
Citation: Samir, R.; El-Hennawy, H.;

Elbadawy, H. Cluster-Based

Multi-User Multi-Server Caching

Mechanism in Beyond 5G/6G MEC.

Sensors 2023, 23, 996. https://

doi.org/10.3390/s23020996

Academic Editor: Luis Velasco

Received: 24 November 2022

Revised: 5 January 2023

Accepted: 10 January 2023

Published: 15 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Cluster-Based Multi-User Multi-Server Caching Mechanism in
Beyond 5G/6G MEC
Rasha Samir 1,* , Hadia El-Hennawy 1 and Hesham Elbadawy 2

1 Department of Electronics and Communications, Faculty of Engineering, Ain Shams University,
Cairo 11566, Egypt

2 Network Planning Department, National Telecommunications Institute, Cairo 11768, Egypt
* Correspondence: g19083499@eng.asu.edu.eg

Abstract: The work on perfecting the rapid proliferation of wireless technologies resulted in the
development of wireless modeling standards, protocols, and control of wireless manipulators. Several
mobile communication technology applications in different fields are dramatically revolutionized to
deliver more value at less cost. Multiple-access Edge Computing (MEC) offers excellent advantages
for Beyond 5G (B5G) and Sixth-Generation (6G) networks, reducing latency and bandwidth usage
while increasing the capability of the edge to deliver multiple services to end users in real time. We
propose a Cluster-based Multi-User Multi-Server (CMUMS) caching algorithm to optimize the MEC
content caching mechanism and control the distribution of high-popular tasks. As part of our work,
we address the problem of integer optimization of the content that will be cached and the list of
hosting servers. Therefore, a higher direct hit rate will be achieved, a lower indirect hit rate will be
achieved, and the overall time delay will be reduced. As a result of the implementation of this system
model, maximum utilization of resources and development of a completely new level of services and
innovative approaches will be possible.

Keywords: B5G; 6G; CMUMS caching; MEC

1. Introduction

The increasing interest in taking mobile communication technology and its applica-
tions to life and business has dramatically revolutionized and created a new digital world
with unleashed values and low costs. Back in the mid-1990s, mobile technology was ob-
scure, but it has become a necessity everywhere because of its broad functionality. Mobile
communication technology started by supporting mobile data connectivity in addition to
voice-based communications, moved to High-Definition (HD) video conferencing and then
to reality. Mobile communication technology began as a stunning achievement in the world
of technology, but it is now evolving to be a more sustainable human-centric technology.
Technology innovations such as the Internet of Things (IoT), Software-Defined Networking
(SDN), and 6G are transforming the development of software applications across several
industries [1–3]. Delivering content to users and delivering real-time data to centralized
data centers requires massive amounts of near-real-time computation. For example, the
IoT system can benefit from the powerful B5G/6G MEC [4]. It rapidly transfers data and
real-time monitoring information of physical objects to a fully digital world or virtual
environment through Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR),
Extended Reality (XR), or any other Metaverse-related technologies while orchestrating
real-time information exchange between the physical and digital worlds [5,6]. Using real-
time video conferencing for e-learning and online meetings helped us a lot during the
COVID-19 pandemic and lockdown. The evolution of mobile communication technology
has streamlined our lives and saved us both time and resources.

MEC 6G network innovation solution empowers 6G mobile network capabilities by
consolidating compute, database, storage, and other cloud services closer to the edge of

Sensors 2023, 23, 996. https://doi.org/10.3390/s23020996 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020996
https://doi.org/10.3390/s23020996
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1193-1153
https://orcid.org/0000-0002-5291-0212
https://orcid.org/0000-0002-9445-2782
https://doi.org/10.3390/s23020996
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020996?type=check_update&version=2

Sensors 2023, 23, 996 2 of 27

the network at the speed of 6G [7,8]. It enables low-latency communication for gaming,
real-time collaboration, and hosting other emerging services. In addition, moving cloud
computing services to the edge of B5G and 6G networks and handling large amounts of
data close to their source significantly reduces the load on the mobile backhaul. MEC
reduces application costs by operating it at the border of the mobile network without the
need to utilize costly backhaul links [9]. It also allows storage and data stream processing at
the border instead of being completed at the data center core or remote cloud environments.
MEC’s ultra-low latency and local data processing capabilities meet some sensitive and
private security requirements [10]. MEC’s ultra-low-latency solution accelerates data
flow and delivers real-time information collection for various applications [11]. There are
multiple factors that should be considered such as the infrastructure of the edge, compute
applications, the support of real-time communications, the desired time delay, server
capacity, and population coverage [12,13].

The tremendous and rapid growth of mobile communication technologies and their
applications, especially the imposing demand on video content delivery, has added a huge
load on the mobile backhaul uplinks between the Base Stations (BSs) and core network,
and also on the servers at the core of the networks, which can be optimized by reducing the
physical path between the User Equipment (UE) and the cloud computing servers [14]. In
addition, modern application quality constraints of minimal time delay, jitter, and packet
loss have added more complexity to the mobile network design strategy [15]. The MEC
architecture allows heavy traffic loads to be handled without causing network bottlenecks
while delivering application quality.

MEC is introducing a compelling and encouraging model to mount caching capabilities
in adjacency with the Beyond 5G/6G network base stations, and it is providing rapid,
popular content delivery of today’s delay-sensitive applications at the speed of mobile
networks backhaul [16]. Content caching is typically deployed at the core of wireless
networks [10,17]. Edge servers and caching techniques are deployed at the edge of the
mobile network [18]. By installing servers and content caching close to the end users,
communication between them will be faster, the response time will be shorter, and the
traffic load on the core network will be reduced. Conducting a cached copy of the content
from the network edge to users saves a significant delay in passing through the core uplinks
toward the central servers with every request for the same content. The goal of content
caching in edge computing is to preserve a copy of the content at the network edge on
the path between the end user and its central servers [19]. Besides caching content near
end users, MEC also controls the selection metrics of the cached content, as well as how to
maintain the cached content [20]. The selection metrics define the content that should be
cached when to update the cached content, and for how long the cached copy should be
kept. Thus, the content of high prospects is cached. The content of low prospects is not
cached in order to improve the content caching solution.

In this study, we have studied the model described in [21], and we have worked on
optimizing the server’s content caching mechanism so that it guarantees the redundancy
of high-demand tasks while maintaining cache replacement behavior in order to improve
performance. Furthermore, with the use of bonded clusters of servers, MD and MEC servers
within a local domain can communicate and coordinate task handling. The outcomes are
reduced communication times and increased direct hits. In addition, agent servers facilitate
communication between local domain clusters, as well as communication with remote
cloud environments. We introduced the CMUMS caching algorithm to optimize the content
caching mechanism and control the replication of highly requested content. It considers
the modern application demands for ultra-low latency, the end-user device capability
such as mobility and storage limitations, along with content hit rates, value, and size.
A key contribution of our paper is a solution to the caching problem in a layout where
caching components are distributed with finite backhaul and storage capabilities. The
main objective of this study is to develop and apply the MEC caching system model.

Sensors 2023, 23, 996 3 of 27

This will shed light on the parameters of the system and how they could be used to
assess performance.

The remainder of the paper is organized as follows: Section 2 represents the related
work, Section 3 discusses the discussed system model, the proposed system description
with system model parameters and proposed system model formatting of mathemati-
cal Components, Section 4 illustrates the results and analysis, and, finally, the paper is
concluded in Section 5.

2. Related Work

A significant amount of research has been conducted recently on the advantages of
computing and cache offloading in MEC systems. MEC content caching strategy, resource
allocation, and computational offloading decisions have been examined in many studies.
However, in order to determine the most appropriate approach to content caching, we need
to understand that there is still no single methodology that satisfies all the disparate end-
user needs and fulfills all application requirements. Researchers and engineers have been
focusing on studying and sharing the MEC key features, opportunities, and challenges.
With the help of categorizing each opportunity and challenge details, researchers can
select the techniques that are most appropriate for their applications, which is beneficial
for research and future work in the area. Furthermore, the classification emphasizes
bibliometric overviews for ease of selecting algorithms and for future research, enabling
researchers to focus on applications and further research, as well as addressing the gaps in
this area, which also identify the open challenges and future research directions.

The survey [5] presents a technology overview and application scenarios for future
MEC technologies. In addition, a discussion of how MEC is converged with 6G, AI,
blockchain, and the metaverse. Several unresolved problems in MEC are also summa-
rized. In [7], the survey study, a comprehensive perspective, was adopted to highlight
the importance of architectural transformation to 6G. It was also adopted to highlight the
appropriate architectural improvements that can be made to wireless future technologies.
These improvements can be made in order to achieve the benefits of enhanced spectrum
utilization, increased data rates, reduced latency, and reduced CAPAX and OPEX. The
survey [8] reviews key research areas, technological advancements, and areas of future
research in MEC Beyond 5G/6G. The survey [13] examines the security, dependability, and
performance aspects of 5G MECs. A brief overview of background knowledge on MEC is
provided by referring to current standardization efforts. It also explains each aspect of 5G
MEC by introducing related terms, recent developments, and challenges. However, the
challenges associated with B5G/6G MEC require further investigation. Ref. [22] presents
the importance of securing 5G-MEC from end-to-end against known vulnerabilities, threats,
and attacks. It also highlights the necessity of unifying the 5G-MEC security framework.
The author in [23] describes the most significant factors for developing B5G/6G edge com-
puting capabilities and applications in various industry sectors. The author [24] discusses
the characteristics and major challenges of the proposed three frameworks for incorpo-
rating satellite and MEC systems. He also presents relevant research concerns for the
development of a highly intelligent, highly secure, and essentially unified sustainable
network. However, practical lab tests are required to investigate the proposed structures.
A 6G MEC network-based methodology described in [4] addresses challenges related to
the Web of Things System (WoT) and Microservices-compliant Load Balancing (McLB) in
urban mashups. However, further research into more advanced scenarios is still needed
to improve performance. Ref. [25] provides an overview of the numerous opportunities
and challenges in AI-based 6G security and privacy. Additionally, it also identifies further
research opportunities for challenges in AI-based security and privacy provision as well as
feasible options to address these challenges. The author of [26] discussed an open-source
MEC architecture for 6G networks based on innovative decoupling and redesign tech-
niques. A comprehensive survey [27] reviews the benefits and challenges of integrating
network green communication strategies and MEC caching methods on public health and

Sensors 2023, 23, 996 4 of 27

environmental stability. Ref. [28] presents a survey of modern inventions in MEC and
Caching in servers; it also presents several motivations for open research. In the survey [29],
the algorithms have been classified into eight distinct classes, and each class is explained
based on its respective merits and demerits. In [30], the author provides a survey of the
relevant literature on research motivations and challenges to using MEC systems for a
variety of services to enable user mobility. A detailed survey is conducted in [31] to un-
cover and evaluate the features and improvements in task offloading and content caching
methods in MEC. Research directions are presented for device-enhanced MEC and the
key challenges. Optimization of content caching has been studied in multiple works; a
Software-Defined Networking (SDN) approach has been considered for mobile networks.
The clustering-based approach is also examined to reduce the estimated delay and enhance
overall solution performance.

Caching configuration and performance should be controlled by implementing an
appropriate content caching approach. This should take into account all the application
characteristics and features in the given scenario. The author in [15] presents a detailed
review of RL-enabled MEC and outlines the use cases of RL algorithms in addition to
exploring practical guidelines for further investigation. The author in [32] proposed
optimization to the MEC-enabled Internet of Vehicles (IoV) system, where the MEC server
serves as an Anchor Node (AN) that handles computing tasks for Electric Vehicle Nodes
(EVNs) as well as transmitting energy via Simultaneous Wireless Information and Power
Transfer (SWIPT) to it. However, the discussed offloading technique does not take into
account the finite capacity and utilization of the MEC server. The author [1] presents a
time-division model for developing communication and MEC networks for delay-sensitive
IoT based on the process-oriented concept. However, a UAV’s payload setup should be
properly considered in order to maximize its effectiveness in resource use. The author [2]
proposed a radio map (RM) design and deployment approach using deep reinforcement
learning (DRL) in MEC networks including the proposed joint offloading and resource
allocation algorithm for efficient handling of computational offloading.

The author in [12] proposed a Comp-HO computational handoff algorithm that consid-
ers the quality of the network signal and the workload of MEC servers. However, the study
focused primarily on Mobile Augmented Reality (MAR) use cases. The system model needs
to take into account both the increased energy consumption at high handover volumes
as well as a load of exchanged control plane messages. A scalable, hierarchical caching
policy [18] that is aware of the rate of access and data volume is proposed. However, it
is based only on file size and popularity. It did not take the server utilization or caching
redundancy into account. There is a slight efficiency drop initially after implementing the
policy until statistics are collected for each object. In [33], the author proposed multiple
revised methods to improve network energy efficiency and delay reduction for heteroge-
neous 5G MEC networks. However, no definitive solution is provided. The paper [34]
presents a cluster-based solution for cooperative MEC content caching. However, it studied
only video files with known sizes and popularity that remain the same for some time
without considering cluster formation or communication within the cluster. The offloading
mechanism in [35] aims to lower the required energy and the time delay that users will
experience in Non-Orthogonal Multiple Access NOMA-MEC networks. Still, there are
some improvements that need to be made. These improvements should take into account
the popularity of the tasks as well as the energy-saving aspects on the server side. In [6],
the author proposed combining VR video rendering and caching at one MEC node, as well
as the cooperative sharing of caches among multiple MECs. The author in [23] describes
the most significant factors for developing B5G/6G edge computing capabilities and ap-
plications in various industry sectors. Another study [36] discussed the secure caching
mechanism. This paper proposed a model for a cloud-to-edge server communication
model for 6G wireless-mobile technology and optimized internet web navigation and file
sharing. The author in [37] proposed a two-step optimal solution that integrates task cache
update into computation offloading. This assumption assumes that Orthogonal Frequency

Sensors 2023, 23, 996 5 of 27

Division Multiple Access (OFDMA) is the network technology. Ref. [38] studied applying
the Deep Q-learning Network (DQN) algorithm to increase the hit ratio and minimize
time delay. However, it is assumed that all contents have an equal size (2000 bits) and
servers’ caching capacity is sufficient to carry all of the favored contents. The author [39]
proposed an extensive iterative neural network design for building an intelligent cache
system. This model calculates content ranking, the geolocation of the user, and subsequent
content requests. However, if the estimation is not correct, the Base Station (BS) will have to
fetch the requested content from the central content server and then forward it to the users,
which increases latency. Ref. [40] proposes a modification of reinforcement learning (RL)
caching methods to enhance network and user performance and customize MEC servers.
However, it does not have a centralized management plane, nor does it cooperate with
other servers. In [41], the author discusses IoT caching in opaque mobile networks; the
process predicts the next location of the user using 6-tuple parameters and forwards the
content request to the backend where it is cached. However, it relies on having the GPS
location service enabled.

The discussed model in [21] proposes the Multi-User Multi-Server Caching (MUMSC)
algorithm for MEC content caching. Nevertheless, the used task scoring model was limited
to task popularity and size; it did not take into consideration the server’s maximum caching
capacity, queue utilization, server structure formation, used a sub-optimal path between
the Mobile Device (MD) and the caching server via a proxy server, and it did not guarantee
redundancy for highly demanding tasks on all servers. A priority-based offloading and
caching mechanism is presented in [42] for offloading and caching according to the local
computing strategy. In spite of this, the allocation of resources did not take into account
energy use and cooperative formation. Ref. [43] reports on a study that increased the
Average Downloading Percentage (ADP) for vehicle-to-telecom network connectivity (LTE-
V2I). However, the proposed caching strategy should consider more parameters such as
content size, cache size, energy consumption, and cluster formation. Cluster formation
in [44] decreases cache redundancy. It analyzes the historical statistics of the number of
requests in order to estimate future probabilities of those requests. However, the process of
cluster creation is not discussed. The proposed content caching strategy in [45] is Multi-
agent Reinforcement Learning (MARL)-based to improve the hit ratio and minimize the
time delay. However, the size of the Q-table is large. In [46], a model for forecasting
placement based on Short-term Time-Varying (STV) quality is proposed. However, only
live streaming was considered for caching.

Our previous work in [9] focused on the orchestration of MEC computation jobs
as we proposed a cluster-based energy-aware offloading framework that automates the
collaboration between the MEC edge servers and orchestrates the offloading of computa-
tion efficiently. The perspective of the concurrent paper is completely different from our
previous work in [9] as we are studying a new cluster-based MEC caching system model.
In our previous work [9], we introduced a solution to orchestrate the computation jobs
within the Beyond 5G/6G MEC architecture using the proposed Iterative System Algorithm
(ISA). In this paper, our work main objective is to investigate the designed framework,
address the integer optimization problem, and optimize the MEC content caching technique
for B5G/6G network edges. Our proposed work is unique in considering modern algo-
rithms according to the best of our knowledge, which are not covered yet in the literature.
Moreover, the chosen literature of the studied researchers is classified in the matter of
performance benchmarks by describing the field of improving performance and the areas
where the opportunities for development stand as a future study by further researchers.

Sensors 2023, 23, 996 6 of 27

3. System Model

The discussed model in [21] introduced four application, communication, and caching
system structures for discussion and reference. It consists of a group of MEC servers with
enabled computation tasks and caching services, a central agent server, and a connection
to the main cloud servers. The MEC servers in each structure topology are distributed
and surrounded randomly by multiple MDs within a particular coverage area. The MD is
communicating with collective MEC servers within the coverage area, and the MDs are
requesting various computation tasks, as illustrated in Figure 1. The MEC cache storage
space is limited. The number of jobs to be offloaded or cached, as well as the number of
computation tasks, will be limited due to the finite resources of the server. The server can
store multiple tasks, while a task result might be cached on all or only one server according
to the model scoring criteria. Caching capability is the same on all MEC servers, while it
can be easily expanded to variable caching spaces.

Figure 1. The discussed system model design.

MD is always communicating with the surrounding servers to obtain the task result. It
is assumed that MD computation requests can be processed directly by MEC servers when
the task has already been cached. The central proxy/agent server is contacted by the edge
server when the required task is not cached on any of the local servers; the agent server
will then forward the task to the server located in the remote cloud to be processed. Thus,
the time delay is increased, and the main core uplinks are used.

By analyzing the model in [21], several factors were not taken into consideration,
including the design of the topology of the servers, the server caching capacity limit, queue
usage, and the lack of redundancy for high-demand tasks. Our work endeavors to optimize
the server’s content caching mechanism, and it is designed to control the redundancy
of high-demand tasks while maintaining cache replacement behavior for better results.
The creation of bonded clusters of servers allows MD and MEC servers within the local
domain to communicate and orchestrate the handling of tasks, thereby increasing direct
hit rates and reducing time delays. The agent server enables the communication between
different local domain servers, and it also facilitates communication with remote cloud
environments.

3.1. Proposed System Model

Our work presented in Figure 2 is proposing an efficient Cluster-based Multi-user Multi-
Server (CMUMS) caching strategy to enhance the performance in beyond a 5G/6G MEC
based environment. Our work is compliant with the 3GPP TS 23.501 (version 17.4.0) [10].
Initially, our work started with validating the discussed caching mechanisms in [21] that
introduces two caching mechanisms, Task Popular Caching (TPC) and Multi-User Multi-
Server task Caching (MUMSC). In TPC, the selective caching scheme occurs based on task

Sensors 2023, 23, 996 7 of 27

popularity, so not all the task results will be cached. In MUMSC, the caching selection crite-
ria consider the task popularity and the task size. It has also considered two benchmarks:
Optimal Task Caching (OPTC) and Remote Cloud Server Response (RCSR). The best-case
scenario OPTC assumes that the requested task result by MDs is already cached in their
closest and frequently reached MEC servers. Thus, the task result will be fetched directly
from the edge with minimum latency, which requires huge storage space. The worst-case
scenario RCSR assumes that the MEC servers are not caching the contents, and the MD
requests are sent directly to the remote servers located at the main data center.

In the discussed model, task size and popularity were the only factors considered in
the scoring model. There was inadequate consideration of the maximum caching capacity
of the server, queue utilization, server structure formation, the use of a suboptimal path
between the Mobile Device (MD) and the caching server via the proxy server, and there
was no redundancy for the highly demanding tasks on all servers. Our work introduces
an efficient CMUMS caching algorithm. The main approach in designing the cluster
is to share the load of incoming requests, enhance the task request distribution, enable
redundancy, and deploy modified MUMSC caching methodology as a new edge caching
solution that satisfies today’s application requirements of ultra-low latency, reduces the
energy consumption, and improves the end-user QoE, while offloading the core servers
and uplink.

Figure 2. The proposed system model for the CMUMS Caching mechanism.

3.2. Proposed System Description

In our proposed caching system model, the MEC servers are created in a clustered
environment and distributed in hexagonal topology formation. The clusters are connected
and controlled by agent/proxy servers. The cluster design considers our CMUMS model,
server utilization, in addition to enhancing the task distribution while maintaining the
task utilization and redundancy. The proposed topology structures are plotted as in the
following Figure 3 (the proposed topology structures are also tested using Unity tool
as shown later). The four different sizes of the structures as our baseline are 500 × 500,
700 × 700, 1000 × 1000, and 1500 × 1500 m. In each topology structure, a group of MEC
servers is distributed in hexagonal shapes as an enhancement to the random MEC servers
distribution in [21]. They are surrounded randomly by multiple MDs within a particular
coverage area. It was considered that there would be 10 MDs and 5 MEC servers in
topology-1, 20 MDs and 10 MEC servers in topology-2, 30 MDs and 15 MEC servers in
topology-3, and 40 MDs and 20 MEC servers in topology-4. The proposed algorithm
introduces an optimization problem of integer programming to present the task status.

Sensors 2023, 23, 996 8 of 27

In such type of programming, the result is zero or one only. The zero value means that
the task is not cached, and the value of one means that it is cached. When the requested
computational task is already cached, the MD will obtain the task result from the directly
connected server in a very short time, eliminating the additional time or delay to obtain the
task result from a remote central server, and accelerates the data flow with real-time data
processing and provides much ultra-low latency.

(a) (b)

(c) (d)
Figure 3. The proposed distribution of MECs in four different topology structures. (a) First Topology
Structure in 500 × 500 m; (b) Second Topology Structure in 700 × 700 m; (c) Third Topology Structure
in 1000 × 1000 m; (d) Fourth Topology Structure in 1500 × 1500 m.

Our proposed CMUMS caching algorithm aims to optimize the servers content caching
mechanism and control replicating the high-probability demanding tasks. It considers the
interest of the task result from end-users in order to improve the storage capability and
control the caching redundancy. The task result attributes define if the task should be cached
or not cached. The high probability demanding tasks are cached into multiple distributed
servers to enhance the end-user QoE by reducing the latency and increasing the direct hit
rate. In the same manner that the MEC server may cache multiple different task results,
the task result might be cached and replicated into multiple MEC servers. We evaluate
caching the tasks as per the proposed scoring criteria that considers the task popularity,
task size, and task replication with respect to the maximum caching space Q as presented
in Algorithm 1. Our model is proposed to control the redundancy of the high-probability
demanding tasks while maintaining the storage cache replacement behavior for the new
task results. We assumed reserving the same percentage of storage space in all MEC servers
for replicating the high-probability demanding tasks. We studied preserving up to 20–25%
from the Q size. We found that our CMUMS increases the direct hit rate in comparison
to MUMSc that has higher indirect hit rate than direct hit rate. Tasks are cached based on
our proposed intelligence scoring criteria. It considers the servers where the most tasks
are requested and which tasks have high probability. The reservation percentage of the Q
is adaptive and can be changed due to the total caching space. As a model, MEC servers’

Sensors 2023, 23, 996 9 of 27

content caching should be more selective and determine what task results to be cached
and for how long in order to optimize the storage capability and the caching redundancy.
Concerning the task attributes, the higher probability requested tasks have a higher chance
of being stored on more than one server within the cluster in a particular location. Our
work addresses the integer optimization problem that controls which task will be cached
and the hosting servers list which minimizes the servers’ communication time. Building
the servers in bonded clusters allowed for orchestrating the communication between the
servers in the local domain, cluster, and also between the MD and its directly connected
cluster servers. In the manner, the agent server is enabling the communication between
the different servers within the same local domain, and it also enables the communication
with the remote cloud environments. Maintaining a dedicated storage percentage on all
servers for caching the highly demanding tasks offered advantages such as minimizing
the delay and increasing the direct hit rates. The task attributes are considered in scoring
the tasks and managing the caching process for the remaining storage percentage, and also
optimizing the Q utilization. We also studied dividing the large task results into smaller
parts and storing it in multiple servers while the agent server is maintaining a storage
mapping database pointing to the part hosting servers.

Our algorithm consists of a set of MEC servers S with caching space Q, assuming
that servers receive a set of tasks K. The task scoring algorithm considers the tasks’
attributes such as size and popularity in determining whether the task will be cached or
not. Each MEC server is surrounded by a set of randomly distributed MDs. The MEC
servers are sorted in ascending order of their distance from the center of the cluster
which means that the smaller the number, the shorter the range. For redundancy, we
specify a capacity percentage from the caching total capacity Q; this specified space has
a predetermined threshold V. Once a task is received, the server checks if the task should
be cached or not according to the described caching criteria that is illustrated in the flow
chart in Figure 4.

We assumed the (V) is same in all servers, and we evaluated the solution when (V)
equals 20–25%. We refer to the utilized storage out of (V) as Psum value, and it equals
zero before receiving any task. The remaining storage space percentage is Qj, which equals
around 75–80% in our study; we refer to the remaining current storage space as Cj and
the remaining available storage space is calculated as Ck = Qj − Cj. For each received
highly demanding task, the server compares the task result size with the available space
of (V). Once the task result size is less than the available (V) space, the task will be cached
in all servers as xk

j = 1. For the tasks that should be cached in all servers, the task result
will be added to Psum and Psum will be increased by k size. When a task is received and
the (V) space is not enough to accommodate the task result, the task will not be cached
into all servers. It will be only cached in the nearest server with enough Qj storage. The
proxy server checks all the connected severs Qj storage availability starting from the first
connected server in order to cache the task in the nearest server with enough storage. When
the received task that should be cached in (V) space while its result size is larger than the
Ck, it will be fragmented and its fragments will be stored in multiple servers with reference.
Caching the highly ranked tasks within the cluster makes it reachable to the MDs with
minimum delay and increases the direct hit rate.

Sensors 2023, 23, 996 10 of 27

Algorithm 1 The proposed algorithm for Cluster-based Multi-user Multi-Server Caching
mechanism in B5G/6G MEC.

Input
1: Set of MEC servers S
2: Set of tasks K
3: Cashing Space of MEC servers Q
4: Threshold V
5: Size of computational task K
6: The ratio of task result to the whole size of task K
7: The popularity of task K
8: The distance of each server j to the center of the cluster

Output
9: List xk

j where

• xk
j = 0 . Not cached (Default value)

• xk
j = 1 . Cached on MEC server

Algorithm
10: Sort the MEC servers in ascending order of their distance from the center of the cluster.
11: Sort tasks in a descending order according to the ratio of the task size to the task

popularity.
12: Psum = 0 k = 0
13: while Psum < V do
14: Psum += size of k
15: xk

j = 1 ∀ j
16: k++
17: end while
18: while k < K do
19: j = 0
20: while j < size of S do
21: if size of k < Qj − Cj

22: xk
j = 1 and break

23: else
24: j++
25: end while
26: k++
27: end while
28: j = 0 k = 0
29: while Qj 6= Cj do
30: while k < K do
31: if xk

j 6= 1 ∀ j then
32: Save tasks on multiple servers
33: Ck = 0
34: while Ck< K do
35: if Qj 6= Cj then
36: Ck += Qj − Cj

37: xk
j = 1

38: end if
39: j++
40: end while
41: end if
42: k++
43: end while
44: end while

Sensors 2023, 23, 996 11 of 27

Figure 4. Flow chart of the proposed system model for the CMUMS Caching mechanism.

3.3. Proposed System Model Formatting of Mathematical Components

The task response time is the total delay until the MD obtains the task result. We
assumed that all MEC servers have enough hardware configuration to handle the allocated
load with ultra-low processing time to neglect the server processing time from the total
delay calculation. To solve the optimization problem, the terms are discussed in the
following equations with the same list of symbols and acronyms in Table 1 are used to
simplify the comparison.

Sensors 2023, 23, 996 12 of 27

Table 1. List of Symbols and Acronyms.

Symbol Acronyms

N Set of MDs (Mobile Devices).

S Set of MEC servers (Mobile Edge Cloud Servers).

Si Set of Mobile Edge Cloud Servers that connects to MD i.

K Set of computation tasks.

ρk The amount of the task result to the whole size of task k.

βk The ratio of task result to the whole size of task k.

pk The popularity of task k.

Q The caching space of mobile edge cloud servers.

αi,j The connection probability between
mobile devices i and server j.

xk
j If server j caches task k, xk

j = 1, otherwise xk
j = 0.

tk
i,j Delay in transporting result of task k between

mobile device i and server j directly.

tk
i,α,j Delay in transporting result of task k between

mobile device i and the agent server plus agent server and
server j.

tk
i,c Delay in transporting result of task k between

mobile device i and the remote center cloud server.

pt Transmit power in mWatt

Suppose that the transmit power pt between the MEC server and MD is set to 20 mWatt.
We considered channel power gain ht as in Equation (1) regarding [21], and we considered
it again equal to Equation (2) as per the value in 3GPP TS 23.501 (version 17.4.0) [10].

Channel power gain as in [21]

ht = 127 + 30 ∗ log(d) (1)

The channel power gain may be expressed as follows, which is matching the 3GPP 5G
propagation model [10]. The center frequency (fc) is normalized by 1 GHz, and d is the
distance between the communicator:

ht = 32.4 + 20log(fc) + 30log(d) (2)

To calculate the uplink data flow speed between the MDi and the MEC serverj by
deploying the Shannon–Hartley, the result formula is in Equation (3):

ri,j = Blog2(1 +
ptht

σ
) (3)

where the system bandwidth B is 20 MHZ, and the noise power σ is 4× 10−3 mWatt at
the receiver.

When the MDi has a task k request, the system will behave in one of three possible sce-
narios:

• The first scenario (Directly-Connected Edge Caching): when the MDi communicates
with the directly connected MEC servers and check for a cached copy of the task result
with one of the possible following cases:

– xk
j = 1, and only one MEC server j has the required task result, then MDi obtains

the task result direct from the server j.

Sensors 2023, 23, 996 13 of 27

– xk
j = 1 and the task k result is cached in multiple servers, then MDi prefers to

obtain the task result from nearest server and the task k

The total delay is calculated as in Equation (4):

tk
i,j = αi,j

ρkβk
ri,j

. (4)

• The second scenario (Indirectly-Connected Edge Caching): when there is no directly
connected server has a cached copy of the requested task k, the agent server starts
communicating with the indirectly connected server j′ to the MDi, and it looks for
a cached copy of the task result. If available, the agent server obtains the task result
from the edge server and transfers it to the MDi so the task k total delay is a bit longer
and is calculated as in Equation (5):

tk
i,a,j′ = αi,j′(

ρkβk
ra,j′

+
ρkβk
ri,a

) (5)

• The third scenario (Central Cloud Caching): when there none of the edge servers
honors a cached copy of the task k result, MDi will be redirected to communicate with
the central server at the remote cloud network, and the task k total delay is calculated
as in Equation (6).
The time delay to obtain the task k result from the main data centers is high. Over and
above that might occur at the same time to numerous of computation tasks, the task k
total delay is the highest in comparison to the scenarios of caching the task result at
MEC servers, i.e., tk

i,c is higher than tk
i,α,j′ and tk

i,j:

tk
i,c = αi,j

ρkβk
ri,c

(6)

Caching Decision: the MEC servers are caching the entire application content and
its relevant data as task caching. The MD obtains the task result rapidly from the closest
MEC server with the cached task. In addition to the probability of caching the task result
in MEC server or not (1 or 0) as in Equation (7), the task result could be cached in more
than one MEC server. We consider the task popularity, the task size, and the caching space
utilization as task attributes:

X =

{
0, server j doesn’t cache computation task k
1, server j caches computation task k

(7)

where X = xk
j : j ∈ S, k ∈ K.

The total delay to transmit the task from the server to MDi is Ti and is calculated as
in Equation (8a); it is a variable delay since the MDi can obtain the task result in different
scenarios as follows:

Ti = αi,j[Tiψ|x=1,0,0 + Tiφ|x=0.1,0 + Tiζ |x=0,0,1] (8a)

The requested task result is cached in the directly connected MEC edge server, and the
MDi obtains it directly with minimum delay as in Equation (8b):

Tiψ = xk
j log(1 +

tk
i,j

tdmax
) (8b)

The requested task result is not cached in any of the directly connected MEC edge servers
and the MDi obtains it from indirectly connected edge server via the proxy/agent server,
and the delay Tiφ is calculated as in Equation (8c):

Sensors 2023, 23, 996 14 of 27

Tiφ = (xk
j′ log(1 +

tk
i,a,j′

tdmax
) + (1− xk

j′)log(1 +
tmax

tdmax
)) (8c)

The requested task result is not yet cached in any of the edge servers while it is available in
the central cloud servers; the MDi obtains it from the central cloud via the proxy/agent
server, and the Tiζ is the largest delay in comparison to the previous scenarios, and it is
calculated as in Equation (8d):

Tiζ = log(1 +
tk
i,c

tdmax
) (8d)

There are also two persistent parameters tdmax and tmax: tdmax is applied to manage
the variation in response delay results when task sizes are unequal, while tmax prevents the
error method from choosing the longer delay and αi,j is the connection probability between
mobile devices i and server j.

The optimization problem aims to minimize the communication time delay by allow-
ing the frequently accessed tasks to be cached on all or a group of servers based on the
proposed algorithm as per Equation (9). Consequently, the received task request by any
MD has a great probability to be found on one of the communicated MEC, which, in turn,
minimize the demand to acquire the result from the agent server or any other server:

P : min
xk

j ,j′∈Si

n

∑
i=1

Ti (9)

s.t.

K

∑
k=1

xk
j ρk ≤ Qj ∀j ∈ S

xk
j ∈ 0, 1, ∀j ∈ S, k ∈ K

When solving the problem, the main objective is to determine what task should be cached
and where to cache it as the Q size is limited according to the mentioned constraints.

4. Results and Analysis

Our experimental setup consists of computer-based MATLAB 2016 simulation soft-
ware running on top of Intel i7 Quad-core 3.2 GHz CPU and 64 GB RAM to evaluate the
proposed model parameters. We have also used real-time developed tool using Unity ver-
sion 2020.3.24F1 LTS to measure the coverage statistics. To analyze the impact of deploying
the cluster formation and the CMUMS mechanism, we measured the impact of deploying
the proposed mechanism on four different scalable hexagonal clustered topologies. We
considered 10 MDs and 5 MEC servers in topology-1, 20 MDs and 10 MEC servers in
topology-2, 30 MDs and 15 MEC servers in topology-3, while only 40 MDs and 20 MEC
servers in topology-4. The system construction of each considered topology is presented
in Figure 3. We also developed a Unity real-time tool as presented in Figure 5 to plan and
design the MEC server allocation, to ensure that we have proper coverage and performance,
and to evaluate the correct deployment and desired operation of the proposed architecture.
The tool allows full topology mapping that is defined by space size, number of MDs and
MEC servers plus its location. We measured the solution effectiveness on different topology
structures with the following sizes: 500 × 500, 700 × 700, 1000 × 1000 and 1500 × 1500 m.
The system applied parameter values are presented in Table 2.

Sensors 2023, 23, 996 15 of 27

(a) (b)

(c) (d)
Figure 5. The estimated cluster formatted coverage for the four topology structures using Unity.
(a) 5 MECs allocation in 500 × 500 m using unity; (b) 10 MECs allocation in 700 × 700 m using unity;
(c) 15 MECs allocation in 1000 × 1000 using unity; (d) 20 MECs allocation in 1500 × 1500 using unity.

Table 2. System parameters’ summary.

Parameter Value

Topology sizes 500 × 500, 700 × 700, 1000 × 1000, 1500 × 1500

fc 1 GHz

B 20 MHz

Q 100 MB & 250 MB

pt 20 mWatt

σ 4× 10−3 mWatt

α 0.56, 0.65, 0.76, 0.87

tmax 1 s

tdmax 2 s

ρk (10, 2)

βk (0.5, 0.15)

We considered four different topology sizes with different popularity factor α values.
We measured the effect on the time delay in the different topologies at caching space
Q = 100 MB and 250 MB. Our results are compared with MUMSC, TPC, OPTC and RCSR
as referenced in [21]. In TPC, the major factor that affects the task caching is the task
popularity; the MEC server caches the computing task with the highest popularity until
there is no more space to cache other tasks. In the RCSR case, the tasks are not cached and
the MDs obtain the task results from the central cloud server. In OPTC, it assumed that

Sensors 2023, 23, 996 16 of 27

all tasks are cached in the edge servers, and the task result is obtained from the connected
servers with the minimum delay. Results in Figure 6 present the advantage of using the
CMUMS caching algorithm on minimizing the time delay versus average task sizes from
1 to 10 MB. We have started our lab tests with an estimated workload of 1000 tasks. This
is accomplished using the MATLAB built-in function of random generation by Gaussian
distributions. The average task size ranges from 1 to 10 MB. By using the MATLAB
imported function Zipf distribution for generating random requests, 120,000 requests are
estimated to have been generated. The same assumption has been applied to the four MEC
topology structures, and the results have been analyzed. Zipf distribution is applied to
complete the task popularity with respect to the distribution and task redundancy design.
Zipf distribution is commonly used to analyze the task popularity distribution. In this
method, the tasks are distributed in an exponentially decaying that will help to represent
the highly popular tasks at the beginning of the curve with less popular tasks at the curve
tail. The steep of the curve is controlled by a factor named Zipf parameter α. The task
results with high popularity have a great opportunity to be cashed on all servers, and the
delay is calculated for each average task size.

The average task size is calculated by generating tasks on Gaussian distribution that
changes from 1 MB to 10 MB in step 1 MB with different average value. The average task
size does not indicate the actual task size, and it indicates where the tasks are distributed.
Thus, each task size is considered and formulated as an array with the same size. Consider
that ρk and βk are generated randomly based on Gaussian distribution with (mean, variance)
equal to (10, 2) MB and (0.5, 0.15). To obtain the task result, a time delay is needed. The
relationship between the delay and task size is presented in Figure 6 at Q = 100 MB, and the
delay differences are noticeable when the variation of the average task size values is high.
The CMUMS reduces the delay time compared to MUMSC for the same environmental
topology. i.e., CMUMS delay time is 0.15 s at the average task size of 1 MB, delay is almost
0.55 s at the average task size of 10 MB, while MUMSC delay time is 0.25 s at the average
task size of 1 MB, and delay is almost 0.65 s at the average task size of 10 MB.

As shown in the previous Figure 6, for MUMSC [21] in topology 3, at Q = 100 MB, the
time delay is around 0.7 sec, while in CMUMS, it is around 0.6 sec, which means that the
time delay is minimized by at least 10%. Therefore, a cross-section is presented to illustrate
this impact in Figure 7. With the increase of Q, the percentage of cached tasks is increased
and hence the time delay needed to obtain the task result will be minimized. To illustrate
the positive impact on minimizing the delay, a cross-section is presented in Figure 8 for Q
values up to 250 MB.

To deeply discuss the effect of the CMUMS algorithm on minimizing the time delay,
we check the required time delay to obtain the task result as per CMUMS and compare the
result when the same task result is requested in the other referenced caching methodology
presented in [21]. The presented values in Table 3 show that, with the increasing of α, our
CMUMS decreases the time delay. The cluster formation in the proposed CMUMS structure
(with the distribution and redundancy mechanisms to caching the tasks) minimizes the
time delay needed to obtain the result of the requested task. It saved around 30% compared
to the MUMSC in our lab test. The highlighted columns start from the discussed α values
in different scenarios starting with the value in [21] and other values with step 0.1 as
an example.

Sensors 2023, 23, 996 17 of 27

(a) (b)

(c) (d)
Figure 6. Time Delay vs. Average Task Size in four topology structures. (a) Time delay vs. Average
task in 1st topology; (b) Time delay vs. Average task in 2nd topology; (c) Time delay vs. Average task
in 3rd topology; (d) Time delay vs. Average task in 4th topology.

(a) (b)

(c) (d)
Figure 7. Cross-section of Time Delay vs. Average Task Size in four topology structure. (a) Time
delay vs. Average task in 1st topology; (b) Time delay vs. Average task in 2nd topology; (c) Time
delay vs. Average task in 3rd topology; (d) Time delay vs. Average task in 4th topology.

Sensors 2023, 23, 996 18 of 27

(a) (b)

(c) (d)
Figure 8. Cross-section of Time Delay vs. Q up to 250 MB in topology 4 at different α. (a) Time delay
vs. Q up to 250 MB; (b) Time delay vs. Q up to 250 MB; (c) Time delay vs. Q up to 250 MB; (d) Time
delay vs. Q up to 250 MB.

Table 3. Time Delay vs. Average task size at different α for comparing the referenced algorithms
in [21] with CMUMS at Q = 250 MB.

Time Delay
for Algorithms at α = 0.16 at α = 0.26 at α = 0.36 at α = 0.46 at α = 0.56 at α = 0.66 at α = 0.76 at α = 0.86

RCSR [21] 2.8896 2.8866 2.8829 2.8886 2.8903 2.8914 2.9006 2.9096
OPTC [21] 0.4179 0.4175 0.4168 0.4177 0.418 0.418 0.4194 0.4207
TPC [21] 0.9318 0.902 0.8582 0.8477 0.8301 0.8242 0.8223 0.8212
MUMSC [21] 0.6059 0.5829 0.552 0.5433 0.5304 0.5243 0.5216 0.5196
CMUMS 0.7174 0.6383 0.527 0.4897 0.4442 0.4109 0.3923 0.3733

As observed, the CMUMS cluster formation and the task redundancy design enhance-
ments can considerably promote the caching hit ratio and decrease downloading the content
from the center cloud server (which means the task is cached in one of the MECs in the
cluster or via agent/proxy server) when compared with the referenced algorithms in [21].
Moreover, the proposed CMUMS also optimizes the overall delay as the requested tasks
will be almost found within the clusters; hence, the delay is minimized. In the following
comparisons, we explore the direct and indirect hit rate, server occupancy and caching
capacity at different α values. The assumed average task size is 10 MB. Topology 4 is
chosen as a case study to illustrate the following comparisons. We also discuss the CMUMS
algorithm behavior at different popularity factor α. Theα value indicates the steep of the
curve and hence affects on the number of highly popular tasks to be cached and on which
servers. i.e., tasks with small popularity may not be cached or ignored. In Figure 9, we
measure the direct hit rate versus caching maximum capacity Q at different Zipf α values
0.56, 0.66, 0.76 and 0.86.

Sensors 2023, 23, 996 19 of 27

(a) (b)

(c) (d)
Figure 9. Direct hit rate vs. caching max Memory (Q) up to 250 MB at different α. (a) Direct hit rate
vs. Q (at α = 0.56 as per [21]); (b) Direct hit rate vs. Q at α = 0.66; (c) Direct hit rate vs. Q at α = 0.76;
(d) Direct hit rate vs. Q at α = 0.86.

To demonstrate the effect of the CMUMS on the direct hit rate at Q = 250 MB and
different α values, the tasks are distributed and cached according to the proposed scoring
criteria. The area under the curve (that represents the high popularity tasks) increases as
the Zipf parameter value gets higher. As discussed in CMUMS caching mechanism, with
respect to the Q size, the high frequently accessed tasks are the most cached and replicated
into the MEC edge servers within the cluster. Table 4 shows the enhancements of more
than 65% in the direct hit rate in CMUMS compared to the referenced algorithms in [21].

Table 4. Direct hit rate at different α for comparing the referenced algorithms in [21] with CMUMS at
Q = 250 MB.

Direct Hit Rate
for Algorithms at α = 0.16 at α = 0.26 at α = 0.36 at α = 0.46 at α = 0.56 at α = 0.66 at α = 0.76 at α = 0.86

RCSR [21] 0 0 0 0 0 0 0 0
OPTC [21] 100 100 100 100 100 100 100 100
TPC [21] 9.6129 9.7308 9.8904 10.0075 10.0242 10.1658 10.2817 10.2817
MUMSC [21] 10.0913 10.2688 10.2175 10.3646 10.3154 10.3492 10.4846 10.4658
CMUMS 17.4467 18.0967 18.9462 20.6521 23.4821 26.7892 31.8783 37.94

Once the MEC server receives a task request, it will check if the result of the requested
task is already cached in the local storage. If the task is not in the local server storage,
the server will communicate with the proxy/agent server to learn about the nearest edge
server that caches the requested task result and communicates with it in order to obtain the
requested result. In case none of the edge servers is caching the task result, the proxy/agent
will then communicate with the remote central cloud server to obtain the task result, and
the edge server will then forward it to the requester MDi and also check if the obtained
result should be cached in the local server storage.

The controlled edge server cluster formation and task distribution decrease the indirect
hit rate as the highly popular tasks are cached on all edge servers up to the reserved

Sensors 2023, 23, 996 20 of 27

storage space (V). While the other tasks will be cached partially in some edge servers,
the proxy/agent server maintains the server to task result caching mapping database to
obtain the requested result from the nearest edge server before considering the remote
cloud servers. Figure 10 shows how the indirect hit rate is being affected compared with
the direct hit rate, where, if the task is found on one of the directly connected MECs, the
direct hit rate will increase in opposition with the indirect hit rate for the same instant.
Table 5 presents the comparison between the referenced algorithms in [21] CMUMS when
Q = 250 MB. The indirect hit rate is minimized by a saving ratio of 35% which positively
affects the time delay required to obtain the task result, and that also minimizes the server
utilization ratio needed to handle the received tasks.

(a) (b)

(c) (d)
Figure 10. Indirect hit rate vs. caching max Memory (Q) up to 250 MB at different α. (a) Indirect hit
rate vs. Q (at α = 0.56 as per [21]); (b) Indirect hit rate vs. Q at α = 0.66; (c) Indirect hit rate vs. Q at
α = 0.76; (d) Indirect hit rate vs. Q at α = 0.86.

Table 5. Indirect hit rate at differentα for comparing the referenced algorithms in [21] with CMUMS
at Q = 250 MB.

Indirect Hit Rate
for Algorithms at α = 0.16 at α = 0.26 at α = 0.36 at α = 0.46 at α = 0.56 at α = 0.66 at α = 0.76 at α = 0.86

RCSR [21] 0 0 0 0 0 0 0 0
OPTC [21] 100 100 100 100 100 100 100 100
TPC [21] 84.8525 85.425 85.8467 86.3504 86.965 87.4229 87.7921 88.2492
MUMSC [21] 87.45 87.5763 87.87 87.9583 88.2179 88.4854 88.5829 88.8079
CMUMS 72.77 73.1521 72.9575 72.1592 69.6117 67.9796 63.7858 58.7708

We studied the direct and indirect hit rate behavior at different Q values up to 250 MB
where topology 4 is selected at α = 0.76 with average task size equals 10 MB for a set of K
tasks, the preserved threshold V is set to 25%, and the considered channel power gain ht

equals Equation (2) as per [10]. We found that the direct and indirect hit rate behavior may
follow one of the highlighted three regions as in Figure 11.

• Region 1: in this region, the curve is slightly fluctuated as the Q value is close to the
assumed average task size. Hence, the efficiency of the existing redundancy is not

Sensors 2023, 23, 996 21 of 27

noticeable. In real scenarios, the fluctuated portion will almost decay/disappear as Q
value in real scenarios will be much higher than the average task size in our lab test.

• Region 2: at certain Q values, the redundancy effectiveness threshold is considered a
starting point to represent the enhancements of CMUMS. It illustrates an incremental
behavior in direct hit rate as in Figure 11a in contrast to the decremental behavior in
indirect hit rate as in Figure 11b compared to the referenced algorithms in [21].

• Region 3: at higher Q values, the opportunity to cache more highly demanding tasks
is better. The direct hit rate is also increased. When the Q is larger at higher α, the tail
of the curve has a lot of mapped tasks with almost the same popularity.

(a) Direct hit rate vs. Q at α = 0.76 (b) Indirect hit rate vs. Q at α = 0.76

Figure 11. Direct and Indirect hit rate behavior vs. Q.

As illustrated in Figure 12, the direct hit rate increases when the requested task is
cached on the directly connected servers. Enabling the caching redundancy on the edge
servers according to the configured percentage (V) guarantees to reduce the latency in
access to the resources. In Figure 12a region 1 at Q = 40 MB, we noticed a slight decrease
in the direct hit rate because of demanding some task results that are not available on the
directly connected servers. Accordingly, as in Figure 12b, the indirect hit rate increases
when the requested task results are available on indirectly connected edge servers. Despite
the decrease in direct hitting and the increase in indirect hitting in some instances, the time
delay to obtain the task result is still lower than obtaining the task results from the remote
cloud servers. There will be no hits when there is no edge server honoring a cached copy of
the required task result, and the task result is downloaded from the central cloud servers.

(a) Direct hit rate vs. Q at α = 0.76 (b) Indirect hit rate vs. Q at α = 0.76

Figure 12. Direct and Indirect hit rate behavior vs. Q.

Consequently, orchestrating the task distribution between the edge servers and main-
taining a mapping database at the proxy/agent server is enhancing the capability to obtain
the requested task result fast. It is also optimizing the edge servers processing utilization,
and decreasing the need to utilize the core links towards the central cloud servers as shown
in Figure 13.

Sensors 2023, 23, 996 22 of 27

(a) (b)

(c) (d)
Figure 13. Server processor utilization ratio vs. caching max Memory (Q) up to 250 MB at different α.
(a) Server utilization ratio vs. Q (at α = 0.56 as per [21]); (b) Server utilization ratio vs. Q at α = 0.66;
(c) Server utilization ratio vs. Q at α = 0.76; (d) Server utilization ratio vs. Q at α = 0.86.

A close cross section in Figure 14 is to present the effect on the server utilization ratio
versus the caching capacity at different α values. The server utilization at Q = 250 MB is
nearly 1.89 in TPC and MUMSC, while the utilization ration at the same Q is around 1.67 in
CMUMS. The CMUMS saving ratio in server utilization is around 18–20%.

In the study of the MUMSC [21], topology 4 is selected with 20 MEC servers, and
the tasks are distributed between the edge servers based on the defined scoring criteria.
We found that some servers are overutilized when handling the task requests such as the
servers with index number 5, 10, 17, and 18 during the peaks, while the other servers are
underutilized as observed in Figure 15. The edge servers utilization is variable because
of the lack of controlling the tasks’ redundancy. The discussed caching model in [21]
considered the popularity and task size as the scoring attributes. The introduced task
distribution mechanism did not ensure avoiding the situation where some edge servers are
overutilized while other edge servers are underutilized.

Our proposed CMUMS caching criteria include task redundancy and controlling the
task distribution in the cluster formatted structure to achieve a better server load sharing
as presented in Figure 16.

The homogeneity in the heatmaps in Figure 16 is clear due to the existence of the
redundant distribution and handling of tasks between the cluster members compared to
the greedy distribution in Figure 15. Our results present that our proposed solution will
strongly calculate the nearest caching node to obtain optimal performance in terms of
outcomes compared with classic caching distribution strategies. Importantly, the results
are showing that the proposed algorithm can lower the cost in an outstanding manner
when storage capacity is limited in addition to reducing the time delay to obtain the task
result, increasing the direct hit rate, and enlarging the task result redundancy within the
cluster while maintaining the MEC servers processing and storage load sharing. The main
outcomes of the presented work may be summarized in the following Table 6.

Sensors 2023, 23, 996 23 of 27

(a) (b)

(c) (d)
Figure 14. Cross section of server occupancy utilization ratio vs. caching max Memory (Q) up to
250 MB at different α. (a) Server utilization ratio vs. Q (at α = 0.56 as per [21]); (b) Server utilization
ratio vs. Q at α = 0.66; (c) Server utilization ratio vs. Q at α = 0.76; (d) Server utilization ratio vs. Q at
α = 0.86.

Figure 15. Heatmap represents direct hit rate vs. caching max Memory per each server for the
MUMSC algorithm at different α.

Sensors 2023, 23, 996 24 of 27

Figure 16. Heatmap represents direct hitrate vs. caching max Memory per each server for the
CMUMS caching algorithm at different α.

Table 6. Summary of our proposed CMUMS model advantages.

Time Delay (s) Direct Hit Rate Ratio Indirect Hit Rate Ratio
Algorithm

at α = 0.56 at α = 0.86 at α = 0.56 at α = 0.86 at α = 0.56 at α = 0.86

MUMSC [21] 0.5304 0.5196 10.3154 10.4658 88.2179 88.8079
Proposed CMUMS 0.4442 0.3733 23.4821 37.94 69.6117 58.7708

Our proposed CMUMS model reduced the time delay by 30%, reduced the indirect hit
rate by 35%, and enhanced the direct hit rate by 65% compared to the referenced MUMSC
model [21] in our study analysis.

5. Conclusions

Caching at the edge is one of the MEC’s optimistic solutions that fulfill the modern
QoS requirements as it brings the critical contents close to the mobile end-users. It brings
highly demanding content to the mobile BSs to eliminate the overhead of duplicating the
communications with the core servers to download the same copy. Thus, MEC offers the
distinctive opportunity to work on enhancing the architectural design and deployment
strategy of content caching and is not limited to just edge caching. Eliminating the possible
core network congestion while mitigating the utilization of the backhaul uplinks encour-
ages the work more on developing context-aware edge caching architecture design, big
data analysis techniques for MEC, and cost-saving distributed caching methodologies. De-
ploying content caching at the edge of beyond 5G and 6G MEC networks enables providing
rapid access to highly popular content with ultra-low latency and mitigates the limited
backhaul uplinks capacity that requires a convenient strategy of edge caching. Optimizing
the content caching addresses the problems of network optimization in addition to the
related end-user QoE.

Based on the findings of our paper, it can be concluded that the demonstrated and
proposed model and its CMUMS caching algorithm, cluster build, task distribution, and
the role of the agent/proxy server outperform the other discussed models from different

Sensors 2023, 23, 996 25 of 27

perspectives. With respect to the previously published works, our proposed system model
has improved the overall direct hit rate by around 65 percent, whereas the indirect hitting
has been reduced by more than 30 percent. Moreover, the overall time delay has been re-
duced by more than 30 percent. Tasks with high popularity will be cached on all the cluster
servers. The presented work enlarges the task result redundancy within the cluster while
enhancing the overall performance by maintaining the MEC servers’ processing, storage
load sharing, energy, and cost. In addition, the overall system is improved by eliminating
more than 90 percent of the ongoing traffic inside the network from being served by the
remote cloud servers. The use of edge computing in mobile technology will always be sub-
ject to challenges that can be categorized as environmental challenges, such as temperature,
humidity, and the use of renewable energy sources; energy generated by renewable energy
sources occurs at certain times of the day. System challenges include inadequacies in CPU,
memory, storage, and battery storage. Network challenges such as available bandwidth,
latency, and security. In fact, developing the mobile edge caching constructive methodology
and making it a more advantageous and cost-saving solution became more important. This
requires more orientation, thorough vision, application selection, and further consideration,
moreover, for the following investigations and development work.

Author Contributions: Conceptualization, R.S., H.E.-H. and H.E.; methodology, R.S. and H.E.;
validation, R.S., H.E.-H. and H.E.; formal analysis, R.S. and H.E.-H.; investigation, H.E.; resources,
H.E.-H.; data curation, H.E.-H.; writing—original draft preparation, R.S.; writing—review and editing,
R.S., H.E.-H. and H.E.; visualization, R.S.; supervision, H.E.-H. and H.E.; project administration, H.E.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, C.; Feng, W.; Tao, X.; Ge, N. MEC-empowered non-terrestrial network for 6G wide-area time-sensitive internet of things.

Engineering 2022, 8, 96–107. [CrossRef]
2. Liu, X.; Zhou, L.; Zhang, X.; Tan, X.; Wei, J. Joint Radio Map Construction and Dissemination in MEC Networks: A Deep

Reinforcement Learning Approach. Wirel. Commun. Mob. Comput. 2022, 2022, 4621440. [CrossRef]
3. Hoang, D.T.; Niyato, D.; Nguyen, D.N.; Dutkiewicz, E.; Wang, P.; Han, Z. A dynamic edge caching framework for mobile 5G

networks. IEEE Wirel. Commun. 2018, 25, 95–103. [CrossRef]
4. Attanasio, B.; Mazayev, A.; du Plessis, S.; Correia, N. Cognitive Load Balancing Approach for 6G MEC Serving IoT Mashups.

Mathematics 2021, 10, 101. [CrossRef]
5. Wang, Y.; Zhao, J. Mobile Edge Computing, Metaverse, 6G Wireless Communications, Artificial Intelligence, and Blockchain:

Survey and Their Convergence. arXiv 2022, arXiv:2209.14147.
6. Liu, Y.; Liu, J.; Argyriou, A.; Wang, L.; Xu, Z. Rendering-aware VR video caching over multi-cell MEC networks. IEEE Trans. Veh.

Technol. 2021, 70, 2728–2742. [CrossRef]
7. Asghar, M.Z.; Memon, S.A.; Hämäläinen, J. Evolution of Wireless Communication to 6G: Potential Applications and Research

Directions. Sustainability 2022, 14, 6356. [CrossRef]
8. Seyoum, Y.T.; Shahid, S.M.; Kwon, S. Multi-Access Edge Computing for Next, Generation Wireless Networks: Key Issues and

Research Directions. J. Korean Inst. Commun. Inf. Sci. 2022, 344–345.
9. Samir, R.; El-Hennawy, H.; El-Badawy, H.M. Orchestration of MEC Computation Jobs and Energy Consumption Challenges in

5G and Beyond. IEEE Access 2022, 10, 18645–18652. [CrossRef]
10. 5G, “System Architecture for the 5G System (5GS)” TS 23.501 3GPP (Version 17.4.0) Release 17. 2022. Available online: https:

//portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144 (accessed on 23 November 2022).
11. Beck, M.T.; Werner, M.; Feld, S.; Schimper, S. Mobile edge computing: A taxonomy. In Proceedings of the Sixth International

Conference on Advances in Future Internet, Lisbon, Portugal, 16–20 November 2014; pp. 48–55.
12. Zhou, P.; Finley, B.; Li, X.; Tarkoma, S.; Kangasharju, J.; Ammar, M.; Hui, P. 5G MEC computation handoff for mobile augmented

reality. arXiv 2021, arXiv:2101.00256.

http://doi.org/10.1016/j.eng.2021.11.002
http://dx.doi.org/10.1155/2022/4621440
http://dx.doi.org/10.1109/MWC.2018.1700360
http://dx.doi.org/10.3390/math10010101
http://dx.doi.org/10.1109/TVT.2021.3057684
http://dx.doi.org/10.3390/su14106356
http://dx.doi.org/10.1109/ACCESS.2022.3151389
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144

Sensors 2023, 23, 996 26 of 27

13. Nencioni, G.; Garroppo, R.G.; Olimid, R.F. 5G Multi-access Edge Computing: Security, Dependability, and Performance. arXiv
2021, arXiv:2107.13374.

14. Rui, L.; Yang, S.; Huang, H. A proactive multi-level cache selection scheme to enhance consumer mobility support in Named
Data Networking. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717700897. [CrossRef]

15. Wei, P.; Guo, K.; Li, Y.; Wang, J.; Feng, W.; Jin, S.; Ge, N.; Liang, Y.C. Reinforcement Learning-Empowered Mobile Edge Computing
for 6G Edge Intelligence. arXiv 2022, arXiv:2201.11410.

16. Li, H.; Fang, F.; Ding, Z. Joint resource allocation for hybrid NOMA-assisted MEC in 6G networks. Digit. Commun. Netw. 2020, 6,
241–252. [CrossRef]

17. Xu, J.; Chen, L.; Zhou, P. Joint service caching and task offloading for mobile edge computing in dense networks. In Proceedings
of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 207–215.

18. Ghosh, S.; Agrawal, D.P. A high performance hierarchical caching framework for mobile edge computing environments. In
Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April
2021; pp. 1–6.

19. Chang, C.Y.; Alexandris, K.; Nikaein, N.; Katsalis, K.; Spyropoulos, T. MEC architectural implications for LTE/LTE-A networks.
In Proceedings of the Workshop on Mobility in the Evolving Internet Architecture, New York, NY, USA, 3–7 October 2016;
pp. 13–18.

20. Zhang, K.; Leng, S.; He, Y.; Maharjan, S.; Zhang, Y. Cooperative content caching in 5G networks with mobile edge computing.
IEEE Wirel. Commun. 2018, 25, 80–87. [CrossRef]

21. Chen, W.; Han, L. Time-efficient task caching strategy for multi-server mobile edge cloud computing. In Proceedings of the 2019
IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference
on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China,
10–12 August 2019; pp. 1429–1436.

22. Nowak, T.W.; Sepczuk, M.; Kotulski, Z.; Niewolski, W.; Artych, R.; Bocianiak, K.; Osko, T.; Wary, J.P. Verticals in 5G MEC-use
cases and security challenges. IEEE Access 2021, 9, 87251–87298. [CrossRef]

23. Ishtiaq, M.; Saeed, N.; Khan, M.A. Edge Computing in IoT: A 6G Perspective. arXiv 2021, arXiv:2111.08943.
24. Lin, Y.; Feng, W.; Zhou, T.; Wang, Y.; Chen, Y.; Ge, N.; Wang, C.X. Integrating Satellites and Mobile Edge Computing for 6G

Wide-Area Edge Intelligence: Minimal Structures and Systematic Thinking. arXiv 2022, arXiv:2208.07528.
25. Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Ylianttila, M. AI and 6G security: Opportunities and challenges. In Proceedings

of the IEEE 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Porto,
Portugal, 8–11 June 2021; pp. 616–621.

26. Zhao, L.; Zhou, G.; Zheng, G.; Chih-Lin, I.; You, X.; Hanzo, L. Open-Source-Defined Multi-Access Edge Computing for 6G:
Opportunities and Challenges. IEEE Access 2021, 9, 158426–158439. [CrossRef]

27. Zahed, M.I.A.; Ahmad, I.; Habibi, D.; Phung, Q.V.; Mowla, M.M.; Waqas, M. A review on green caching strategies for next
generation communication networks. IEEE Access 2020, 8, 212709–212737. [CrossRef]

28. Safavat, S.; Sapavath, N.N.; Rawat, D.B. Recent advances in mobile edge computing and content caching. Digit. Commun. Netw.
2020, 6, 189–194. [CrossRef]

29. Qadir, J.; Sainz-De-Abajo, B.; Khan, A.; Garcia-Zapirain, B.; De La Torre-Diez, I.; Mahmood, H. Towards mobile edge computing:
Taxonomy, challenges, applications and future realms. IEEE Access 2020, 8, 189129–189162. [CrossRef]

30. Mehrabi, M.; Salah, H.; Fitzek, F.H. A survey on mobility management for MEC-enabled systems. In Proceedings of the IEEE,
2019 IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 30 September–2 October 2019; pp. 259–263.

31. Mehrabi, M.; You, D.; Latzko, V.; Salah, H.; Reisslein, M.; Fitzek, F.H. Device-enhanced MEC: Multi-access edge computing (MEC)
aided by end device computation and caching: A survey. IEEE Access 2019, 7, 166079–166108. [CrossRef]

32. Fu, J.; Zhu, P.; Hua, J.; Li, J.; Wen, J. Optimization of the energy efficiency in Smart Internet of Vehicles assisted by MEC. EURASIP
J. Adv. Signal Process. 2022, 2022, 13. [CrossRef]

33. Vallero, G.; Deruyck, M.; Meo, M.; Joseph, W. Base Station switching and edge caching optimisation in high energy-efficiency
wireless access network. Comput. Netw. 2021, 192, 108100. [CrossRef]

34. Ayenew, T.M.; Xenakis, D.; Passas, N.; Merakos, L. Cooperative content caching in MEC-enabled heterogeneous cellular networks.
IEEE Access 2021, 9, 98883–98903. [CrossRef]

35. Huynh, L.N.; Pham, Q.V.; Nguyen, T.D.; Hossain, M.D.; Shin, Y.R.; Huh, E.N. Joint computational offloading and data-content
caching in NOMA-MEC networks. IEEE Access 2021, 9, 12943–12954. [CrossRef]

36. Stergiou, C.L.; Psannis, K.E.; Gupta, B.B. IoT-based big data secure management in the fog over a 6G wireless network. IEEE
Internet Things J. 2020, 8, 5164–5171. [CrossRef]

37. Chen, Z.; Zhou, Z. Dynamic task caching and computation offloading for mobile edge computing. In Proceedings of the
GLOBECOM 2020-2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6.

38. Li, L.; Kwong, C.F.; Liu, Q.; Wang, J. A smart cache content update policy based on deep reinforcement learning. Wirel. Commun.
Mob. Comput. 2020, 2020, 8836592. [CrossRef]

39. Li, L.; Kwong, C.F.; Liu, Q. A proactive mobile edge cache policy based on the prediction by partial matching. Technol. Eng. Syst.
J. 2021, 5, 1154–1161. [CrossRef]

http://dx.doi.org/10.1177/1550147717700897
http://dx.doi.org/10.1016/j.dcan.2020.05.005
http://dx.doi.org/10.1109/MWC.2018.1700303
http://dx.doi.org/10.1109/ACCESS.2021.3088374
http://dx.doi.org/10.1109/ACCESS.2021.3130418
http://dx.doi.org/10.1109/ACCESS.2020.3040958
http://dx.doi.org/10.1016/j.dcan.2019.08.004
http://dx.doi.org/10.1109/ACCESS.2020.3026938
http://dx.doi.org/10.1109/ACCESS.2019.2953172
http://dx.doi.org/10.1186/s13634-022-00845-8
http://dx.doi.org/10.1016/j.comnet.2021.108100
http://dx.doi.org/10.1109/ACCESS.2021.3095356
http://dx.doi.org/10.1109/ACCESS.2021.3051278
http://dx.doi.org/10.1109/JIOT.2020.3033131
http://dx.doi.org/10.1155/2020/8836592
http://dx.doi.org/10.25046/aj0505140

Sensors 2023, 23, 996 27 of 27

40. Mehamel, S.; Bouzefrane, S.; Banarjee, S.; Daoui, M.; Balas, V.E. Modified reinforcement learning based-caching system for mobile
edge computing. Intell. Decis. Technol. 2020, 14, 537–552. [CrossRef]

41. Wei, H.; Luo, H.; Sun, Y. Mobility-aware service caching in mobile edge computing for internet of things. Sensors 2020, 20, 610.
[CrossRef] [PubMed]

42. Nur, F.N.; Islam, S.; Moon, N.N.; Karim, A.; Azam, S.; Shanmugam, B. Priority-based offloading and caching in mobile edge
cloud. J. Commun. Softw. Syst. 2019, 15, 193–201. [CrossRef]

43. Luo, Z.; LiWang, M.; Huang, L.; Du, X.; Guizani, M. Caching mechanism for mobile edge computing in V2I networks. Trans.
Emerg. Telecommun. Technol. 2019, 30, e3689. [CrossRef]

44. Ugwuanyi, E.E.; Ghosh, S.; Iqbal, M.; Dagiuklas, T.; Mumtaz, S.; Al-Dulaimi, A. Co-operative and hybrid replacement caching
for multi-access mobile edge computing. In Proceedings of the 2019 European Conference on Networks and Communications
(EuCNC), Valencia, Spain, 18–21 June 2019; pp. 394–399.

45. Jiang, W.; Feng, G.; Qin, S.; Liang, Y.C. Learning-based cooperative content caching policy for mobile edge computing. In
Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019;
Volume 30, pp. 1–6.

46. Kim, W.J.; Joo, K.N.; Youn, C.H. Short-term time-varying request model based chunk caching scheme for live streaming in mobile
edge-cloud environment. IEEE Access 2019, 7, 177148–177163. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3233/IDT-190152
http://dx.doi.org/10.3390/s20030610
http://www.ncbi.nlm.nih.gov/pubmed/31979135
http://dx.doi.org/10.24138/jcomss.v15i2.707
http://dx.doi.org/10.1002/ett.3689
http://dx.doi.org/10.1109/ACCESS.2019.2955749

	Introduction
	Related Work
	System Model
	Proposed System Model
	Proposed System Description
	Proposed System Model Formatting of Mathematical Components

	Results and Analysis
	Conclusions
	References

