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Abstract: A wireless 2-channel layered sensor system that enables electromyography (EMG) and
near-infrared spectroscopy (NIRS) measurements at two local positions was developed. The layered
sensor consists of a thin silver electrode and a photosensor consisting of a photoemitting diode (LED)
or photodiode (PD). The EMG and NIRS signals were simultaneously measured using a pair of
electrodes and photosensors for the LED and PD, respectively. Two local muscular activities are
presented in detail using layered sensors. In the experiments, EMG and NIRS signals were measured
for isometric constant and ramp contractions at each forearm using layered sensors. The results
showed that local muscle activity analysis is possible using simultaneous EMG and NIRS signals at
each local position.
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1. Introduction

In sports science and physical rehabilitation, it is necessary to develop wearable sen-
sors for monitoring local muscular activity, particularly for detecting local muscular fatigue.
Many researchers have developed sensors that enable the analysis of local muscular activity
and estimation of local muscular fatigue using sensing methods, such as electromyogra-
phy (EMG), mechanomyography (MMG), and near-infrared spectroscopy (NIRS). EMG
measures the electrical voltage generated by muscular contractions using dish electrodes
pasted onto the skin surface and is widely used as a standard method for evaluating mus-
cular activity involving muscular fatigue [1–5]. MMG measures the mechanical vibrations
generated by muscle contraction using accelerometers, microphones, and piezoelectric
elements arranged on the skin surface [6–11], while NIRS measures the variations in oxygen
consumption generated by muscular contractions using a light-emitting diode (LED) and a
photodiode (PD) [12–16]. Additionally, multimodal sensors based on combinations of EMG
and MMG [17–19], EMG and NIRS [20–23], and EMG, MMG, and NIRS [24] have been
developed for muscular activity analysis and the detailed detection of muscular fatigue. Re-
cently, wireless, compact, and portable sensor systems with EMG and MMG sensors [25,26],
EMG and NIRS [27,28] sensors, and EMG, MMG, and electrical impedance myography
sensors [29] have been utilized. However, it is not sufficient to estimate muscular fatigue at
multiple local positions using many developed sensors.

This study aimed to develop a wearable-type sensor for analyzing multiple local
muscular activities, including the prediction of muscular fatigue, that is, detection of
the anaerobic threshold (AT). A multilayered sensor was developed and simultaneous
measurements of EMG, MMG, and NIRS signals were demonstrated to estimate AT [30].
Next, a wireless multi-layered sensor was developed, and its usefulness was demonstrated
by analyzing the local muscular activity, including at the lateral vastus muscle, during
cycling exercises [31]. Furthermore, it was found that the sensor had the potential to detect
AT because AT was detected based on the ratio of Hb to EMG signals. Although it is
possible to measure local muscular activity at one position using a sensor, it is difficult to
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measure local muscular activity at multiple positions. It is necessary to develop a sensor
that allows measurements of local muscular activities at multiple positions because it
is important to predict which local muscle is fatigued. Therefore, a wireless 2-channel
layered sensor system that allows the simultaneous measurement of EMG and NIRS at
two positions was developed based on the relationship between AT and the ratio of EMG
and NIRS. One advantage of the sensor is the ease of adjusting the distance between a pair
of sensors in EMG and NIRS measurements. Additionally, measuring EMG and NIRS at
multiple positions is simplified using several combinations, such as one sensor with an
LED and two sensors with a PD. In the experiments, EMGs and NIRSs were measured at
both forearms for isometric constant contraction and isometric ramp contraction, and the
usefulness of the developed sensor was evaluated.

2. Methods
2.1. Sensing System

Figure 1 shows a schematic diagram of the sensing method based on a pair of lay-
ered sensors with an LED or PD and photographs of the layered sensors. The sensor
(12 mm × 17 mm × 5 mm) comprised a substrate with a surface-mounted LED with three
types of peak wavelengths: 770 nm, 805 nm, and 870 nm (SMT770/805/870-40B 59-1, Epitex
Inc., Kyoto, Japan), or a PD with spectral sensitivity between 400 nm and 1100 nm (HP601,
Kodenshi Corp., Kyoto, Japan), and a thin silver film with a hole of 5 mm-diameter. The
LED and PD were arranged in the holes of the silver film. A polyethylene naphthalate
(PEN) film with a thickness of 12 µm was used as the insulator between the substrate and
the silver film. Additionally, the circuit for the current induced by the PD is converted
to a voltage arranged at the bottom of the substrate with the PD. The EMG signal was
measured using a pair of silver films and a reference electrode (Ref, NE-121J, Nihon Koden
Corp., Tokyo, Japan). In the NIRS signal, the voltages induced at the PD were measured by
assessing which three types of lights were sequentially emitted toward the muscle by the
LED. The absorbance was calculated from the voltages and changes in the concentration
(∆C) of oxyhemoglobin (HbO2). Deoxyhemoglobin (Hb) was derived using the modified
Lambert–Beer law [12,14]. The EMG and NIRS signals were measured simultaneously,
using a pair of sensors. Local muscular activities can be measured using 2-channel layered
sensors with LED and PD.
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2.2. Signal Processing Method

Figure 2 shows a schematic diagram of the signal processing circuit for 2-channel EMG
and NIRS measurements. Figure 3 shows a photograph of the developed signal-processing
circuit (72 mm × 100 mm × 55 mm). Portable signal processing circuits that allow wireless
2-channel EMG and NIRS measurements were developed. The overall mass of the signal
processing circuit shown in Figure 3 was approximately 240 g. The signal processing circuit
primarily comprised amplification and filter circuits, and a switching circuit for emitting
each LED. The EMG signals were passed through a differential amplifier (Gain:10) based
on AD627 (Analog Devices Inc., Wilmington, MA, USA), for noise rejection and signal
amplification. Furthermore, they were processed by two multiple feedback band-pass filters
(center frequency:100 Hz, Q:0.3, Gain:12) based on AD8607 (Analog Devices Inc., USA) and
a twin T notch filter based on a CR circuit. The NIRS signals were processed by two low-pass
filters using AD8607 (cutoff frequency:23 Hz, Gain:8) and the notch filter. A microcomputer
(Nucleo Board STM32F401RE; STMicroelectronics, Geneva, Switzerland) with a 12-bit 5-
channel analog-to-digital converter was used for data acquisition and measurement control.
The ZigBee module (XBee 802.15.4 S1; Digi International Inc., Hopkins, MN, USA) was
used for wireless data communication between the microcomputer and PC. Two EMG and
two NIRS signals were respectively acquired at equal intervals by two types of interrupt
handlers with 100 µs and 40 ms [31]. Each signal of EMG and NIRS signals was sequentially
measured at an interval of 400 µs (2.5 kS/s), and the average values were transmitted to the
PC at an interval of 160 ms (6.25 S/s), with a serial baud rate of 38,400, respectively. Thus,
the average value was obtained using 400 absolute values of voltages in EMG. The average
in NIRS was obtained using 50 absolute values of voltages as data number from 351 to 400,
and the error induced by the switching of LEDs was removed. The concentrations of Hb
and HbO2 were obtained at intervals of 480 ms, as the average values of the three types of
light were derived.

In the processing circuit, a voltage of 3.3 V for wireless communication and a voltage of
5.0 V for circuit operation were derived from a 7.4 V lithium battery (LI-7100SP; 1100 mAh,
42 g, S.T.L.JAPAN, Izumisano, Japan). The previous experiment demonstrated that the
voltage sources remained stable with fluctuations of ±0.05% and attenuation of 0.2% over
a period of 8 h.
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3. Experiments

Two types of experiments, isometric constant contraction and isometric ramp contrac-
tion of both forearms were conducted on three healthy male volunteers in their twenties.
Study participation was confirmed to be in accordance with the Declaration of Helsinki.
First, the experimental and risk procedures approved by the Ethics Committee of Saga
University are explained. Informed consent was obtained from all volunteers.

Figure 4a shows a schematic diagram of the experimental setup. Figure 4b shows a
photograph of the experimental setup. The volunteers sat on a chair, and their forearms,
from the elbow to the wrist, were rested on a table at a 90◦ angle between the upper arm and
forearm. The sensors with an LED and a PD were arranged on the surface of the extensor
carpi radialis longus muscle at each forearm. The sensors with an LED were pasted on
the volunteer’s skin, 70 mm from the inside bend of the elbow. Sensors with a PD were
also pasted in the direction of the wrist with a center-to-center distance of 30 mm between
the sensors. The sensors were pasted onto a transparent conductive gel (HIT-B3M, Sekisui
Kasei Co. Ltd., Osaka, Japan). The reference dish electrode was pasted onto the surface of
the volunteer’s right clavicle for EMG, using a conductive paste (Elefix Z-181BE; Nihon
Koden Corp., Tokyo, Japan). The sensors were covered with soft black silicone sheets to
eliminate the influence of ambient light. The maximum voluntary contraction (100% MVC)
force of each volunteer was measured using a myodynamometer (µTas F-1; Anima Corp.,
Tokyo, Japan) before the experiment was conducted. The determination of 100% MVC was
conducted as follows: initially, a myodynamometer and void container (Figure 4a) were
placed on the palm of the hand. Water was pumped into each container. The weight at
which the hand could not be kept horizontal was used as 100% MVC. 100% MVC of each
volunteer was obtained from an average of the weights at three times.

Figure 5 shows a flowchart of the isometric constant and ramp contractions in both
forearms in the two types of experiments. During the isometric constant contraction
experiment, both forearms were maintained in a relaxed state for 30 s (rest). Next, the work
condition was introduced, which involved applying a load of 50% MVC using a container
filled with water on the right palm, and this phase lasted for 60 s (work). Furthermore,
another 60 s rest period was maintained, and the work phase for 60 s was alternated between
the left and right palms, with each work phase lasting for 60 s and a 60 s Rest period in
between. Finally, a rest of 60 s was pursued. Although the isometric ramp contraction
experiment was conducted with the isometric constant contraction, the working conditions
were changed. Namely, a void container was placed on the palm for 30 s, and the ramp
load, which was changed by flowing water into the container at a constant rate of loading
as the load reached 60% MVC at 90 s, was applied. Each experiment was conducted once
per volunteer. The start of the experiment was determined by irradiating the sensor to
saturate the voltage of the NIRS measurement.
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4. Results and Discussion

Figures 6 and 7 display the results of EMG and NIRS measurements on the left and
right forearms of one volunteer (S1) during isometric constant and ramp contractions,
respectively. Figures 8 and 9 present the EMG and NIRS results for three volunteers (S1–S3),
averaging data over 5 s intervals per volunteer. These results indicate that during con-
tractions (Figures 6a,b and 8a,b), the measured EMG voltage increased in the forearm
where the load was applied, while in ramp contractions (Figures 7a,b and 9a,b), the EMG
voltage gradually increased in accordance with the slope of the load. Conversely, EMG
voltage remained almost zero in the forearm when the load was not applied and during
rest stage. In NIRS measurement, ∆HbO2 decreased, and ∆Hb increased during the load
stage during constant contractions, reaching saturation (Figures 6c,d and 8c,d). In ramp
contractions, similar changes occurred during the load stage, nearly reaching saturation.
(Figures 7c,d and 9c,d). These values subsequently increased and decreased during the rest
period after the loading stage, although this trend was not observed in the EMG measure-
ments. Total-Hb (∆HbO2 + ∆Hb) also decreased during the load stage and increased during
the rest stage, especially, in constant contraction, where this change was more evident than
in ramp contractions. The EMG and NIRS signals were generated by local muscular activity
where the sensor was attached.
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In Figures 6a,b and 8a,b, the EMG voltages peaked at approximately 4 ± 4 s (mean
± standard deviation) for three volunteers from the time after the load was applied and
gradually decreased during the initial load application to the left and right forearms. For
the second load applied to the right forearm, the EMG voltage gradually increased, reaching
a maximum value at 34 ± 14 s. Notably, the voltage gradient for the first load differed
from that of the second load. While not clearly addressed, this discrepancy might be
caused by the adjustments in local muscular activity during the second load, informed
by prior experience with the first load. However, such adjustments were not confirmed
during the ramp contraction. Therefore, future experiments with multiple volunteers need
to be conducted. Figure 10 shows the slopes of ∆HbO2, and ∆Hb in the left and right
forearms when a load was applied. Each slope was obtained by compensating for the
initial value with an average of 5 s before the load application. The measured values
were then normalized based on the maximum or minimum value during the applied
load. The slopes at the first and second loads were almost the same under constant and
ramp contractions. To predict muscular fatigue, we estimated that AT would occur at
approximately 15 s during constant contraction and approximately 40 s during ramp
contraction from the onset of load. This estimation was based on the slopes of ∆HbO2 and
∆Hb, considering the saturation trend of ∆Hb, known as, ∆Hb breakpoint, as indicated
in previous literature [22,31]. Therefore, we assert that EMG and NIRS measurements at
multiple positions effectively evaluate muscular activity, including AT, because the changes
in ∆HbO2, ∆Hb, and EMG exhibit specific characteristics.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 11 
 

 

S3), averaging data over 5 s intervals per volunteer. These results indicate that during 

contractions (Figures 6a,b and 8a,b), the measured EMG voltage increased in the forearm 

where the load was applied, while in ramp contractions (Figures 7a,b and 9a,b), the EMG 

voltage gradually increased in accordance with the slope of the load. Conversely, EMG 

voltage remained almost zero in the forearm when the load was not applied and during 

rest stage. In NIRS measurement, ΔHbO2 decreased, and ΔHb increased during the load 

stage during constant contractions, reaching saturation (Figures 6c,d and 8c,d). In ramp 

contractions, similar changes occurred during the load stage, nearly reaching saturation. 

(Figures 7c,d and 9c,d). These values subsequently increased and decreased during the 

rest period after the loading stage, although this trend was not observed in the EMG meas-

urements. Total-Hb (ΔHbO2 + ΔHb) also decreased during the load stage and increased 

during the rest stage, especially, in constant contraction, where this change was more ev-

ident than in ramp contractions. The EMG and NIRS signals were generated by local mus-

cular activity where the sensor was attached. 

   
(a) (b) 

   
(c) (d) 

Figure 6. Experimental results of one volunteer in isometric constant contraction: EMG at (a) right 

forearm, (b) left forearm, NIRS at (c) right forearm and (d) left forearm. 

  

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time t [s]

V
o
lt

a
g
e
 V

 [
V

]

LoadR LoadRLoadL

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time t [s]

V
o

lt
a
g

e
 V

 [
V

]

LoadR LoadRLoadL

0 50 100 150 200 250 300 350

-0.5

0

0.5

Time t [s]


C

 [
 a

. 
u

. 
]

LoadR LoadRLoadL

HbO2

Hb

−0.5

0 50 100 150 200 250 300 350

-0.5

0

0.5

−0.5

Time t [s]


C

 [
 a

. 
u
. 

]

LoadR LoadRLoadL

HbO2

Hb

Figure 6. Experimental results of one volunteer in isometric constant contraction: EMG at (a) right
forearm, (b) left forearm, NIRS at (c) right forearm and (d) left forearm.



Sensors 2023, 23, 8394 7 of 10Sensors 2023, 23, x FOR PEER REVIEW 7 of 11 
 

 

   

(a) (b) 

  

(c) (d) 

Figure 7. Experimental results of one volunteer in isometric ramp contraction: EMG at (a) right fore-

arm, (b) left forearm, NIRS at (c) right forearm and (d) left forearm. 

   

(a) (b) 

  

(c) (d) 

Figure 8. Experimental results of three volunteers in isometric constant contraction: EMG at (a) right 

forearm, (b) left forearm, NIRS at (c) right forearm and (d) left forearm. 

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Time t [s]

V
o
lt

a
g
e
 V

 [
V

]

LoadR LoadRLoadL

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Time t [s]

V
o
lt

a
g
e
 V

 [
V

]

LoadR LoadRLoadL

0 100 200 300 400 500

-0.5

0

0.5

Time t [s]


C

 [
 a

. 
u

. 
]

LoadR LoadRLoadL

HbO2

Hb

−0.5

0 100 200 300 400 500

-0.5

0

0.5

Time t [s]


C

 [
 a

. 
u

. 
]

LoadR LoadRLoadL

:HbO2

:Hb

−0.5

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time t [s]

V
o
lt

a
g
e
 V

 [
V

]

LoadR LoadRLoadL

:S1
:S2
:S3

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time t [s]

V
o

lt
a
g

e
 V

 [
V

]

LoadR LoadRLoadL

:S1
:S2
:S3

0 50 100 150 200 250 300 350

-0.5

0

0.5

Time t [s]


C

 [
 a

. 
u

. 
]

LoadR LoadRLoadL

HbO2

Hb

, :S1
, :S2
, :S3

−0.5

0 50 100 150 200 250 300 350

-0.5

0

0.5

Time t [s]


C

 [
 a

. 
u

. 
]

LoadR LoadRLoadL

HbO2

Hb

, :S1
, :S2
, :S3

−0.5

Figure 7. Experimental results of one volunteer in isometric ramp contraction: EMG at (a) right
forearm, (b) left forearm, NIRS at (c) right forearm and (d) left forearm.
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Figure 8. Experimental results of three volunteers in isometric constant contraction: EMG at (a) right
forearm, (b) left forearm, NIRS at (c) right forearm and (d) left forearm.
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Figure 9. Experimental results of three volunteers in isometric ramp contraction: EMG at (a) right
forearm, (b) left forearm, NIRS at (c) right forearm and (d) left forearm.
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Figure 10. Changes of ∆HbO2, ∆Hb during the load. (a) constant contraction, (b) ramp contraction.

However, detection of AT from ∆Hb, or ratio of ∆Hb and EMG signal during the
ramp contraction remains challenging due to insufficient measurement accuracy, neces-
sitating improvements in measurement accuracy. Furthermore, we must compare AT
estimates obtained via the sensor during local muscular activity with those from respiration
gas sensors.

5. Conclusions

Development of sensors capable of measuring several local muscular activities and
predicting the fatigue of local muscles is vital to prevent sports-related injuries and dam-
age. We have successfully designed a wireless 2-channel layered sensor system, enabling
simultaneous EMG and NIRS measurements during constant isometric and ramp contrac-
tions in both forearms to evaluate the relationship between the EMG and NIRS signals
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and local muscular activity. Our results demonstrate that layered sensors are effective in
measuring local muscular activity simultaneously using EMG and NIRS. The EMG and
NIRS signals were generated as a result of local muscular activity when sensors were
applied. The changes in EMG signals were significantly different than those of NIRS (the
∆HbO2, ∆Hb, and Total-Hb) in the constant and ramp exercises. Moreover, NIRS signals
exhibited post-activity changes not observed in EMG signals. It has been estimated that
AT in local muscles can be detected based on changes in ∆Hb and ∆HbO2. Therefore,
the layered sensor system holds potential for a more detailed analysis of multiple local
muscular activities, including AT detection.

In future studies the layered sensor will be useful for analyzing several local muscular
activities, such as lateral and medial vastus muscles, upper and forearm muscles, and
evaluating fatigue in their muscular activities, such as differences in AT estimates between
EMG and NIRS for each muscle, and explore the relationship between EMG and NIRS
signals. In this sensing system, calculating the mean power frequency as part of EMG
frequency analysis was not feasible. A processing system capable of frequency analysis will
be developed. Therefore, AT prediction is possible using a layered sensor because the mean
power frequency of the EMG signal is related to the prediction of AT. Furthermore, we aim
to develop wearable sensors and signal-processing devices. The layered sensor system
holds promise for application in sports science and rehabilitation, including prediction of
injury and accidents in sports, and effective recovery of muscular activity.

Author Contributions: Conceptualization, A.K., Y.O. and M.M.; Methodology, A.K., Y.O. and M.M.;
Validation, A.K., Y.O. and M.M.; Formal analysis, A.K., Y.O. and M.M.; Investigation, A.K., Y.O. and
M.M.; Writing—original draft, A.K.; Writing—review & editing, A.K., Y.O. and M.M. All authors
have read and agreed to the published version of the manuscript.
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