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Abstract: Multi-modal sensors are the key to ensuring the robust and accurate operation of au-
tonomous driving systems, where LiDAR and cameras are important on-board sensors. However,
current fusion methods face challenges due to inconsistent multi-sensor data representations and
the misalignment of dynamic scenes. Specifically, current fusion methods either explicitly correlate
multi-sensor data features by calibrating parameters, ignoring the feature blurring problems caused
by misalignment, or find correlated features between multi-sensor data through global attention,
causing rapidly escalating computational costs. On this basis, we propose a transformer-based
end-to-end multi-sensor fusion framework named the adaptive fusion transformer (AFTR). The
proposed AFTR consists of the adaptive spatial cross-attention (ASCA) mechanism and the spatial
temporal self-attention (STSA) mechanism. Specifically, ASCA adaptively associates and interacts
with multi-sensor data features in 3D space through learnable local attention, alleviating the problem
of the misalignment of geometric information and reducing computational costs, and STSA interacts
with cross-temporal information using learnable offsets in deformable attention, mitigating displace-
ments due to dynamic scenes. We show through numerous experiments that the AFTR obtains SOTA
performance in the nuScenes 3D object detection task (74.9% NDS and 73.2% mAP) and demonstrates
strong robustness to misalignment (only a 0.2% NDS drop with slight noise). At the same time, we
demonstrate the effectiveness of the AFTR components through ablation studies. In summary, the
proposed AFTR is an accurate, efficient, and robust multi-sensor data fusion framework.

Keywords: 3D object detection; multi-sensor fusion; transformer; autonomous driving; misalignment

1. Introduction

Autonomous driving (AD) is a safety-critical task. Multi-modal sensors that are fitted
to self-driving cars, such as cameras, radar, and LiDAR (light detection and ranging), are
designed to enhance the accuracy and robustness of AD operations [1–3]. The camera
captures ambient light, allowing it to obtain rich color and material information, which, in
turn, provides rich semantic information. The millimeter-wave radar transmits and receives
electromagnetic waves to obtain sparse orientation, distance, and velocity information
from target objects. Additionally, LiDAR uses lasers for ranging, and, in AD, a multibeam
LiDAR is commonly employed to perform the dense ranging of the environment, providing
geometric information. To achieve advanced autonomous driving, it is crucial to fully utilize
multi-sensor data through fusion methods, allowing for the integration of information from
different sensors.

There are two main challenges facing current multi-sensor fusion approaches in au-
tonomous driving. The first challenge is the heterogeneity of the data: multi-sensor data
are generated from multiple sensors with different data representations, expressions (color
or geometric), coordinates, and levels of sparsity; this heterogeneity poses difficulties for
fusion. In most deep-learning-based fusion methods, it is necessary to align data accurately,
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both temporally and spatially. Additionally, during the feature fusion process, multi-source
data features are obtained at different scales and from different viewpoints; this causes
feature blurring and affects the accuracy of the model [4,5]. The second challenge is dy-
namic scene adaptation: when one of the modalities in the fusion method is disturbed,
such as when adverse weather conditions, misalignment, or sensor failure is encountered,
the performance of the model can be significantly reduced [6]. Many data fusion meth-
ods primarily focus on achieving state-of-the-art performance benchmarks, which only
addresses one aspect of the multi-sensor fusion challenge. An ideal fusion model should
possess comprehensive properties; each individual model should not fail, regardless of the
presence or absence of other modalities or the integrity of other modalities, and the model
should achieve improved accuracy when incorporating multi-sensor data.

In facing the challenge caused by the heterogeneity of multi-sensor data, transformer-
based methods have gained significant attention in autonomous driving. Transformers
establish a connection between spatial information and the features extracted from the
front view (camera plane), and they are SOTA (state of the art) in 3D object detection.
For example, DETR3D [7], inspired by methods like DETR [8,9], realizes end-to-end 3D
object detection by constructing a 3D object query. BEVFormer [10] implements the BEV
(bird’s eye view) space interaction of current and temporal image features through a
spatiotemporal transformer, achieving outstanding results in 3D perception tasks. The
transformer’s impressive performance in monocular image-based 3D detection tasks also
allows it to implicitly capture the correlation of data between different modalities, which
is particularly crucial in multi-sensor data fusion methods. Furthermore, because of
the implementation of image features sampled in BEV space, there is the possibility of
representing multi-sensor data under a unified space. BEVFusion [5,11] proposes a unified
representation of image and point cloud data under BEV space by reconstructing the depth
distributions of multi-view images in 3D space through LSS [12] and fusing them to the
3D point cloud data represented in BEV through the residual module Fusion. However,
BEVFusion suffers from feature blurring in the fusion process brought about by depth
estimation errors.

In facing the challenge caused by dynamic scenes, CMT [13] introduces a masked
model training strategy, which improves the robustness of the model by feeding the modal
failure data into the network for training. DeepFusion [14] tackles the alignment issue
between point cloud and image features by leveraging a global attention mechanism,
achieving an implicit alignment of the point cloud with the image in terms of features.
The other methods [10,13,15], while indirectly forming an implicit alignment between
multi-sensor features through a reference point, all utilize an accurate sampling of the
camera’s extrinsic parameters in the projection of the reference point to the image features,
which does not alleviate the problems caused by misalignment.

To address the challenge above, we propose an adaptive fusion transformer (AFTR) for
3D detection tasks—a simple, robust, end-to-end, 3D object detection framework. Firstly,
we propose an adaptive spatial cross-attention (ASCA) mechanism. ASCA realizes the
implicit association of 3D object queries with spatial multi-sensor features through learnable
offsets, and it only interacts with the corresponding features to realize local attention. ASCA
avoids the information loss caused by the 3D-2D feature projection, since ASCA can directly
sample in space. Then, we propose a spatial temporal self-attention (STSA) mechanism,
which equates the displacement caused by the self-ego motion and the target motion to
learnable offsets. We indicate the contributions of the proposed AFTR as follows:

• To the best of our knowledge, the AFTR is the first fusion model that interacts with
both 2D representational features and 3D representational features and interacts with
3D temporal information.

• The AFTR outperforms on 3D detection tasks through the cross-modal attention mech-
anism and the cross-temporal attention mechanism, demonstrating SOTA performance
on the nuScenes dataset.
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• The AFTR is the most robust framework compared to existing fusion modals; it has
the smallest performance drop in the face of misalignment, and better robustness can
be achieved via augmented learning using extra noisy data.

Here, we present the organization of the full paper. In Section 2, we first present the
current framework for 3D object detection based on single-sensor data, followed by the
current state of the art in the development of multi-sensor data fusion frameworks. In
Section 3, we discuss the structure of the proposed AFTR framework in detail. In Section 4,
we present the datasets used in the AFTR and the evaluation metrics for 3D object detection,
and we describe in detail the setup of the AFTR in specific experiments. In Section 5, we
compare the experimental results of the AFTR with those of SOTA methods and illustrate
the effects of parameter settings and the components on the AFTR through a detailed
ablation study, and, further, we test the robustness of the AFTR in dynamic scenes by
applying noise to the alignment parameters. In Section 6, we summarize the proposed
AFTR with a brief description of its advancements and limitations.

2. Related Works

In this section, we provide an introduction to relevant single-sensor-based (both
camera-only and LiDAR-only) and fusion-based 3D object detectors. In Section 2.1, we
focus on transformer-based camera-only 3D object detectors, while CNN-based methods
are briefly described for the following reasons: (1) in the field of 3D object detection,
transformer-based architectures have become dominant and have overwhelmed CNN-
based methods in terms of performance, and (2) the proposed AFTR is a transformer-based
framework, which is inspired by both image-based and the fusion method transformer
frameworks. In Section 2.2, we present the relevant and most commonly used LiDAR-only
3D object detectors based on different point cloud representations. In Section 2.3, we detail
the current SOTA transformer-based fusion model.

2.1. Camera-Only 3D Object Detector

In this section, we present only the CNN-based methods mentioned later, focusing on
the transformer-based camera-only 3D detector.

2.1.1. CNN-Based Method

LSS [12] introduces the lift-splat-shoot paradigm to address the bird’s-eye view per-
ception from multi-view cameras. It involves bin-based depth prediction for lifting image
features to 3D frustums, splatting these frustums onto a unified bird’s-eye view, and it
performs downstream tasks on the resulting BEV feature map. FCOS3D [16] inherits from
FCOS [17] and predicts 3D objects by transforming 7-DoF 3D ground truths to image view.

Since 3D target detection involves depth estimation, CNN-based methods have dif-
ficulties in modeling planar images in space, which is what the transformer excels at. In
particular, after BEV-based perception methods were proposed, transformer-based frame-
works outperformed CNN-based methods in the field of 3D object detection.

2.1.2. Transformer-Based Method

Benefiting from the fact that transformers can establish a correlation between spatial
space and image features, transformer-based camera-only detectors achieve better per-
formance in 3D object detection tasks. These methods can be broadly categorized into
object-query-based, BEV-query-based, and BEV-depth-based methods.

DETR3D [7] inherits from DETR [8], which introduces object queries and generates a
3D reference point for each query. These reference points are used to aggregate multi-view
image features as keys and values, and cross-attention is applied between object queries
and image features. This approach allows each query to decode a 3D bounding box for
object detection. DETR4D [18] performs temporal modeling based on DETR3D, and this
results in better performance. PETR [19] achieves 3D object detection by encoding 3D posi-
tion embedding into 2D images to generate 3D position-aware features. PolarFormer [20]
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proposes a polar cross-attention mechanism based on polar coordinates, which achieves
excellent detection performance under BEV. BEVDet [21] extracts features from multi-view
images through LSS [12] and a BEV encoder, and it transforms them into BEV space and per-
forms 3D object detection. BEVDet4D [22] obtains better results than BEVDet by extending
BEVDet and fusing BEV features from historical and current timestamps. BEVDepth [23]
continues to optimize on the basis of BEVDet and BEVDet4D by supervising and optimiz-
ing depth estimations through camera extrinsic parameters and the point cloud to achieve
better results. BEVStereo [24] solves the blurring and sparsity problems caused by depth
estimation in a series of methods such as BEVDet through the improvement of the temporal
multi-view stereo (MVS) technique, and the improved MVS can handle complex indoor
and outdoor scenes to achieve better 3D detection. BEVFormer [10] and BEVFormerV2 [25]
are based on Deformable DETR [26], which interacts with image features by generating
reference points in BEV, avoiding the computation of the transformation of 2D features to
3D features, and realizing robust and efficient 3D object detection. Although transformer-
based camera-only frameworks have made breakthroughs in 3D object detection, they
still have a reasonable performance disadvantage compared to point cloud methods or
fusion-based methods that natively gain 3D geometric information.

2.2. LiDAR-Only 3D Object Detector

In this subsection, we briefly describe the original papers and detectors involved in
commonly used LiDAR feature extraction methods. Point cloud data are usually feature-
extracted under three representations: points, voxels, and pillars.

PointNet [27] pioneered the method of feature extraction directly on the raw point
cloud with its MLP (multilayer perception) layers and max-pooling layers. On this basis,
PointNet++ [28] achieves better performance in 3D target detection and segmentation tasks
by optimizing local feature extraction.

VoxelNet [29] converts sparse point cloud data into regular stereo grids, which pro-
vides the basis for CNN implementation, and SECOND [30] improves the efficiency of
feature extraction under voxel representation by employing a sparse convolution net-
work [31]. This is currently the most commonly used feature extraction method.

PointPillars [32] extracts the pillar features of the point cloud in the longitudinal
direction through PointNet, forming a particular type of regular 2D grid data with channels,
which provides the possibility of using the 2D CNN method.

PointVoxel-RCNN (PV-RCNN) [33] achieves better object detection performance by
fusing features under two representations (points and voxels).

Although point cloud data natively possess 3D geometric information and perform
well in 3D perception, due to their sparseness, it is difficult for the point cloud to accurately
detect occluded, far, and small targets.

2.3. Fusion-Based 3D Object Detector

F-PointNet [34] and PointPainting [4], as two typical sequential-result-level fusion
models, require accurate image detection frameworks with precise multi-modal sensor
calibration, and they are susceptible to wrong detection, omissions, and misalignment due
to the image detector. FusionPainting [35] directly fuses the segmentation results of the
LiDAR data and camera data via adaptive attention, and these are fed into the 3D detector
to obtain the results. MVX-Net [36] is a feature-level fusion model, which samples and
aggregates image features by projecting voxels onto the image plane, and it is also affected
by misalignment.

Recently, feature-level fusion models based on transformers have become major play-
ers, benefiting from the fact that transformers can establish feature-to-feature relationships,
which is important for multi-sensor data fusion. TransFusion [37] uses image features to
initialize the object query; it updates the query by interacting with LiDAR features, and then
it interacts with the image features and outputs the 3D detection results. DeepFusion [14],
however, uses LiDAR features as the query to interact with image features, and then it
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updates the output features with LiDAR features and outputs the 3D detection results.
DeepInteraction [38] argues that the model should learn and maintain the individual modal
representations, and it proposes that LiDAR and camera features should interact with each
other in order to fully learn the features of each modality. BEVFusion [5,11] proposes a
simple and efficient framework to predict the depth distribution of multi-view images
using LSS [12], represent the image features under BEV, and subsequently generate fusion
features by aggregating the BEV LiDAR features and BEV camera features through the BEV
encoder to alleviate the feature blurring between multi-sensor data features. UVTR [39]
avoids the loss of information caused by compression into BEV space by proposing to
represent both the image and the point cloud in voxel space. FUTR3D [15] and CMT [13],
however, generate 3D reference points through object queries and use 3D reference point
sampling or interaction with multi-modal features to update the object queries, and then
they perform 3D target detection through a transformer-based decoder. However, both
FUTR3D and CMT use calibration parameters to achieve the direct exact matching of
multi-sensor data, which is detrimental to robustness.

3. AFTR Architecture

In this paper, we propose the AFTR (adaptive fusion transformer), which implicitly
aligns the features of multi-sensor data to achieve more robust 3D object detection results.
The AFTR can be divided into four parts, as shown in Figure 1. The AFTR takes the multi-
view camera data and LiDAR data as input data and extracts features through individual
backbones (Section 3.1). At the same time, the fusion queries of the historical timestamp
Q̂t−1 are also input into the AFTR encoder. The randomly generated 3D object queries Q
interact with the features of the multi-sensor data, and the historical information is finally
updated with the fusion queries Q̂ of the current timestamp. Then, the fusion queries Q̂ are
position-encoded and input into the DETR3D [7] and Deformable DETR [26] transformer
decoders (Section 3.4). The fusion queries Q̂ interact with the initialized 3D object queries
Q through layer-by-layer refinement in the transformer decoder, which finally outputs the
3D object detection results. The proposed AFTR has two main components, as shown in
Figure 2a: the adaptive spatial cross-attention (ASCA) module (Section 3.2) and the spatial
temporal self-attention (STSA) module (Section 3.3). The input data of ASCA comprise
multi-camera features FCam and LiDAR features FLiD represented by voxels, and the input
data of STSA comprise 3D representations of the historical frame fusion queries Q̂t−1.
Finally, the fusion queries Q̂ are output through the feed-forward module and used for 3D
object detection.
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3.1. Feature Extraction

The proposed AFTR learns features from multi-view images and the point cloud,
and any feature extraction method that can be used on images or the point cloud can be
employed in our framework.

For multi-view images, I =
{
Ii ∈ R3×H×W}n

i=1, where H, W, and n are the height,
width, and the number of views of the image, respectively. We follow previous work
[7,10,13,15,16] using ResNet [40] or VoVNet [41] for feature extraction and use FPN [42] to

output multi-scale features, denoted as F i
Cam =

{
F ij

Cam ∈ RC×Hj×Wj
}m

j=1
for the i-th image

view with m scales, where C is the channel size of the feature, and Hj and Wj denote the
height and width of the j-th scale features, respectively.

For the point cloud, we use VoxelNet [29] for feature extraction, and we follow
FUTR3D [15] to output multi-scale voxel features by using FPN [42]. It should be noted
that the point cloud features extracted in our method are represented in 3D space instead
of being projected into BEV space [13,15], and the point cloud features can be denoted as

FL =
{
F j

L ∈ RC×Xj×Yj×Zj
}m

j=1
, where Xj, Yj, and Zj are the sizes of the 3D voxel feature.

3.2. Adaptive Spatial Cross-Attention

Adaptive spatial cross-attention (ASCA) is a critical component of the AFTR, and it
aims to fuse multi-sensor features while achieving implicit alignment by interacting with
multi-view, multi-scale image features and 3D point cloud features through an object-query-
based cross-attention mechanism. A schematic diagram of the ASCA module is shown
in Figure 2c. The detection head for the AFTR is a set of object queries Q ∈ RC×X×Y×Z,



Sensors 2023, 23, 8400 7 of 20

which has a number of Nre f 3D object queries named Qp ∈ R1×C, where Qp corresponds
to a reference point p = (x, y, z) in real-world 3D space. Considering the handling of
multi-scale features, we normalize the 3D reference point coordinates, giving p ∈ [0, 1]3.
ASCA dynamically updates each query Qp by interacting with and fusing multi-sensor
data features.

3.2.1. Interaction with Multi-View Image Features

ASCA uses the Deformable DETR [26] idea to produce an interaction between the
query and multi-sensor data features for two reasons: first, the 3D reference point corre-
sponds to only a few features, and the native attention [9] mechanism requires a query to
interact with all the features, which results in extreme computational costs. Deformable
DETR, by adding an offset, focuses on only query-related features. Second, determining
how to find the reference point in an image is a big challenge. Previous approaches directly
project the 3D reference point onto the corresponding image plane using calibration param-
eters, which is not robust. ASCA learns the 3D reference point to correctly associate the
features by using the offset to achieve implicit alignment. We follow the hit view Vhit in
BEVFormer [10] and project the 3D reference points onto BEV to determine their possible
projected view Vhit = {Vi}. Ultimately, an interaction with the features in Vhit is achieved
through ASCA. The adaptive spatial cross-attention process with image features can be
formulated as Equation (1):

ASCACam
(
Qp,Fcam

)
=

1
|Vhit|

∑i∈Vhit ∑
m
j=1De f ormAttn

(
Qp, Ti(p),F ij

Cam

)
, (1)

where Qp is the 3D object query, m denotes the number of scales, F ij
Cam represents the image

feature of the j-th scales in the i-th view, and Ti(p) is the project function that transforms
the 3D reference point p to the i-th image plane. Ti(p) can be represented as Equation (2):

Ti(p) = Ti(x, y, z),

where
[
ui vi di 1

]
=
[
x y z 1

][Ri
T 0

Ti 1

][
CIi 0
0 1

]T

,
(2)

where ui and vi denote the normalization coordinate positions of the width and height
in the i-th image plane, respectively; di is the depth of the pixel, which is not used in our
method; Ri ∈ R4×4 and Ti ∈ R1×3 denote the LiDAR to the i-th camera transformation
matrix of rotation and translation, respectively; and CIi ∈ R3×3 represents the i-th camera
intrinsic parameters.

Following Deformable DETR, the features obtained through the offset are calculated
using bilinear interpolation [43] from the four closest pixels.

In general, ASCA only interacts with the hit view image features corresponding to the
object query to reduce computation. While ASCA employs camera extrinsic parameters to
project 3D reference points onto the image, which only serves as a reference for sampling,
ASCA uses dynamically updating offsets to implicitly align the reference points with the
image features so that the object query only interacts with the related features.

3.2.2. Interaction with Point Cloud Features

Since point cloud features are natively represented in 3D space, indicating the geo-
metric features of an object in a real-world space, 3D reference points can interact with
point cloud features without projection. However, the point cloud coordinates deviate
from the real-world coordinates or the ego coordinates in the following cases: first, when
the sensor position is translated or rotated and, second, when there is a delay due to the
sampling frequency of the LiDAR. ASCA can better learn such deviations to ensure an
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accurate implicit alignment. The adaptive spatial cross-attention process with point cloud
features can be formulated as Equation (3):

ASCALiD
(
Qp,FLiD

)
= ∑m

j=1De f ormAttn
(

Qp, p,F j
LiD

)
. (3)

The offsets of the reference point are generated in 3D space, the point cloud is encoded
as stereo grids regularly arranged spatially, and then the offset is located within a certain
stereo grid. We express the j-th scale point cloud features corresponding to the offsets
F j

LiD−o f f set as Equation (4):

F j
LiD−o f f set =

{
F j

LiD

(
round

(
p + ∆jk

LiD

))}No f f set

k=1
, (4)

where ∆jk
LiD ∈ R1×3 denotes the k-th offset in the j-th scale point cloud feature, and No f f set

is the number of offsets. We obtain the index of the 3D grid by rounding up the offset.

3.2.3. Multi-Model Fusion

After obtaining the results of the Qp interaction with multi-view images and point
cloud features, we fuse them and update Qp. First, we concatenate the results of the ASCA
interaction with the multi-sensor data and encode them using an MLP network; the process
can be described as Equation (5):

ASCA
(
Qp,Fcam,FLiD

)
= MLP

(
ASCACam

(
Qp,Fcam

)
⊗ ASCALiD

(
Qp,FLiD

))
. (5)

Finally, we update the object query Qp using Equation (6):

Qp = Qp + ASCA
(
Qp,Fcam,FLiD

)
. (6)

3.3. Spatial Temporal Self-Attention

The incorporation of temporal information has been demonstrated to be beneficial
for camera-only 3D object detection [10,18,22,44], which is still valid in multi-sensor data
fusion models.

Features or queries on historical timestamps rather than the current timestamp in-
troduce two problems: first, the misalignment of the coordinate system due to self-ego
motion and, second, the misalignment of the features or query due to the motion of the
object. BEVDet4D [22], BEVFormer [10], and DETR4D [18] perform the transformation
between different timestamps by means of self-vehicle motion. When facing the case of
object motion, BEVFormer predicts the offset in Deformable DETR [26] from the current
frame queries and aggregates features in historical frames, which makes it challenging
to align each object query with its own historical query. DETR4D globally interacts with
queries from different timestamps by performing multi-head attention [9] to achieve the
aggregation of relevant features, which also induces significant computational costs.

We propose spatial temporal self-attention (STSA), as shown in Figure 2b. Following
Deformable DETR [26], STSA realizes the implicit alignment of object and historical object
features by sampling and interacting with historical 3D object queries Qt−1 and finding
the specific queries

{
Qt−1

p , p ∈
[
1, Nre f

]}
associated with the current timestamp Qt

p by
dynamically updating the offsets, which effectively counteracts the misalignment caused
by both self-ego motion and object motion. STSA can be expressed as Equation (7):

STSA
(

Qt−1, Qt
p

)
= De f ormAttn

(
Qt

p, p, Qt−1
)

, (7)

where p is the 3D reference point corresponding to the current timestamp object query Qt
p;

notice that the offset
{

∆k
Tem ∈ R1×3

}No f f set

k=1
is represented in 3D space.
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Finally, we update the object query Qp using Equation (8):

Qp = Qp + STSA
(

Qt−1, Qt
p

)
(8)

3.4. Detection Head and Loss

We design a learnable end-to-end transformer-based 3D detection head based on
the 2D detector Deformable DETR [26], which implements the object query used for
detection through L layers of the deformable attention blocks. Specifically, we use the
AFTR-generated fusion features as inputs to the decoder to interact with the predefined
object query, update all object queries Q̂ at the output of each decoder layer, and predict the
updated 3D reference point p̂ by using the sigmoid function as a learnable linear projection
from the updated Q̂p, as shown in Equation (9):

p̂ = Linear
(
Q̂p
)
. (9)

The detector finally predicts the 3D bounding box b̂ and classification ĉ of the object
after two feed-forward network (FFN) layers, which can be expressed as Equation (10):

b̂ = FFNreg
(
Q̂
)
, ĉ = FFNcls

(
Q̂
)
. (10)

Finally, for the prediction of the set, the Hungarian algorithm is used to find a bipartite
match between the predicted truth and the ground truth. We use Gaussian focal loss [45]
for classification and L1 loss for 3D bounding box regression, and then we represent the 3D
object detection total loss as Equation (11):

L = ω1Lreg

(
b, b̂
)
+ ω2Lcls(c, ĉ), (11)

where ω1 and ω2 are the coefficients of the individual cost, and b and c are the ground truth
of the 3D bounding box and the classification of the set, respectively.

4. Implementation Details

In this section, we focus on the experimental setup (Section 4.3) used for the training
and testing of the proposed AFTR on a publicly available dataset, nuScenes (Section 4.1), as
well as the metrics (Section 4.2) of the 3D object detection task.

4.1. Dataset

We trained and tested the AFTR on the widely used nuScenes dataset [46]. nuScenes
contains multi-sensor data of 1000 scenes in Singapore and Boston, with each scene span-
ning 20 s and annotated with 40 keyframes (every 0.5 s). nuScenes divides these scenes
into training, validation, and test sets, which contain 700, 150, and 150 scenes, respectively.
For the 3D detection task, nuScenes provides annotations for 10 categories. We mainly
used multi-view cameras and LiDAR for 3D object detection. The nuScenes data cover the
whole environment and were acquired through six cameras at 12 FPS and 32-beam LiDAR
at 20 FPS. We transformed the unlabeled point cloud of the previous nine frames to the
current frame based on common practice [13,15].

Multi-modal sensor registration is an important prerequisite for data fusion. For
spatial alignment, nuScenes provides the external parameters of all sensors from which we
can calculate the calibration parameters across modal sensors. For time synchronization,
nuScenes provides good time-synchronized multi-modal sensor data to control the camera
exposure by setting triggers at specific phases (center of camera’s FOV) of the lidar rotation.

4.2. Metrics

In this paper, we use the nuScenes [46] official metrics to evaluate the performance of
the AFTR, including the mean average precision (mAP) [47] and five types of true-positive
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(TP) metrics, which are better when smaller: the mean average translation error (mATE),
mean average scale error (mASE), mean average orientation error (mAOE), mean average
velocity error (mAVE), and mean average attribute error (mAAE). Finally, the nuScenes
detection score (NDS) summarizing the above metrics can be calculated as Equation (12):

NDS =
1

10

(
5×mAP + ∑mTP∈{TP}(1−min(1, mTP)

)
, (12)

where {TP} = {mAP, mATE, mASE, mAOE, mAAE}.
For the commonly used mAP evaluation metrics in 3D target detection tasks, they can

be expressed as Equation (13):

mAP =
1

|C||D|∑c∈C∑d∈D APc,d, (13)

where C and D ∈ {0.5, 1, 2, 4} are the detection classification and matching thresholds,
respectively, and AP is the average precision [47,48].

4.3. AFTR Setup
4.3.1. Feature Extraction Settings

For multi-view images, the input single image is resized to 1600 × 640. We employed
ResNet-101 [40] pre-trained on FCOS3D [16] and VoVNet-99 [41] pre-trained on DD3D [43]
as image feature extractors, which are the most commonly used image feature extractors in
current SOTA methods [10,18,19,26], and we discuss the effect of different image feature
extractors on the AFTR in the Ablation Studies Section (Section 5.2.1). Then, we used FPN
to output the multi-scale features containing m = 4 scales. The feature maps are sized to be
1/8, 1/16, 1/32, and 1/64 of the original features, and the channel C is 256. The use of the
FPN setup is also common practice in transformer-based methods [10,13,15].

For point clouds, we set the voxel size to s = 0.075 m× 0.075 m× 0.2 m, as we obtained
the best performance at this voxel size (Section 5.2.2), and we fed them to the voxel feature
extractor (VFE) and then created multi-scale point cloud features based on the FPN [42]
concept with m = 4 scales. We used VoxelNet [29] with sparse convolution [30] as VFE
without pre-training, and the output channel C = 256. The region of interest (ROI) of the
point cloud is in the range of [−54.0 m, 54.0 m] along the X and Y axes, and it is in the
range of [−5.0 m, 3.0 m] along the Z axis; most of the denser point clouds are contained in
this range, and it is also the range of ROI of 3D space.

4.3.2. Model Settings

We predefined the 3D object queries Q ∈ RC×X×Y×Z with channel C = 256 and X, Y,
and Z normalized in 3D ROI space. The number of Nre f = 900 3D object queries is initially
distributed uniformly in ROI. ASCA contains six layers of transformer-based encoders and
continuously refines the 3D object queries in each layer. For each object query, when the
ASCA and STSA modules are implemented through deformable attention [26], No f f set = 4
offset points correspond to the default setting in Deformable DETR [26]. Our detection
head contains L = 6 layers of transformer-based decoder blocks. We used the model with
VoVNet-99 as the image feature extractor as the default and denoted it as AFTR.

4.3.3. Training Phase

We used the open-source mmdetection3d (version 1.0.0rc6) to build the proposed
model. The proposed AFTR was trained with a batch size of 1 on 1 RTX4090 GPU with
24 GB memory. The AFTR was trained with 40 batches using AdamW [49] with an initial
learning rate of 2× 10−5 and by following the cycle learning rate policy. Following prior
works [7,15], ω1 and ω2 were set to 0.25 and 2.0, respectively.

For the processing of temporal information, we followed BEVFormer [10], and for
each current timestamp, we randomly sampled one historical query from the previous
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two seconds of data, which are cached in the previous computation and do not need
to be recomputed. For the computation sequence without historical data, we used self-
attention [9] to compute the result in the STSA step.

In addition, in order to enhance the robustness of the AFTR in the face of misalignment
due to various reasons, we added alignment noise according to BEVFormer [10] during
the training phase to enable the model to learn misaligned multi-sensor data, denoted
as AFTR-a.

5. Results and Analysis

In this section, we focus on making a comparison of the AFTR with various SOTA
methods using the nuScenes dataset [46] (Section 5.1), and we explore the effects of each
component of the AFTR through ablation studies (Section 5.2). Finally, we investigate the
robustness of the AFTR in the face of misalignment (Section 5.3).

5.1. State-of-the-Art Comparison

We conducted experiments on the nuScenes dataset [46] and observed outperformance
in the 3D object detection task. Quantitative results on the nuScenes test set are shown
in Table 1. We set up AFTR-C, AFTR-L, and AFTR as models trained using camera data,
LiDAR data, and fused data, respectively. In comparison with the camera-only model,
the AFTR achieved nearly SOTA performance (0.9% to the best). In comparison with the
LiDAR-only model, AFTR-L outperformed all fusion models trained with LiDAR data only,
obtaining 74.9% NDS and 73.2% mAP. In comparison with the fusion model, the AFTR
still achieved the best mAP and NDS without using additional enhancements (e.g., the
CBGS [50] strategy or test-time augmentation). In comparisons of the AFTR series, the
NDS of the AFTR improved by 33.8% compared to that of AFTR-C when fusing LiDAR
data and by 4.5% compared to that of AFTR-L NDS when fusing camera data. Similarly,
as shown in Table 2, the AFTR leads in the comparison of NDS and map on the nuScenes
validation set. Figure 3 illustrates the qualitative results of the AFTR on the nuScenes
dataset. Benefiting from the accurate multi-sensor fusion model and the incorporation of
temporal information, the AFTR achieves accurate detection, even for targets with only one
or two points in the point cloud.

Table 1. Comparison of AFTR with various SOTA methods on nuScenes test set. Abbreviations: C
is cameras, L is LiDAR, and LC is LiDAR and cameras. “FUTR3D-C” denotes a model trained and
tested using only camera data, and so on.

Method Modality NDS mAP mATE mASE mAOE mAVE mAAE

DETR3D [7] C 0.479 0.412 0.641 0.255 0.394 0.845 0.133
BEVDet4D [22] C 0.569 0.451 0.511 0.241 0.386 0.301 0.121
BEVFormer [10] C 0.569 0.481 0.582 0.256 0.375 0.378 0.126

PETR [19] C 0.504 0.441 0.593 0.249 0.383 0.808 0.132
FUTR3D-C [15] C 0.479 0.412 0.641 0.255 0.394 0.845 0.133

CMT-C [13] C 0.481 0.429 0.616 0.248 0.415 0.904 0.147

CenterPoint [51] L 0.673 0.603 0.262 0.239 0.361 0.288 0.136
TransFusion-L [37] L 0.702 0.655 0.256 0.240 0.351 0.278 0.129

UVTR-L [39] L 0.697 0.639 0.302 0.246 0.350 0.207 0.123
FUTR3D-L [15] L 0.699 0.653 0.281 0.247 0.368 0.253 0.124

CMT-L [13] L 0.701 0.653 0.286 0.243 0.356 0.238 0.125

PointPainting [4] LC 0.610 0.541 0.380 0.260 0.541 0.293 0.131
FusionPainting [35] LC 0.716 0.681 0.256 0.236 0.346 0.274 0.132

TransFusion [37] LC 0.717 0.689 0.259 0.243 0.359 0.288 0.127
UVTR [39] LC 0.711 0.671 0.306 0.245 0.351 0.225 0.124

BEVFusion [5] LC 0.729 0.702 0.261 0.239 0.329 0.260 0.134
DeepInteraction [38] LC 0.734 0.708 0.257 0.240 0.325 0.245 0.128

FUTR3D [15] LC 0.721 0.694 0.284 0.241 0.310 0.300 0.120
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Table 1. Cont.

Method Modality NDS mAP mATE mASE mAOE mAVE mAAE

CMT [13] LC 0.741 0.720 0.279 0.235 0.308 0.259 0.112

AFTR-C C 0.560 0.465 0.584 0.251 0.364 0.410 0.118
AFTR-L L 0.717 0.663 0.265 0.241 0.343 0.186 0.113
AFTR LC 0.749 0.732 0.277 0.239 0.332 0.206 0.114

The best result for each column is in bold.

Table 2. Comparison of AFTR with various SOTA methods on nuScenes validation set. Abbreviations:
C is cameras, L is LiDAR, and LC is LiDAR and cameras. “FUTR3D-C” denotes a model trained and
tested using only camera data, and so on.

Methods Modality NDS mAP

UVTR-L [39] L 0.676 0.608
TransFusion-L [37] L 0.702 0.655

FUTR3D-L [15] L 0.655 0.593
CMT-L [13] L 0.686 0.624

UVTR [39] LC 0.702 0.654
TransFusion [37] LC 0.713 0.675

FUTR3D [15] LC 0.683 0.645
CMT [13] LC 0.729 0.703

BEVFusion [5] LC 0.714 0.685
DeepInteraction [38] LC 0.726 0.703

AFTR-L L 0.699 0.636
AFTR LC 0.735 0.704

The best result for each column is in bold.
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Figure 3. Qualitative results of AFTR for 3D object detection on the nuScenes dataset. Thanks to
AFTR’s use of cross-modal attention and cross-temporal attention, the target occluded by the black
car in CAM_FRONT and the smaller, more distant targets in CAM_BACK are both correctly detected.

We attribute the good performance of the proposed AFTR to two points: the first is the
accurate and efficient fusion of multi-sensor data using the ASCA module, and the second
is the use of the STSA module to interact with the historical data as a complement to the
current timestamp data, which alleviates part of the object occlusion problem.

5.2. Ablation Studies

In this section, we reveal the effect of each component in the proposed AFTR through
ablation studies, and the experiments in this section were all performed on the nuScenes
validation set. As the AFTR is a multi-sensor data fusion model, we explore (1) the effect of
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the input image size and the image feature extractor on the AFTR (Section 5.2.1); (2) the
effect of the size of the point cloud converted to voxels on the AFTR (Section 5.2.2); (3) the
effect of the representation of point cloud features on the AFTR (Section 5.2.3); (4) the effect
of temporal information on the AFTR (Section 5.2.4); and (5) the effect of the number of
offsets No f f set on the AFTR (Section 5.2.5).

5.2.1. Effect of Image Size and Backbone

Complying with various leading camera-only methods and fusion methods, we resized
the original images to 800 × 320 and 1600 × 640 and input them into the network for
training. In Table 3, it is easy to see that the AFTR performs better when the input image
size is larger, which improves NDS by 3.6% and mAP by 6.5% when compared with the
smaller input image size.

Table 3. Ablation results of AFTR with different image sizes as input data on nuScenes validation set.

Image Size NDS mAP mATE mASE mAOE mAVE mAAE

800 × 320 0.708 0.658 0.280 0.252 0.331 0.230 0.121
1600 × 640 0.735 0.704 0.283 0.247 0.313 0.212 0.115

The best result for each column is in bold.

We chose the current leading and more effective backbones, ResNet [40] and VoVNet [41],
as the multi-view image feature extractors for the AFTR. Specifically, in the ablation study,
we compare the effectiveness of ResNet-50, ResNet-101, and VoVNet-99 in 3D object
detection, as shown in Table 4, which shows that VoVNet-99 obtains the best results with
73.5% NDS and 70.4% mAP.

Table 4. Ablation results of AFTR with different backbones as image feature extractors on nuScenes
validation set.

Backbone NDS mAP mATE mASE mAOE mAVE mAAE

ResNet-50 0.704 0.676 0.282 0.241 0.387 0.301 0.128
ResNet-101 0.725 0.695 0.301 0.250 0.334 0.222 0.117
VoVNet-99 0.735 0.704 0.283 0.247 0.313 0.212 0.115

The best result for each column is in bold.

5.2.2. Effect of Voxel Size

The point cloud contains discrete, disorganized, and irregularly sparse 3D data, so
voxelizing the point cloud into regular data is a better choice for perception tasks, but
the voxel size affects the fineness of the geometric information and the computational
complexity, which, in turn, affects the quality of the model. Here, we explore the effect
of three voxel sizes on the AFTR, including 0.075 m, 0.1 m, and 0.125 m voxel units. As
shown in Table 5, when the voxel is smaller and the geometric information is finer, the
AFTR can obtain better results, but the reduction in the voxel size causes a O

(
n3) increase

in computational complexity, so we adopt the common practice and set the voxel size to
0.075 m × 0.075 m × 0.2 m.

Table 5. Ablation results of AFTR with different voxel sizes on nuScenes validation set.

Voxel Size NDS mAP mATE mASE mAOE mAVE mAAE

0.075 m 0.735 0.704 0.283 0.247 0.313 0.212 0.115
0.100 m 0.727 0.689 0.285 0.249 0.311 0.214 0.117
0.125 m 0.710 0.661 0.294 0.249 0.323 0.218 0.120

The best result for each column is in bold.
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5.2.3. Effect of LiDAR Feature Representation

In recent methods [1,13,15], the point cloud features are transformed in BEV, which
requires the pooling or flattening of voxels along the z axis, leading to a loss of geometric
information. In the AFTR, the 3D object queries interact directly with the voxels, which
ensures the integrity of the spatial information. Here, we reveal which representation
achieves better performance in the AFTR. It should be noted that, after transforming the
point cloud features to BEV, the sampling and interaction of the features via ASCA are
consistent with those used to obtain the image features, which are all performed in 2D space.
As shown in Table 6, the AFTR obtains better performance with the 3D representation with
finer geometric information.

Table 6. Ablation results of different point cloud data representations on the nuScenes validation set.
The BEV representation is obtained by compressing the 3D voxel features along the z axis, and then
ASCA interacts with LiDAR features in the same way as with image features.

Representation NDS mAP mATE mASE mAOE mAVE mAAE

BEV 0.727 0.695 0.288 0.251 0.315 0.213 0.124
3D 0.735 0.704 0.283 0.247 0.313 0.212 0.115

The best result for each column is in bold.

5.2.4. Effect of Spatial Temporal Self-Attention

While many approaches have demonstrated the gain of temporal information in
perception tasks [10,18,22], we conducted an ablation study of the effect of STSA on the
AFTR. We used the AFTR-s model without temporal information to make a comparison
with the default AFTR. Specifically, in AFTR-s, the STSA module is replaced with a vanilla
self-attention [9] module, and the updated query is obtained by interacting with itself
through the input query. The results of the ablation study are shown in Table 7. Without
temporal information, the resulting NDS and mAP of AFTR-s drop by 6.0% and 5.8%,
respectively, compared to those of the default AFTR.

Table 7. Ablation results of nuScenes validation set with or without AFTR using temporal data.
AFTR-s indicates that STSA is not used to interact with the history query, and vanilla self-attention [9]
is used to interact with the input query itself.

Temporal NDS mAP mATE mASE mAOE mAVE mAAE

AFTR-s 0.691 0.663 0.286 0.250 0.312 0.437 0.118
AFTR 0.735 0.704 0.283 0.247 0.313 0.212 0.115

The best result for each column is in bold.

5.2.5. Effect of Number of Offsets

The core concept of the proposed AFTR is to achieve local attention through de-
formable attention [26], where the query only interacts with the relevant features around
the reference point, which not only saves computational costs but also achieves an implicit
alignment of multi-sensor data features through 3D reference points. Deformable attention
searches for the relevant features through learnable offsets, and the number of offsets
No f f set can impact the performance of the AFTR. Here, we explore the effect of No f f set on
the AFTR by setting different numbers of offsets, and, furthermore, we replace deformable
attention with vanilla attention [9] to implement global attention to make a comparison
with local attention. When No f f set = 0, the query interacts directly with the reference point.
The results of the ablation study of the effect of the number of offsets on the AFTR are
shown in Table 8, where the AFTR achieved the best results when No f f set = 4. It is worth
noting that the use of global attention does not yield better results, while it results in a
significant rise in computation. In addition, the inclusion of offsets has an impact on the
robustness of the model, which we address in Section 5.3.



Sensors 2023, 23, 8400 15 of 20

Table 8. Ablation results of the number of offsets in AFTR. The ASCA and STSA modules are
implemented by deformable attention [26] and sample and interact with features based on the offset
positions of the projection points, with the number of offsets No f f set. No f f set = 0 is where the query
interacts only with the feature at the projection position, and global is where it interacts with all the
features on the feature map using vanilla attention [9].

Noffset NDS mAP mATE mASE mAOE mAVE mAAE

0 0.721 0.688 0.314 0.251 0.317 0.225 0.120
4 0.735 0.704 0.283 0.247 0.313 0.212 0.115
8 0.735 0.706 0.282 0.249 0.315 0.220 0.117

Global 0.698 0.657 0.342 0.266 0.324 0.231 0.138
The best result for each column is in bold.

5.3. Robustness of AFTR

Although the proposed AFTR also uses the calibration parameters of multi-modal
sensors, instead of directly associating features by searching for exact projection rela-
tions [13,15], we implemented a local attention mechanism by searching for corresponding
features around the projection point through learnable offsets, which can mitigate the rapid
degradation of performance due to timing, localization, and dynamics bias and provide a
reliable robustness for AFTR in misalignment situations.

Specifically, we used noise levels n to impose interference on the alignment param-
eters (or camera extrinsic parameters) of both the training and test data. Figure 4 shows
the visualization results when noise is added to the multi-sensor calibration parameters.
Following BEVFormer [10], for n levels of noise, we used normally distributed sampling to
interfere with the alignment parameters, where the sampling for translations and rotations
has a mean equaling 0 and a variance equaling 5n, and a mean equaling 0 and a variance
equaling n, respectively. We trained and tested AFTR, FUTR3D, and BEVFormer on noisy
data to observe their robustness to misalignment. Specifically, we used Delta to evaluate
the accuracy of the model for misalignment, which can be described as Equation (14):

Delta = 1− NDSn=4
/

NDSn=0
(14)

where NDSn=0 denotes the NDS under noise level n = 0, and so on.
In the control group, we used AFTR-s to assess the effect of temporal information

on misalignment, we assessed data augmentation in the model using AFTR-a and AFTR-
sa, and we assessed the robustness of global attention using AFTR-sg. Furthermore, the
comparison with FUTR3D and FUTR3D-a reflects the robustness of the AFTR model.

As shown in Figure 5 and Table 9, FUTR3D samples image features by projecting exact
projections, resulting in a rapid degradation of the model’s performance after adding noise.
With light noise n = 1, FUTR3D’s NDS drops by 4.5%, while the AFTR’s NDS drops by only
0.2%, already demonstrating strong robustness to misalignment. Moreover, in hard noise,
the performance of FUTR3D significantly decreases by 18.9%, while the performance of the
AFTR only decreases by 12.7%. Due to the exact sampling mode of FUTR3D, no robustness
improvement is realized in FUTR3D-a with the addition of noise training, which has a Delta
of 18.5%. For AFTR-a and AFTR-sa, the robustness is further improved compared to that
of the AFTR and AFTR-s, the Delta is improved by 4.1% and 4.5%, and the performance
of AFTR-a exceeds that of AFTR when the noise is large. In the comparison between
AFTR-s and AFTR, we find that the addition of temporal information helps the model to be
more robust to misalignment. In AFTR-sg, the model with global attention is minimally
affected by misalignment because no calibration parameters are used for local attention
computation, and Delta = 3.2% when facing hard noise.
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Table 9. The robustness studies of AFTR under misalignment on the nuScenes validation set. n
denotes noise level, the method tail “-a” denotes a model retrained using noisy data, “-g” denotes a
model using vanilla attention [9] instead of deformable attention, and “-s “ denotes models that do
not use temporal data as mentioned in Section 5.2.4. For models that are not trained with noisy data,
we generated results by only using the validation set that is disturbed by noise.

Methods
n = 0 n = 1 n = 2 n = 3 n = 4

Delta
NDS mAP NDS mAP NDS mAP NDS mAP NDS mAP

FUTR3D [15] 0.683 0.645 0.652 0.613 0.616 0.581 0.596 0.525 0.554 0.515 0.189
FUTR3D-a 0.676 0.633 0.644 0.609 0.607 0.562 0.592 0.541 0.551 0.508 0.185

BEVFormer [9] 0.517 0.416 0.512 0.414 0.495 0.392 0.473 0.375 0.447 0.352 0.135
BEVFormer-a 0.506 0.407 0.503 0.405 0.492 0.396 0.476 0.385 0.457 0.366 0.097

AFTR-sg 0.654 0.611 0.651 0.608 0.648 0.599 0.641 0.592 0.633 0.582 0.032
AFTR-s 0.691 0.663 0.687 0.656 0.664 0.639 0.632 0.583 0.597 0.562 0.136
AFTR-sa 0.697 0.665 0.696 0.660 0.682 0.644 0.664 0.623 0.634 0.599 0.091

AFTR 0.735 0.704 0.733 0.699 0.711 0.676 0.676 0.644 0.642 0.607 0.127
AFTR-a 0.721 0.688 0.720 0.688 0.709 0.673 0.688 0.653 0.659 0.611 0.086

The best result for each column is in bold.
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Figure 5. NDS results for AFTR with different calibrations of noise parameter, where n is the noise
level. The default AFTR has a strong robustness, with only 0.2% NDS degradation at n = 1, while
FUTR3D has 4.5% NDS degradation. In AFTR-a trained on noisy data, the NDS performance exceeds
that of the default AFTR method in the presence of severe noise.

6. Conclusions

In this paper, we proposed a transformer-based end-to-end multi-modal fusion 3D
object detection framework, named the adaptive fusion transformer (AFTR). The AFTR
achieves an implicit alignment of cross-modal features and cross-temporal features by adap-
tively sampling and interacting with multi-sensor data features and temporal information
in 3D space via adaptive spatial cross-attention (ASCA) and spatial temporal self-attention
(STSA) for accurate and efficient 3D object detection. Our experiments on the nuScenes
dataset demonstrated that the AFTR achieves better performance by fusing multi-sensor
features and improves the detection of occlusions and small targets by acquiring temporal
information. In addition, when studying the AFTR in terms of the misalignment problem,
we found that the AFTR has a strong robustness to minor misalignments caused by various
reasons, benefiting from the abilities of adaptive correlation features.

While the proposed AFTR has many advantages, there are still some limitations. First,
the current transformer-based models are more computationally intensive than the CNN-
based models, and a feasible solution is to reduce the number of queries by making them
mainly focus on the foreground. Second, when faced with sensor failures or distorted
sensor data, the performance of the default AFTR will degrade or even be inferior to that of
AFTR-L or AFTR-C trained on data from a single sensor; a possible solution to this is to
incorporate failures and distortions into the training to make the model more robust.
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