corre-
sponding to the detection threshold γ in different scenes are shown in Figure 4. Compared
with the Figure 4a,b, the increase in noise variance makes Pfa higher and Pd lower. Com-
pared with the Figure 4a,c, the reduction in sequence length makes Pfa higher and Pd
lower. Compared with the Figure 4a,d, the decrease in non-central parameter λ∆,ij makes
Pfa increase, and Pd remains unchanged. Compared with the Figure 4a,e, the decrease in
non-central parameter λΣ,ij reduces Pfa and Pd.

The lower the false alarm probability and the higher the detection probability,
the better the detection performance. Furthermore, we count the difference Pd − Pfa
between the detection probability and the false alarm probability corresponding to
the detection threshold γ in different scenes, as shown in Figure 5. It is not difficult
to find from the figure that the smaller the noise variance, the longer the sequence
length, and the larger the non-central parameters λ∆,ij and λΣ,ij, the better the detec-
tion performance.
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Figure 4. False alarm probability and detection probability corresponding to detection threshold.
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Figure 5. Difference between detection probability and false alarm probability corresponding to
detection threshold.
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4. Simulation Results and Analysis

In this section, the feasibility of the method will be verified with simulation tests.
Simulation scenes are divided into the uniform motion scene and the circular motion scene,
as shown in Figure 6. The authentic signals and spoofing signals in the two scenes are
generated with the GNSS signal source simulator, sampled and stored in signal memory,
and then processed with the GNSS software receiver.

The number of test signals is 8, in which the PRNs of authentic signals are 2, 11, 14,
and 21, and the PRNs of spoofing signals are 5, 10, 16, and 33. The standard deviation of
the pseudo-range measurement error of all signals is set to 3 m. This assumption implies
that the noise variance of PRD and PRS for any two signals is 18. The receiver tracks
the collected signals and obtains the measured pseudo-range sequence with the sequence
length K = 120 and the time interval ∆t = 0.1 s. The difference between two measurement
pseudo-range sequences is selected to form a PRD sequence, and the sum forms a PRS
sequence. Each PRD sequence and PRS sequence is linearly fitted to obtain fitting error
sequences, and the detection statistics are obtained by statistics. The detection threshold
γ = 30. For this threshold, the probability that the sequence is linear but the detection
result is nonlinear will be less than 0.001%.
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4.1. Uniform Motion Scene Test

In the uniform motion scene test, the distance between the spoofing source and the
target receiver is 1000 m at 0 time, and the speed of the receiver is 40 m/s. The fitting
error sequences ∆

→
x ij and Σ

→
x ij correspond to the PRD sequence and the PRS sequence, and

the linearity detection statistics ∆Tij and ΣTij obtained by statistics are shown in Figure 7.
In the case of two authentic signals, as shown in Figure 7a, both ∆Tij and ΣTij are below
the threshold. For the case of one authentic signal and one spoofing signal, as shown in
Figure 7c, both ∆Tij and ΣTij are above the threshold. For the case of two spoofing signals,
as shown in Figure 7b, ∆Tij ≤ γ and ΣTij > γ are satisfied. The simulation results are
consistent with the analysis results, which show that the proposed method can detect
spoofing signals in uniform motion scenes.
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4.2. Circular Motion Scene Test

In the circular motion scene test, the distance between the spoofing source and the
target receiver is 1000 m at 0 time, the speed of the receiver is 40 m/s, and the circumference
radius is 300 m. The fitting error sequences ∆

→
x ij and Σ

→
x ij correspond to the PRD sequence

and the PRS sequence, and the linearity detection statistics ∆Tij and ΣTij obtained with the
test are shown in Figure 8. In the case of two authentic signals, as shown in Figure 8a, both
∆Tij and ΣTij are above the threshold. For the case of one authentic signal and one spoofing
signal, as shown in Figure 8c, both ∆Tij and ΣTij are above the threshold. For the case
of two spoofing signals, as shown in Figure 8b, ∆Tij ≤ γ and ΣTij > γ are satisfied. The
simulation results are consistent with the analysis results, which show that the proposed
method can detect spoofing signals in variable motion scenes.
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5. Conclusions

Aiming at single spoofing interference, this paper proposes an anti-spoofing method
based on the joint monitoring of the PRD sequence and the PRS sequence linearity, which
changes the spoofing detection problem into the sequence linearity detection problem. The
detection statistics are constructed based on the SSE of linear fitting of the PRD sequence
and PRS sequence. When the sequence length is large enough, the detection statistics
approximately obey the Gaussian distribution. The influence of noise variance, sequence
length, and non-central parameters on the detection performance of the method is analyzed.
It can be concluded that the smaller the noise variance, the longer the sequence length, and
the larger the non-central parameters, the better the detection performance. In addition, the
feasibility of the method is verified by simulation tests. Simulation results show that this
method can detect spoofing interference and distinguish authentic signals from spoofing
signals in both uniform motion scenes and variable motion scenes. This is the premise of
improving the security and availability of GNSS in the presence of spoofing interference.

The proposed method is low complexity because it only requires pseudo-range infor-
mation and does not need to modify the baseband processing of the receiver. Nevertheless,
the precondition for the effectiveness of the method is that the spoofing source is stationary,
and the additional component of the spoofing source to any signal is linearly varying. In
addition, this paper lacks an exploration of the influence of receiver motion on non-central
parameters, which makes it impossible to establish a direct relationship between receiver
motion and detection performance. Our future work will focus on these two aspects
to improve.
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