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Abstract: The well known cloud computing is being extended by the idea of fog with the computing
nodes placed closer to end users to allow for task processing with tighter latency requirements.
However, offloading of tasks (from end devices to either the cloud or to the fog nodes) should be
designed taking energy consumption for both transmission and computation into account. The
task allocation procedure can be challenging considering the high number of arriving tasks with
various computational, communication and delay requirements, and the high number of computing
nodes with various communication and computing capabilities. In this paper, we propose an optimal
task allocation procedure, minimizing consumed energy for a set of users connected wirelessly to
a network composed of FN located at AP and CN. We optimize the assignment of AP and computing
nodes to offloaded tasks as well as the operating frequencies of FN. The considered problem is
formulated as a Mixed-Integer Nonlinear Programming problem. The utilized energy consumption
and delay models as well as their parameters, related to both the computation and communication
costs, reflect the characteristics of real devices. The obtained results show that it is profitable to
split the processing of tasks between multiple FNs and the cloud, often choosing different nodes for
transmission and computation. The proposed algorithm manages to find the optimal allocations
and outperforms all the considered alternative allocation strategies resulting in the lowest energy
consumption and task rejection rate. Moreover, a heuristic algorithm that decouples the optimization
of wireless transmission from implemented computations and wired transmission is proposed. It
finds the optimal or close-to-optimal solutions for all of the studied scenarios.

Keywords: fog network; energy efficiency; latency; cloud; edge computing

1. Introduction
1.1. Motivation

Fog, loosely defined as “a cloud closer to the ground” [1] or “an extension, not a
replacement, of the cloud” [2], is a computing and networking paradigm that aims to bring
computational, storage and networking resources close to the edge of the network [3]. It
provides access to these resources through geographically distributed FN.

A fog network can be used for offloading computational tasks from end users to
other nodes in the network. Energy and time spent on transmission can be saved when
information is processed in one of the nearby FNs rather than in the remote cloud DC.
However, these cloud DCs are expected to be more energy-efficient in terms of computation
due to their scale (Google, for example, reports that its cloud services are carbon neutral [4]).
How shall computation tasks be distributed over the computation nodes then? We take a
holistic view on modeling and optimizing costs related to offloading in this work. Wired
and wireless networks are covered starting from the end users, going through the FN,
the core network and ending at the cloud. An example of such a network, divided into
tiers, is shown in Figure 1.
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Figure 1. Example fog network architecture.

An example scenario where computational resources provided by FN can be used to
efficiently process information is controlling and predicting air quality [5]. Multiple sensors
with limited computational capacities can send required data to nearby FN.

1.2. Related Work

Previous research on task allocation for energy-efficient fog networks includes costs
only in selected parts of these networks. In [6–10] computational requests can be distributed
between various combinations of MDs, one or more nearby FNs and a remote cloud.
These studies optimize energy consumption either alone [7,10] or in addition to other
parameters [6,8,9]. However, what differentiates our work from those is that they only
consider energy consumption from the perspective of MDs. In contrast, we look at the
total energy spent on computation as well as wireless and wired transmission in the
entire network.

Other studies, similarly to ours, examine energy consumption within the fog network
but ignore, e.g., costs related to transmission between different FNs (FN-FN) [11–13],
transmission between MDs and FNs (MD-FN) [11–13] or transmission between FNs and
the cloud (FN-CN) [13,14]. In some studies, the possibility of FN-FN [14,15] and FN-
CN [15] is not considered at all. In [11–14,16], computational requests are not examined
individually, but as aggregated data. In our work, each request is characterized by its own
set of parameters such as size, computational complexity and delay requirement. Moreover,
no optimization problem related to processing requests is proposed in [12,16].

A summary of related articles in contrast to our work is presented in Table 1. Rows
MD-FN, FN-FN and FN-CN represent costs related to transmission between nodes while
rows MD, FN and CN represent costs related to computations at given nodes. The notation
used is as follows: Optim. means that energy and delay are optimized, Cons. means that
these are considered in calculations and Ign. means that these are ignored or assumed
negligible. N/A means that in a network modeled in a given work, there is no possibility
of such transmission/computation—energy and delay costs are not applicable. E stands
for energy and D stands for delay. If both are considered/optimized/ignored this notation
is skipped. Sets means the allocation of sets of individual requests (characterized by size,
required computations, etc.) is considered. Flow, on the other hand, means that the requests
are not considered individually but as a total bitrate, rate of computations, etc., that have to
be completed.
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Table 1. Comparison with related works.

Energy (E) consumption and Delay (D)

Work MD MD-FN FN FN-FN FN-CN CN Requests

Dinh et al. [6] Optim. incl. frequency Optim. Ign. E, Cons. D N\A Ign. E, Cons. D Ign. E, Cons. D Sets
You et al. [7] Optim. Optim. Ign. E, Cons. D, One FN N\A Ign. E, Cons. D Ign. E, Cons. D Load
Liu et al. [8] Optim. Optim. Ign. E, Cons. D N\A Ign. E, Cons. D Ign. E, Cons. D Load
Bai et al. [9] Optim. Optim. Ign. E, Cons. D N\A Ign. E, Cons. D Ign. Sets
Vu et al. [10] Optim. Optim. Ign. E, Cons. D N\A Ign. E, Cons. D Ign. E, Cons. D Sets
Deng et al. [11] N\A Ign. Optim. incl. frequency Ign. Ign. E, Optim. D Optim. incl. frequency Load
Kopras et al. [12] N\A Cons. Cons. Ign. Cons. Cons. Load
Vakilian et al. [13] N\A Ign. E, Cons. D Optim. Ign. E, Optim. D Ign. E, Optim. D Ign. E, Cons. D Load
Khumalo et al. [14] N\A Optim. Optim. N\A Ign. E, Cons. D Ign. E, Cons. D Load
Ghanavati et al. [15] N\A Optim. Optim. N\A N\A N\A Sets
Sarkar et al. [16] N\A Cons. Cons. Ign. Cons. Cons. Load
Kopras et al. [17] N\A Ign. E, Cons. D Optim. incl. frequency Optim. Cons. Cons. Sets
This work N\A Optim. Optim. incl. frequency Optim. Cons. Cons. Sets
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This work extends [17] with the following novel aspects: (i) optimizing the wireless
connection of end devices to the fog tier; (ii) introducing an additional set of transmission
allocation variables to the optimization problem and its solution; (iii) providing an analyt-
ical solution to the proposed problem; (iv) examining the effectiveness of new heuristic
algorithms with constraints on either wired or wireless transmission.

1.3. Contribution and Work Outline

The main contribution of this work is a complete analysis of the energy required
to satisfy a computation request. A sophisticated nonlinear optimization problem is for-
mulated with the objective of minimizing the energy consumed for the computation and
transportation of tasks under delay constraints. We propose a solution by dividing the
problem into subproblems where optimal values of CPU frequencies, transmission paths
and allocations of computational tasks to nodes are found. Unlike similar works which
depend on various heuristics, we propose an analytical approach that guarantees that we
find the optimal solution.

This work is structured as follows. The network model is presented in Section 2. The
optimization problem is formulated in Section 3, while its solution is proposed in Section 4.
Section 5 contains simulation results and Section 6 presents the conclusion.

2. Network Model

Let us present the three-tier network model used in this work. In the bottom tier
of the network, there is a setM of MD (e.g., smartphones) with specific computational
requests. We assume that serving these tasks requires offloading them to one of the FN
or CN, constituting the second and the third tier, respectively. The MDs cannot process
these tasks on their own because of energy or computational limitations. The MDs send
computational requests using wireless transmission to one of the nearby FNs. As shown
in Figure 1, FNs are located at BS or AP, close to the end users. Then, each task can be
processed either in one of the FNs out of set F or in the cloud tier (set C of CN). Unlike
MD, nodes in the fog and cloud tiers of the network are interconnected with wire-based
communication technology.

The model shown in this work extends the one used in [17]. The notation used for
modelling the network is shown in Table 2.

2.1. Computational Requests

Let T be a numbered set {T1, T2, ..., T|T |} of all time instances at which MDs offload
computational requests. LetRk be a set of all requests that MDs try to offload at time Tk.
The following parameters characterize each computing request r ∈ Rk:

• MD mr ∈ M, which offloads the task (letters in superscript are used throughout this
work as upper indices, nor exponents, e.g., mr does not denote m to the power of r);

• Size Lr in bits;
• Arithmetic intensity θr in FLOP/bit;
• Ratio or of the size of the result of the processed task r to the size of the offloaded

task r;
• Maximum tolerated delay Dr

max.

Let us define a binary variable ar
n that shows where the request is computed, i.e., ar

n
equals 1 if r ∈ Rk is computed at node n ∈ F ∪ C and 0 otherwise. Similarly, let us define a
binary variable wr

l that indicates if request r is wirelessly transmitted from MD mr to FN
n ∈ F .
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Table 2. The notation used for modeling the network and defining the optimization problem.

Symbol Description

T set {T1, . . . , T|T |} of all considered time instances, when one or more compu-
tational request arrives

M set of all Mobile/End Devices

F set of all Fog Nodes

C set of all Cloud Nodes

Rk set of all computational requests arriving at Tk ∈ T
Lr size of request r ∈ Rk

θr computational complexity of request r ∈ Rk

mr MD which offloads the request r ∈ Rk

or output-to-input data size ratio of request r ∈ Rk

Dr
max maximum tolerated delay requirement for request r ∈ Rk

Tk time at which request r ∈ Rk arrives in the network, k ∈ {1, . . . , |T |}
γx

y energy-per-bit cost of transmitting data between nodes x and y

sn number of FLOPs performed per single clock cycle at node n ∈ N
bx

y link bitrate between nodes x and y

dn fiberline distance to CN n ∈ C
χ a parameter characterizing delay depending on distance

fmin,n minimum clock frequency of node n ∈ N
fmax,n maximum clock frequency of node n ∈ N
pn,0, pn,1,
pn,2, pn,3

parameters of the power model of CPU installed in node n ∈ N

tn time at which node n ∈ N finishes computing its last task

ar
n variable showing whether request r ∈ Rk is computed at node n ∈ N ,

ar
n ∈ {0, 1}

wr
l variable showing whether request r ∈ Rk is transmitted wirelessly to node

l ∈ F , wr
l ∈ {0, 1}

fn clock frequency of node n ∈ N , fmin,n ≤ fn ≤ fmax,n

βn energy efficiency (FLOPS per Watt) characterizing node n ∈ N
Pn power consumption related to computations at node n ∈ N
Er

tot energy spent on transmission and processing of request r ∈ Rk

Er
cp energy spent in the network on processing request r ∈ Rk

Er
comm energy spent on transmission of request r ∈ Rk

Er
wl, Er

wd energy spent on wireless/wired transmission of request r ∈ Rk

Er,x
comm,y energy cost for transmission of request r ∈ Rk between nodes x and y

Er
cp,n energy cost of processing request r ∈ Rk at node n ∈ N

Dr
tot total delay of request r ∈ Rk

Dr
comm delay caused by transmitting request r ∈ Rk

Dr
wl, Dr

wd wireless/wired delay of request r ∈ Rk

Dr,x
comm,y delay of transmission of request r ∈ Rk between nodes x and y
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Table 2. Cont.

Symbol Description

Dr,mr ,l
ul,n uplink delay of transmitting request r ∈ Rk to node n ∈ F , provided that

wr
l = 1

Dr
queue queuing delay of request r ∈ Rk

Dr,l
queue,n queuing delay of request r ∈ Rk at node n ∈ N , provided that wr

l = 1

Dr
cp computational delay caused by processing request r ∈ Rk

Dr
cp,n computational delay caused by processing request r ∈ Rk at node n ∈ N

2.2. Energy Consumption

The energy consumption model is divided into two parts: computation (processing of
data) and communication (transmission of data). Energy Er

cp spent on computing request
r ∈ Rk equals:

Er
cp = ∑

n∈F∪C
ar

nEr
cp,n = ∑

n∈F∪C
ar

n
Lrθr

βn
, (1)

where Er
cp,n is the energy spent on computing request r ∈ Rk at node n ∈ F ∪ C and βn is

the computational efficiency of node n ∈ F ∪ C given in FLOPS per watt [18]. For CN, we
assume constant CPU clock frequency fn and efficiency βn. For FN, βn depends on CPU
frequency fn of node n ∈ F , number sn of FLOP performed within a single clock cycle
of CPU [19] and on power consumption Pn of CPU. βn is obtained by modeling Pn as a
polynomial function of fn using four parameters pn,3, pn,2, pn,1 and pn,0 derived from [20]:

βn =
fnsn

Pn
=

fnsn

pn,3 f 3
n + pn,2 f 2

n + pn,1 fn + pn,0
. (2)

This representation provides the flexibility to cover various models of CPU. The clock
frequency fn must lie within the range of possible frequencies of CPU in node n ∈ F ,
i.e., fmin,n ≤ fn ≤ fmax,n.

The energy spent on the transmission of request r ∈ Rk is the sum of energies resulting
from wireless (Er

wl) and wired (Er
wd) communication:

Er
comm = Er

wl + Er
wd. (3)

The energy spent on wireless transmission of request r ∈ Rk equals:

Er
wl = ∑

l∈F
wr

l Er,mr

comm,l = ∑
l∈F

wr
l Lr(1 + or)γmr

l , (4)

where Er,mr

comm,l is the energy required to transmit request r ∈ Rk from MD mr ∈ M to FN
l ∈ F and return the calculation result in the reverse direction, while γmr

l is the energy-
per-bit cost of this transmission. Lror is the size (in bits) of results transmitted back to
MD mr.

The energy spent on wired transmission of request r ∈ Rk equals:

Er
wd = ∑

l∈F
wr

l ∑
n∈F∪C

ar
nEr,l

comm,n = ∑
l∈F

wr
l ∑

n∈F∪C
ar

nLr(1 + or)γl
n, (5)

where Er,l
comm,n is the energy required to transmit request r ∈ Rk between FN l ∈ F and

node n ∈ F ∪ C, while γl
n is the energy-per-bit cost of this transmission. Energy-per-bit

cost can be derived from [21], where the power consumption of networking equipment
increases linearly with load starting from idle power. This relation can also be seen in
measurements of core routers [22,23]. There is no wired communication between nodes if



Sensors 2023, 23, 997 7 of 22

the request is processed at the same node to which it is wirelessly transmitted by the MD,
i.e., ∀l ∈ F γl

l = 0.
The total energy spent on offloading request r ∈ Rk is given by:

Er
tot = Er

cp + Er
wl + Er

wd. (6)

2.3. Delay

Three components form the delay model: communication, processing and queuing.
The delay Dr

cp caused by computing request r ∈ Rk equals:

Dr
cp = ∑

n∈F∪C
ar

nDr
cp,n = ∑

n∈F∪C
ar

n
Lrθr

fnsn
, (7)

where Dr
cp,n is the time required to compute request r ∈ Rk at node n ∈ F ∪ C.

The delay caused by communication can be further subdivided into wireless (Dr
wl)

and wired (Dr
wd) delay:

Dr
comm = Dr

wl + Dr
wd. (8)

The delay caused by wireless transmission of request r ∈ Rk equals:

Dr
wl = ∑

l∈F
wr

l Dr,mr

comm,l = ∑
l∈F

wr
l

Lr(1 + or)

bmr

l
, (9)

where Dr,mr

comm,l is the time required to transmit request r ∈ Rk between MD mr ∈ M and
FN l ∈ F , while bmr

l is the bitrate of this transmission between FN l and MD mr.
The delay caused by wired transmission of request r ∈ Rk equals:

Dr
wd = ∑

l∈F
wr

l ∑
n∈F∪C

ar
nDr,l

comm,n, (10)

where Dr,l
comm,n is the time required to transmit request r ∈ Rk between FN l ∈ F and

node n ∈ F ∪ C. The model for calculation of Dr,l
comm,n differs depending on whether

node n is an FN or a CN. It is assumed that cloud data centers are located away from the
rest of the network (hundreds or even thousands of kilometers away) which requires the
distance-related delay to be modeled. The delay caused by transmitting request r ∈ Rk
between (to and from) FN l ∈ F and cloud node n ∈ C is:

Dr,l
comm,n =

Lr(1 + or)

bl
n

+ dn · χ, (11)

where bl
n is the link bitrate in the backhaul and backbone network between nodes l and n,

while dn is the fiberline distance to CN n ∈ C. The parameter χ indicates the rate at which
delay increases with distance dn [24].

For transmission between FNs, we assume the delay caused by the distance between
them (dn · χ in Equation (11)) is negligible—well below 1 ms as we use a value of 7.5µs/km
for parameter χ [24]—and therefore we ignore it. Delay caused by communication between
FN l ∈ F and n ∈ F for request r ∈ Rk equals:

Dr,l
comm,n =

Lr(1 + or)

bl
n

. (12)

The special case is when the request r is received wirelessly at FN n and the same
node is used for processing. In this case, no wired communication delay is expected, i.e.,
Dr,n

comm,n = 0, ∀n ∈ F .
Even more significant differences can be observed while modeling queuing delays for

requests processed in the fog tier and in the cloud tier of the network. This stems from the
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fact that clouds are assumed to have huge (practically infinite) computational resources
with parallel-computing capabilities and there is no need to queue multiple requests served
by the CN n ∈ C. They can be processed simultaneously. Meanwhile, if multiple requests
are sent to the same FN n ∈ F for processing in a short time span, additional delays may
occur due to congestion of computational requests (an arriving request cannot be processed
until processing of all the previous requests has been completed). We define a scheduling
variable tn ∈ R+ to represent the point in time at which the last request scheduled at FN
n ∈ F is finished processing. The queuing delay of request r ∈ Rk, transmitted wirelessly
to node l ∈ F , for computations being carried at node n ∈ F equals:

Dr,l
queue,n = max(0, tn − Tk − Dr,mr ,l

ul,n ), (13)

where Dr,mr ,l
ul,n = 1

1+or (Dr,mr

comm,l + Dr,l
comm,n) is the uplink delay of transmitting request r to

node n through FN l. Dr,l
queue,n has nonzero values when tn > Tk + Dr,mr ,l

ul,n . In such cases,

the request r arrives at node n at time Tk + Dr,mr ,l
ul,n . It is kept in a queue until time tn,

when processing of another request (or requests) ends. For each node n ∈ C, Dr,l
queue,n

always equals zero—due to the parallel processing powers of the cloud, each request may
be computed right away, regardless of how many requests are already being processed.
Queuing delay of request r ∈ Rk is:

Dr
queue = ∑

l∈F
wr

l ∑
n∈F∪C

ar
nDr,l

queue,n. (14)

Finally, the total delay of processing request r ∈ Rk equals the sum of delays related
to computation, transmission and queuing:

Dr
tot = Dr

cp + Dr
comm + Dr

queue. (15)

2.4. Updating Scheduling Variables in the Fog

Since no requests are processed when a simulation starts, we set tn = 0, ∀n ∈ F . Then,
for each Tk ∈ T , after allocations ar

n and wr
l are determined, the times tn are updated for

every n ∈ F according to when computation of requests offloaded to the FN are scheduled
to finish:

tn := max(tn, Tk + ∑
r∈Rk

∑
l∈F

ar
nwr

l (Dr,mr ,l
ul,n + Dr,l

queue,n + Dr
cp,n)). (16)

3. Optimization Problem

Our defined problem seeks to minimize the total energy cost of offloading all requests
that enter the network at time Tk, that is to find:

(a?, w?, f?) = arg min
a,f,w

∑
r∈R

Er
tot, (17)



Sensors 2023, 23, 997 9 of 22

subject to:

∑
n∈F∪C

ar
n = 1 ∀r ∈ Rk, (18)

∑
r∈Rk

ar
n ≤ 1, ∀n ∈ F , (19)

∑
l∈F

wr
l = 1 ∀r ∈ Rk, (20)

Dr
tot ≤ Dr

max, ∀r ∈ Rk, (21)

fmin,n ≤ fn ≤ fmax,n, fn ∈ R ∀n ∈ F , (22)

ar
n ∈ {0, 1}, ∀r ∈ Rk, ∀n ∈ F ∪ C, (23)

wr
l ∈ {0, 1}, ∀r ∈ Rk, ∀l ∈ F , (24)

where a? = {ar
n
?}, w? =

{
wr

l
?} and f? = { f ?n} are the optimal values of allocation vari-

ables ar
n and wr

l and CPU clock frequencies fn, respectively. Constraints (18) guarantee that
each request must be processed at exactly one FN or CN. Constraints (19) stipulate that no
more than a single request can be processed at a given FN at a given time. Constraints (20)
guarantee that for each request, a single FN will be used for wireless connectivity. Con-
straints (21) guarantee that the total delay must not be greater than the maximum acceptable
one. Constraints (22) show the lower and upper bounds of CPU frequency at each FN.
Finally, according to Constraints (23) and (24), decision variables ar

n and wr
l take only

binary values.
There exist sets of requestsRk for which the optimization cannot be solved (e.g., there

is no feasible allocation of requests so that each request is processed (18) while fulfilling
its delay requirement (21)). In such a scenario, we decide to reject requests for which (21)
cannot be satisfied rather than ending the optimization without finding a solution (which
would translate into rejecting all requestsRk). The remaining requests (setRk \ R′k, where
R′k denotes the set of rejected requests) are then subjected to the optimization.

4. Problem Solution

In this section we provide a step-by-step solution to the optimization problem. In short,
we first find minimum operating frequencies at which delay requirements of offloaded
requests are met. Then, we find optimal operating frequencies which minimize energy
consumption spent on computations for given combinations of nodes and requests. At this
point combinations which cannot satisfy delay requirements are known. Then, the nodes
to which wireless transmission energy costs are the lowest are found. Finally, we assign
requests to nodes for computing to minimize the total energy consumption. This linear
assignment problem is solved with the Hungarian algorithm [25,26]. Notation used in our
solution is summarized in Table 3.

4.1. Auxiliary Variables

Let us define the auxiliary variable f r
n,l as the CPU frequency of node n ∈ F ∪ C where

request r ∈ Rk is allocated while node l ∈ F is the node to which r is wirelessly transmitted
(wr

l = 1). The relation between f r
n,l and fn is given by fn = ∑r∈Rk ∑l∈F ar

nwr
l,n f r

n,l . Similarly,
wr

l,n determines which node l ∈ F request r ∈ Rk is wirelessly transmitted to provided

that it is allocated to n ∈ F ∪ C (ar
n = 1) and wr

l = ∑n∈F∪C wr
l,n. Moreover, let Dr,l

tot,n be the
total delay of request r ∈ Rk provided that it is computed at node n ∈ F ∪ C (ar

n = 1) and
node l ∈ F be the node to which r is wirelessly transmitted (wr

l = 1).
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Table 3. Additional notation used in the problem solution.

Symbol Description

wr
l,n variable showing whether request r ∈ Rk is transmitted wirelessly to node

l ∈ F , provided that ar
n = 1

f r
n,l clock frequency of node n ∈ N , provided that ar

n = 1 and wr
l = 1, r ∈ Rk

Dr,l
tot,n total delay of r ∈ Rk, provided that ar

n = 1 and wr
l = 1

Dr,l
cp,n computational delay of r ∈ Rk, provided that ar

n = 1 and wr
l = 1

Er
cp,n,l energy spent on processing of request r ∈ Rk, provided that ar

n = 1 and wr
l = 1

R′k set of requests rejected due to delay requirements

R̂k set of not rejected requests, R̂k = Rk \ R′k
wr

l,n variable showing whether request r ∈ Rk is transmitted wirelessly to node
l ∈ F , provided that ar

n = 1

f r
n,l clock frequency of node n ∈ N , provided that ar

n = 1 and wr
l = 1, r ∈ Rk

Dr,l
tot,n total delay of r ∈ Rk, provided that ar

n = 1 and wr
l = 1

Dr,l
cp,n computational delay of r ∈ Rk, provided that ar

n = 1 and wr
l = 1

Er
cp,n,l energy spent on processing of request r ∈ Rk, provided that ar

n = 1 and wr
l = 1

R′k set of requests rejected due to delay requirements

R̂k set of not rejected requests, R̂k = Rk \ R′k

4.2. Finding Optimal Frequencies

Let us rewrite (17) by expanding Er
tot into parts caused by computations (Er

cp,n), wire-

less transmission (Er,mr

comm,l , between MD mr and node l) and wired transmission (Er,l
comm,n,

between nodes l and n):

(a?, w?, f?) = arg min
a,w,f

∑
r∈Rk

∑
l∈F

∑
n∈F∪C

ar
nwr

l

(
Er

cp,n + Er,mr

comm,l + Er,l
comm,n

)
. (25)

Out of these three parts, Er
cp,n is the only one that depends on frequencies fn. The goal

of this step is to find f r
n,l

?, i.e., values of fn which minimize Er
cp,n for all possible values of

ar
n and wr

l . The only constraints that depend on values of f r
n,l are (21) and (22).

The minimum values of f r
n,l which satisfy Constraints (21) can be obtained by solving

the inequality Dr,l
tot,n ≤ Dr

max.

Dr,l
cp,n + Dr,mr

comm,l + Dr,l
comm,n + Dr,l

queue,n ≤ Dr
max (26)

Lrθr

sn f r
n,l

+ Dr,mr

comm,l + Dr,l
comm,n + Dr,l

queue,n ≤ Dr
max (27)

f r
n,l ≥

Lrθr

sn

(
Dr

max − Dr,mr

comm,l − Dr,l
comm,n − Dr,l

queue,n

) , f r
min,n,l (28)

Let us rewrite Er
cp,n as a function of fn based on (1) and (2).

Er
cp,n( fn) =

Lrθr(pn,3 f 3
n + pn,2 f 2

n + pn,1 fn + pn,0)

fnsn
(29)



Sensors 2023, 23, 997 11 of 22

Its derivative with respect to fn equals:

Er
cp,n
′( fn) =

Lrθr

sn

(2pn,3 f 3
n + pn,2 f 2

n − pn,0)

f 2
n

. (30)

The function Er
cp,n( fn) is continuous and differentiable for positive fn (the only dis-

continuity is at fn = 0). Therefore, its extrema in a given interval can only be found at the
bounds of this interval or for points at which the derivative equals zero. Er

cp,n
′( fn) has a

cubic function in the numerator, so it has at most three real roots.
Now, we find f r

n,l
? for r ∈ Rk, n ∈ F , w ∈ F by finding the minimum of Er

cp,n( fn)
in the interval [max( f r

min,n,l , fmin,n), fmax,n]. The corresponding minimum energy costs are
as follows:

Er
cp,n,l

? = Er
cp,n( f r

n,l
?). (31)

For values r ∈ Rk, n ∈ F , w ∈ F for which f r
min,n,l > fmax,n, constraints (21) and (22)

cannot both be satisfied, so we set Er
cp,n,l

? to infinity. For computations in clouds n ∈ C,
we do not optimize the frequency fn ( fn = const., Er

cp,n,l
? = Er

cp,n( fn)). For values r ∈ Rk,
n ∈ C, w ∈ F for which f r

min,n,l > fn, constraint (21) cannot be satisfied, i.e., we set Er
cp,n,l

?

to infinity.
Each request r ∈ Rk for which the following occurs:

Er
cp,n,l

? = ∞, ∀n∀l (32)

cannot be fully processed within their delay requirements regardless of chosen computa-
tion/transmission nodes. All such requests are therefore rejected. The remaining optimiza-
tion is performed over R̂k = Rk \ R′k, whereR′k is the set of rejected requests.

4.3. Transmission Allocation

The auxiliary matrix wn
? = {wr

l,n
?} can be obtained. For each task r ∈ Rk and each

computing node n ∈ F ∪ C, the goal is to choose node l ∈ F , which minimizes the sum
of energy spent on computations (calculated and optimized in the previous step) and
transmission (depending directly on wr

l,n), i.e., to find:

wn
? = arg min

wn
∑
l∈F

wr
l,n

(
Er

cp,n,l
? + Er,mr

comm,l + Er,l
comm,n

)
, (33)

while satisfying (20) and (24). This is equivalent to finding nodes l, which minimize the
expression

(
Er

cp,n,l
? + Er,mr

comm,l + Er,l
comm,n

)
.

4.4. Computation Allocation

The vector a? can now be obtained by solving the simplified problem:

a? = arg min
a ∑

r∈Rk

∑
l∈F

∑
n∈F∪C

ar
nwr

l,n
?
(

Er
cp,n,l

? + Er,mr

comm,l + Er,l
comm,n

)
, (34)

subject to (18), (19) and (23). This corresponds to the linear assignment problem [25]—each
request r ∈ R̂k is assigned to one and only one node n ∈ F ∪ C. The cost matrix has∣∣R̂k

∣∣ rows and |F |+
∣∣R̂k

∣∣ · |C| columns. The columns representing processing at FN are
used once as each of them can serve one request at a time while the columns representing
processing at CN are multiplied to ensure that multiple requests can be assigned to them
simultaneously. The Hungarian algorithm [25,26] is used to solve this problem.

5. Results

Results obtained from computer (MATLAB) simulations and their setup are presented
in this section. While the main goal is to serve all the incoming requests within allowed
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latency constraints with minimum energy, requests that failed to be served are set with
virtually infinite consumed energy. This facilitates a fair comparison of various request
allocation strategies using only distribution of energy consumption spent per offloaded
request. Therefore, we choose medians, percentiles and CDF as evaluation metrics.

For the purpose of computing medians and other percentiles in this section, the energy
costs related to rejected requests are equal to positive infinity—such an approach (as well
as using other fixed values or omitting them entirely) has a considerably larger impact on
the averages. Medians and percentiles avoid bias that unserved requests have with respect
to average values.

5.1. Scenario Overview

Let us consider a network with |F | = 10 FN and |C| = 1 cloud DC. Simulation
parameters are summarized in Table 4. Figure 2 shows a connection diagram between these
FNs and the cloud. The examined environment represents a commercial facility such as an
airport, where the end users (MD) want to have their requests processed. Moreover, Figure 2
presents three examples of requests being calculated: (i) in the same FN as the utilized
AP, (ii) being calculated in another FN and (iii) being offloaded to the cloud. Appropriate
values of binary variables ar

n and wr
l are presented in Figure 2.

Table 4. Simulation parameters.

Symbol Value/Range Symbol Value/Range

Requests , r ∈ Rk

Lr [1, 5] MB θr [1, 500] FLOP/bit
or [0.01, 0.2] Dr

max [500, 3000] ms
|Rk| [5, 10] Tk − Tk−1 200 ms

Computations in fog [19,20,27], n ∈ F
pn,3, pn,2 5.222, 34.256 pn,1, pn,0 88.594, −47.152
fmin,n 1.6 GHz fmax,n 4.2 GHz
sn 16 FLOP/cycle

Computations in cloud [18,19], n ∈ C
fn 1.5 GHz sn 32 FLOP/cycle

Wired Transmission [23,24,28]

dn, n ∈ C 2000 km χ 7500 ns/km
bl

n, n ∈ C 10 Gbps bl
n, n ∈ F 1 Gbps

γl
n, n ∈ F {2, 3} × 2 nJ/(bit) γl

n, n ∈ C 12 nJ/bit

Wireless Transmission [29–31]

γmr

l , l ∈ F ,
mr ∈ M

depends on rate and
path loss

bmr

l , l ∈ F ,
mr ∈ M

{0, 6.5, 13, 18.5, 26, 39, 52,
58.5, 65} Mbps

Requests—between 5 and 10 new computational requests with uniform distribution
at time Tk ∈ T appear. These requests appear at random locations within the area of
the examined network (with uniform distribution in both dimensions). The value Tk is
generated as a random delay after the previous time instance Tk−1. The difference Tk− Tk−1
is chosen to be a random variable of exponential distribution with an average value of
200 ms. The requests have randomly assigned values of their parameters (size, arithmetic
intensity, delay requirement) in ranges shown in Table 4 with uniform distribution.
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Figure 2. Diagram of the considered network composed of 10 FNs and a cloud with three examples
of request allocations.

Computations—each FN has computational resources and a frequency–power relation-
ship of a single Intel Core i5-2500K as its CPU. Data relating frequency, voltage and power
consumption of i5-2500K are taken from [27] and inserted into Equation (2) adapted
from [20] to obtain values for pn,3, pn,2, pn,1 and pn,0. The parameter s equals 16 for
this CPU [19]. The resulting computational efficiency β is the highest (0.9586 GFLOPS/W)
at frequency f = 2.6063 GHz.

To simulate a scenario with varying computational efficiencies of nodes, we multi-
ply the resulting computational efficiency (2) by random values from the range [0.5, 1.5]
generated independently for each node n ∈ F .

As for the computational capability of the cloud, its CPUs are parameterized according
to the Intel Xeon Phi family commonly used in computer clusters [18,32] run at constant
frequency f = 1.5 GHz characterized with s = 32 [19].

Wireless transmission—the power consumption model of the wireless transmission
is based on [29] and depends on the data rate and path loss. We use values derived for
ASUS USB-N10 WiFi card. The path loss values are determined using the model from
Section 3.1 of [31] for a commercial area and frequency closest to 2.4 GHz (20 dB for
frequency 2.1 GHz). The wireless link uses a maximum available rate that depends on
the minimum sensitivity specified in Section 19.3.19.2 of [30] for a given modulation and
coding scheme. It ranges from 6.5 Mbps (BPSK, 1/2) at−82 dBm to 65 Mbps (64-QAM, 5/6)
at −64 dBm. The energy-per-bit cost γmr

l is obtained by dividing the power by the wireless
link data rate.

Wired transmission—in order to derive energy-per-bit cost of transmitting requests
from one node to another (i.e., γl

n from l ∈ F to n ∈ F ∪ C), we need to add costs induced
in all devices through which it flows. For the power consumption of a single networking
device, the linear model from [21] is used. It includes idle power Pidle and active power
that scales with load C (in bits/second) by parameter γ (in Joules/bit):

P = Pidle + C
Pmax − Pidle

Cmax
= Pidle + Cγ, (35)

where Pmax denotes maximum power consumption and Cmax denotes maximum load.
Energy-per-bit cost of transmitting data γl

n is equal to the sum of γ parameters of all
network devices through which the data flows between nodes l and n. In this work, we
assume γl

n = γn
l . It is assumed for the connections between FN that they are connected

with 1 G Ethernet. The power consumption of Ethernet switches is set according to [28,33].
Each switch can serve up to 6 FN on the LAN side with 1 Gbps links (star topology) and
can be connected to the 10 G EPON on the WAN side. Cost-per-bit of transmission through
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these switches is equal to 2 nJ/bit (82 W at 1 Gbps throughput, 80 W with no traffic).
The configuration can be seen in Figure 2 showing 10 FNs connected with 2 switches.

For the connection between the fog tier of the network and the cloud, it is assumed that
the data flow through multiple nodes. Olbrich et al. [24] use geographically locatable nodes
(over 250 nodes around the globe) to derive multiple path characteristics. Their results show
that the RTT of a packet is, on average, 1.5 times longer than an estimation based only on
fiberline distance (the speed of light in optic fiber≈ 2× 108m/s, in vacuum c ≈ 3× 108m/s).
The measured RTT has a slope of 7.5 µs/km. We assign this 7.5 µs/km value to parameter
χ. The Cloud DC is assumed to be located 2000 km away from the rest of the network.
It is estimated that the energy-per-bit cost of transmitting data through the backbone
network to the Cloud is equal to 12.66 nJ/bit based on 12 Juniper T1600 routers—each with
cost-per-bit equal 1.03 nJ/bit [12,22] and a 10G EPON gateway with 0.3 nJ/bit cost [34].
While there is other equipment through which the data flow within the core network (e.g.,
optical amplifiers), the value 12.66 nJ/bit is chosen to represent the whole energy spent
on transmission. Therefore, γl

n = 12.66 + {2, 3} × 2 nJ/bit for n ∈ C (2 or 3 depending on
the logical distance between l and the switch with the WAN connection).

5.2. Baseline/Suboptimal Solutions

To test the effectiveness of the proposed algorithm (Full Optimization, shortened on
plots to Full Optim), we compare it with four simpler task allocation methods. A summary
of these methods is shown in Table 5.

Table 5. Comparison of examined algorithms.

Name Limitation Optimization Variables

Full Optimization None Computing allocation—a,
transmission allocation—w,
computing frequency—f

Exhaustive Search None a, w, f
Cloud Only ∑n∈C ar

n = 1, ∀r ∈ Rk w, a (if there are multiple Cloud
Nodes)

No Migrate ∑l=n∈F wr
l ar

n = 1, ∀r ∈ Rk a interdependently on w, f

Closest Wireless wr
l =arg minwr

l
Er

wl, ∀r ∈ Rk a, f

Exhaustive Search—all possible variations of allocations are verified. While this baseline
approach finds the optimal solution, its running time scales exponentially with the number
of requests. The optimal frequencies of CPU are calculated as in Full Optimization.

Cloud Only—all requests are transmitted to and processed in the cloud tier of the net-
work. The optimal transmission allocation is obtained using a simplified version of the Full
Optimization.

No Migrate—the nodes in the fog tier and cloud tier of the network cannot transmit
tasks between themselves, i.e., the FN to which the request r is sent from the MD is the one
that computes it (ar

nwr
l = 1 ⇐⇒ l = n).

Closest Wireless—in this approach, requests are always transmitted wirelessly to
the closest node (the one with the lowest path loss). Then, the rest of the optimization
is performed as in Full Optimization. The difference lies mostly in the step described in
Equation (33)—in Full Optimization the set of allocation variables w is found to minimize
total transmission + computation costs, while in Closest Wireless each wr

l is found separately,
minimizing “only” the wireless transmission costs.

Not all of these solutions are plotted on every graph for clarity in this section. The re-
sults of Closest Wireless in many configurations overlap with the results of Full Optimization.
In other words, the results of Closest Wireless are indistinguishable (within 0.1%) from the
optimal results of Full Optimization for the vast majority of tested parameter setups. There-
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fore, they are omitted from all plots except Figure 7, where the difference between these two
is visible. Shaded areas around results for each solution show 95% confidence intervals.

5.3. Comparison with Exhaustive Search and All Possible Allocations

First, let us compare results obtained from our Full Optimization with those resulting
from Exhaustive Search to validate the ability of our algorithm to find the total minimum
energy cost. A set of four computational requests is considered. The size of this set is
limited due to the high computational complexity of Exhaustive Search. These requests have
to be allocated among 10 FNs (allocation in the cloud is not considered in this example to
highlight the importance of optimization within the fog tier). There are 50,400,000 possible
allocations (104 for transmission, 10!

(10−4)! = 5040 for computation) in total with energy
consumption varying from 18.3 J to more than 29.4 J, as presented in Figure 3. The results
obtained by Full Optimization (red dashed line) and No Migrate (black dotted–dashed line)
are also shown. Full Optimization does indeed find the same solution as Exhaustive Search.
The solution found by No Migrate results in slightly higher energy cost. Still, both solutions
provide energy cost significantly lower than the average cost of all possible allocations. It is
clear that an algorithm which assigns requests to nodes randomly would not be efficient in
terms of energy cost.
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Figure 3. Comparison of our (Full Optim) solution with the No Migrate solution and all possible
allocations from exhaustive search (blue bars; average value marked with solid green line).

5.4. Impact of Network Parameters

Now let us examine the impact of the computational efficiency of the cloud on en-
ergy costs and allocations in the full network. Let us sweep this efficiency from 0.8 to
3.0 GFLOPS/W (efficiency of the 500 most powerful commercially available computer
clusters ranges from 0.19 GFLOPS/W to 39.4 GFLOPS/W with 4.04 GFLOPS/W as the
median [35]). Figure 4 shows the median and the 90th percentile of the total energy costs
spent on transmission and computation of offloaded requests. It can be seen that the energy
costs of Cloud Only are significantly higher than those of Full Optimization for the lowest
values of cloud efficiency, while differences between No Migration and Full Optimization
are small. In all cases, our proposed solution requires a smaller amount of energy for
a single request calculation than No Migration. As cloud efficiency increases, the cost of
Cloud Only allocation decreases. In parallel, this allows Full Optimization to offload more
tasks to the cloud, decreasing the energy consumption. The differences between the 90th
percentiles are significantly higher than those between medians, showing the highest gains
of Full Optimization for the most difficult requests. It is obvious that for the extremely high
or low efficient cloud, the requests will be mostly calculated in the cloud or in the fog nodes,
respectively. Therefore, for other results in this section, cloud efficiency is chosen to be
1.3 GFLOPS/W. This is a value of cloud efficiency that results in offloading decisions being
not as straightforward as for values significantly higher or lower.
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Figure 4. Comparison of energy cost per request with varied computational efficiency of cloud.

Another network parameter that can impact the costs and offloading decisions is
the physical size of the network. The network shown in Figure 2 (10 FN distributed over
a 200 m× 50 m hall) is used by default. Now let us vary the physical size of the network
while maintaining the same number of FNs. This has an effect on the distance between
MDs and FNs. The greater the distance, the higher the path loss and the energy-per-bit cost
of wireless transmission. At the same time, the higher the path loss the lower the wireless
transmission rate. In Figure 5 the length of the area covered by the network is swept up to
1000 m from the initial 200 m. With changing length (the longer of the two dimensions)
the ratios of distances between all FNs and the area perimeter remain constant. The results
in Figure 5 clearly show that the energy cost per request increases with the increasing
size of the network. The increase is significant for No Migrate as MD is often “forced” to
wirelessly send requests to more distant nodes if the close nodes are busy processing other
requests or are not efficient enough. The rejection rates also increase from 3.3% at 200 m to
8.6% at 1000 m For Full Optimization, from 3.8% to 21.8% for No migrate and from 6.5% to
23.7% for Cloud Only. The difference in energy costs between Full Optimization and other
methods becomes more apparent with increasing distances within the network.
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Figure 5. Comparison of energy consumption per request with varied size of area covered by
the network.

5.5. Impact of Traffic Parameters

Let us vary parameters characterizing the requests offloaded to the network. For
previous results, the parameters characterizing offloaded requests are random, as shown
in Table 4. First, let us look at the impact of the delay requirement. It is fixed for all
the incoming requests. The other parameters (e.g., arrival rate, arithmetic intensity) are
generated in the same way as described in Section 5.1. Figure 6 plots the median and
the 75th percentile of energy costs spent on offloading requests as a function of the delay
requirement (between 500 and 1000 ms) of these requests. There are a few key observations:
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(i) the percentage of rejected requests increases with stricter delay requirements, (ii) the en-
ergy cost increases with stricter delay requirements, (iii) Cloud Only is particularly poorly
suited for delay-sensitive applications. Observation (i) is self-explanatory. The shorter
the time-constraint, the harder it is to successfully offload the task, compute it and transmit
the results back within this time. This can be seen on the plot where the respective lines
terminate in the middle of a plot as a result of virtually infinite energy cost of a request that
is unsuccessfully calculated. For example, the green line representing the 75th percentile
of Cloud Only terminates at 800 ms. This means that for delay requirements lower than
800 ms more than 25% of requests are rejected. Observation (ii) is an effect of the higher
CPU frequency required at the FN to fulfill stricter delay requirements. This results in
decreased CPU efficiency and increased energy consumption. Observation (iii) stems from
the additional transmission delay caused by sending requests to the distant cloud.
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Figure 6. Comparison of energy consumption per request with varied delay requirement of requests.

To further analyze the difference between allocation strategies CDFs of energy costs
are plotted in Figure 7 for fixed delay requirement of all requests equal to 700 ms. Unlike
previous plots, Figure 7 includes results from the Closest Wireless algorithm. In all previous
plots, the resulting energy costs of Closest Wireless are not shown, since they are either
identical to those of Full Optimization or are within 0.1% of it. Lowering the delay require-
ment created a scenario where sending the request wirelessly to the nearest (cheapest)
AP/FN and then finding the optimal node for computation may not result in the optimal
solution. This shows that Full Optimization manages to successfully offload nearly 81% of
all requests. This is the most out of all the compared methods, about 0.5 percentage point
more than Closest Wireless. It is visible that all the methods are differentiated mostly for
high percentiles of energy costs. The worst solution is Cloud Only, which rejects nearly
40% of all requests. While the difference between Closest Wireless and Full Optimization is
relatively small, this can be treated as a promising suboptimal solution which decreases
algorithm complexity while maintaining efficiency. This can change if the considered
wireless technology, e.g., 5G NR, provides a higher data rate and higher energy efficiency.
However, this requires energy consumption models of 5G terminals to be available.

Finally, an impact of arithmetic intensity of offloaded requests is examined. This
parameter determines how many computations are needed to process a given request
relative to its size. The median and 75th percentile of energy costs for arithmetic intensity
swept in range 〈1, 1000〉 FLOP/bit are plotted in Figure 8. As expected, the energy cost
increases with rising intensity. Higher values resulting from Cloud Only allocation at low
intensity can be attributed to costs related to transmission (which do not directly depend
on arithmetic intensity). Such requests can be more efficiently calculated in FNs, being
commonly the result of the Full Optimization method. Energy costs (both median and 75th
percentile) of No Migrate are within 10% of Full Optimization except for the values above
300 FLOP/bit where No Migrate steeply inclines. Rejection rates for Full Optimization are
1.1% for 1 FLOP/bit, 1.8% for 100 FLOP/bit and 11.7% for 1000 FLOP/bit. For Cloud Only,
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the values equal 2.9%, 4.4% and 20%, respectively. For No Migrate, they also start at 1.1%
for 1 FLOP/bit and 1.8% for 100 FLOP/bit but reach 46.7% for 1000 FLOP/bit.
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Figure 7. Comparison of energy consumption per request (CDF). Delay requirement: 700 ms.
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Figure 8. Comparison of energy consumption per request with varied arithmetic intensity. Same
legend as in Figures 4 and 5.

6. Discussion

We investigate the minimization of energy spent on offloading computational tasks
in fog networks. Our model includes delay and energy costs resulting from computation
as well as wireless and wired transmission. The proposed computational task allocation
algorithm, Full Optimization, successfully minimizes energy consumption while satisfying
delay constraints. All the considered degrees of freedom, i.e., AP selection, computing
node selection and FN CPU frequency tuning increase system performance. However,
precise gain characterization depends on a specific network configuration and specification
of the computational requests. When compared with the No Migrate solution, the biggest
performance improvements can be seen when offloaded tasks have high arithmetic intensity
or when a large area covered by the network causes higher path loss (up to 50% lower energy
consumption). Compared with performing all computations in the cloud, our solution is
much better suited for requests with strict delay requirements and low arithmetic intensity.
We also propose a heuristic approach that independently allocates wireless transmission
called Closest Wireless. This simplified algorithm provides optimal solutions for almost
all considered scenarios. Its performance is slightly worse for requests with strict delay
requirements—it manages to satisfy delay constraints of 0.8% fewer requests compared to
Full Optimization at 700 ms.

The limitations of this work include relying on energy consumption and delay models
characterizing equipment in the network. Considering various devices available in the
market, the models may not be accurate for all of them. Moreover, this work assumes
some simplifications. Each request can only be computed at one node, while each FN can
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simultaneously process only one request. Future work includes extension of the setup with
other wireless technologies, e.g., 5G NR. However, this requires reliable power consumption
models for terminals of these technologies. Furthermore, metaheuristics targeting low
execution times while finding close-to-optimal solutions may be an interesting research
option. Another possible direction is adding a pricing mechanism to the network. This
would incentivize FN and CN to prioritize processing certain requests and provide a
price–delay trade-off.
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Abbreviations
The following abbreviations are used in this manuscript:

AWS Amazon Web Services
AP Access Point
API Application Programming Interface
BAN Body Area Network
BS Base Station
BSN Body Sensor Network
CDN Content Delivery Network
CDF Cumulative Distribution Function
CPE Customer Premises Equipment
CN Cloud Node
CPU Central Processing Unit
C-RAN Cloud Radio Access Network
DC Data Center
DVFS Dynamic Voltage and Frequency Scaling
EA Energy-Aware
ECG Electrocardiogram
EEFFRA Energy-EFFicient Resource Allocation
EH Energy Harvesting
ETSI European Telecommunications Standards Institute
EPON Ethernet Passive Optical Network
FI Fog Instance
FLOP Floating Point Operation
FLOPS Floating Point Operations per Second
FN Fog Node
F-RAN Fog Radio Access Network
GPS Global Positioning System
GSM Global System for Mobile communications
HD High Definition
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HT Higher Throughput
IBStC If Busy Send to Cloud
IBKiF If Busy Keep in FN
IBStOF If Busy Send to Other FN
IEEE Institute of Electrical and Electronics Engineers
ICT Information and Communication Technology
IoE Internet of Everything
IoT Internet of Things
IP Internet Protocol
KKT Karush–Kuhn–Tucker
LAN Local Area Network
LC Low-Complexity
LTE Long Term Evolution
MCC Mobile Cloud Computing
MINLP Mixed Integer Nonlinear Programming
MD Mobile Device
MEC Mobile/Multi-Access Edge Computing
MIB Management Interface Base
nDC nano Data Center
NFV Network Function Virtualization
NR New Radio
OSI Open Systems Interconnection
PA Power-Aware
PC Personal Computer
PGN Portable Game Notation
QoE Quality of Experience
QoS Quality of Service
RAM Random Access Memory
RAN Radio Access Network
RFC Request for Comments
RRH Remote Radio Head
RTT Round-Trip Time
SCA Successive Convex Approximation
SCN Small Cell Network
SDN Software Defined Network
SDR SemiDefinite Relaxation
SINR Signal to Interference-plus-Noise Ratio
SM Sleep Mode
SOA Service Oriented Architecture
TDM Time Division Multiplexing
TE Traffic Engineering
TM Traffic Matrix
TM Traffic Matrices
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Anything
VC Virtual Cluster
VM Virtual Machine
WAN Wide Area Network
WDM Wavelength Division Multiplexing
WE WeekEnd day
WLAN Wireless Local Area Network
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