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Abstract: A fully transportable laser heterodyne radiometer (LHR), involving a flexible polycrys-
talline mid-infrared (PIR) fiber-coupling system and operating around 8 µm, was characterized and
optimized with the help of a calibrated high temperature blackbody source to simulate solar radiation.
Compared to a mid-IR free-space sunlight coupling system, usually used in a current LHR, such a
fiber-coupling system configuration makes the mid-infrared (MIR) LHR fully transportable. The noise
sources, heterodyne signal, and SNR of the MIR LHR were analyzed, and the optimum operating
local oscillator (LO) photocurrent was experimentally obtained. The spectroscopic performance of
the MIR LHR was finally evaluated. This work demonstrated that the developed fully transportable
MIR LHR could be used for ground-based atmospheric sounding measurements of multiple trace
gases in the atmospheric column. In addition, it also has high potential for applications on spacecraft
or on an airborne platform.

Keywords: laser heterodyne radiometer; polycrystalline mid-infrared fiber; fully transportable

1. Introduction

Measurement of the vertical concentration profiles of atmospheric trace gases is very
important for understanding the physics, chemistry, dynamics, and radiation budget of
the atmosphere as well as validating chemical models and satellite observations [1–4].
Laser heterodyne radiometer (LHR), as a kind of passive remote sensing technology, was
introduced and developed in the 1970s to meet the needs of observing the ozone hole in
the atmosphere [5–7]. Since then, LHR applications have been virtually silent, as a result
of the lack of a suitable tunable laser source as the local oscillator (LO) for heterodyne
measurements [8]. In the past 10 years, LHR technology has been revived due to significant
advances in laser and photonic technology. Compared to the currently used ground-
based Fourier-transform spectrometer (FTS) for measuring atmospheric trace gases, LHR is
advantageous in terms of high spectral resolution (<0.001 cm−1), high sensitivity (within a
factor of ~2 of the quantum noise limit), and high spatial resolution due to its very small
coherent field of view and cost-effective compact instrument size [8,9].

Near-infrared (NIR) LHR has been growing in recent years. Wilson et al. [10–12],
Rodin et al. [13,14], and Wang et al. [15] developed LHR using a telecom-grade distributed
feedback (DFB) laser as LO for remote sensing CO2 and CH4 near 1.6 µm and 1.65 µm in the
atmospheric column. In the NIR range, progressive fiber photonic devices enable compact,
portable, and optically aligned LHRs [8]. The atmospheric windows of 3–5 µm and 8–12 µm
correspond to the strong fundamental ro-vibrational absorptions of a large number of key
atmospheric species, which are more attractive for LHR-sensitive remote sensing [9]. A
dual-channel LHR involving two interband cascade lasers (ICL) centered at 3.53 µm and
3.93 µm as LOs has been recently reported for remote sensing atmospheric H2O vapor, N2O,
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and CH4 [16–18]. Weidmann et al. developed an LHR based on an external cavity quantum
cascade laser (EC-QCL) [19] as the LO for working in the 8.08–8.93 µm range [20,21], in
which O3, N2O, CH4, CCl2F2, and H2O have been measured. In their reported works, a
non-removable sun tracker was installed on the roof terrace to collect sunlight, limiting
their LHR’s potential for field applications [8].

In this paper, we report the performance characterization of a fully transportable
MIR LHR using a calibrated blackbody (BB) source. A newly commercially available
polycrystalline mid-IR (PIR) fiber is exploited to couple the solar or BB radiation into the
LHR receiver, which renders the MIR LHR fully transportable. In the subsequent sections,
details of the study are presented in the following order: (1) instrumental description
of the fully transportable MIR LHR; (2) performance characterization of the MIR LHR,
including (i) the signal to noise ratio (SNR) of the LHR system containing (a) noise sources,
(b) theoretical SNR vs. measured SNR, and (c) the heterodyne signal and SNR of the
LHR vs. the LO photocurrent and (ii) the spectroscopic performance of the LHR system
containing (a) the impact of the RF pass-band on the LHR spectrum and (b) the LHR spectral
line shape vs. the scanning speed of the LO frequency; (3) conclusion and future work.

2. Instrumental Description

The schematic of a fully transportable MIR LHR involving a PIR fiber-coupling solar
or BB radiation system is shown in Figure 1. A portable EKO sun-tracker is used for
the development of a fully transportable MIR LHR. A 1.5 m long PIR fiber made of
AgClBr (PIR900/1000-150-TI/SMA-TI/SMA-PE32, Art Photonics Inc. Berlin, Germany) is
employed to couple the solar or BB radiation to the LHR receiver with a numerical aperture
(NA) of 0.3 (with a fiber core diameter of 860 µm). This is transparent across a broad
spectral range of 3–18 µm, with a transmission of ~54% at 8 µm. This fiber, with a minimum
bend radius of 150 mm, is very flexible and suitable for coupling cw laser power of up
to 40 W and is capable of operating over a temperature range of −50 to 140 ◦C without
an aging effect [8]. The PIR fiber-coupling system, installed on the sun-tracker, includes
lens 1 (in CaF2), which is associated with a Ge filter to filter radiation out of the spectral
region of interest to minimize the shot noise resulting from the signal source [8]. Sunlight
is focused by lens 1 into a PIR fiber. The beam emerging from the fiber is collimated with
lens 2 (in Germanium); the amplitude is modulated at 1 kHz using a mechanical chopper
(Model MC2000B, Thorlabs, Inc. Newton, NJ, USA) and then directed to a 5% (R)–95%
(T) beam splitter (BS, in CaF2). The solar beam is superimposed with the LO beam from
the EC-QCL (TLS-41000-MHF, Daylight solutions Inc. San Diego, CA, USA). The EC-QCL
is controlled with a specific controller (Model 1001-TLC, Daylight solutions Inc.) and is
continuously tunable at a frequency from 1223 to 1263 cm−1 (7.91–8.17 µm) through its
external-cavity tuning. The laser provides optical output powers of more than 60 mW
over 40 cm−1 spectral coverage with a power fluctuation less than 1% r.m.s (root mean
square) over 5 min, according to the manufacturer. The LO light is size-expanded by a
factor of three through two OAPMs (OAPM1 and OAPM2). It is intensity-controlled and
polarization-adjusted using a wideband IR polarizer (2–12 µm). The combined solar and
LO beams are then focused by an OAPM3 onto a VIGO photomixer (PVI-4TE-10.6, VIGO
System S.A. Ożarów Mazowiecki, Poland). The radio frequency (RF) beat note signal from
the photomixer enters the RF receiver through a 27.5–270 MHz band-pass filter, followed
by two-stage low noise amplifiers (Model ZFL-500LN+, Mini-Circuits® New York, NY,
USA) with a gain of 24 dB each. After that, the amplified beat signal is connected to a
square-law Schottky diode (Model 8472B, Keysight Inc. Colorado Springs, CO, USA) for
a power measurement of the RF signal, which is proportional to the square of the input
beat signal amplitude. The output signal from the square-law detector is demodulated
with a lock-in amplifier (LIA, Model 5110, Ametek Inc. Berwyn, PA, USA). A National
Instruments data-acquisition card (PCI 6251, NI Inc. Austin, TX, USA) is used to digitalize
the output signal from the LIA via a LabVIEW program. The data are then transferred to a
laptop for further data processing.
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Figure 1. Schematic of a fully transportable LHR involving a PIR fiber-coupling solar or BB radia-
tion system.

One part of the LO beam (transmitted LO power from the BS) is directed to either a
12.5 cm single-pass cell filled with a CH4 mixture in air for absolute frequency determination
or to a 12.5 cm long home-made Ge etalon (free spectral range (FSR) = 0.0333 cm−1) for
relative frequency calibration when the LO frequency is tuned.

In order to evaluate and optimize the MIR LHR’s performance, a calibrated BB source
(Model 67030, Newport Inc. Florida, USA) held at 1000 ◦C is used. Here, the source
temperature changes the source power and, thus, the power of the heterodyne signal.
However, the temperature difference has no effect on the characteristics of the heterodyne
signal. The BB radiation is collected and collimated with lens 3 (in CaF2) and then coupled
to the PIR fiber through a second lens, lens 4 (in CaF2). The BB radiation emerging from
the fiber is then collimated and injected into the LHR receiver via lens 2.

3. Performance Characterization of the MIR LHR
3.1. SNR of the MIR LHR

In order to characterize the MIR LHR’s performance using a PIR fiber-coupling system
for sunlight collection, investigation in terms of the SNR of the LHR signal was first
performed using the calibrated BB source. In this study, time-series measurements of the
RF signal from the LIA with and without LO radiation injection were carried out. The
LO and BB power-induced photocurrents, were 610 µA and 117 µA, respectively. A time
constant of 1 s combined with low-pass filters (12 dB/oct) was used for the LIA.

Based on the measurement of a beat note amplitude of 150.18 µV and a noise level
(1 σ) of 0.36 µV in the beat note (Figure 2), a SNR of ~419 was deduced.
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Figure 2. SNR measurement of the beat note at the output of the LIA. 
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Figure 2. SNR measurement of the beat note at the output of the LIA.

The theoretical shot-noise-limited SNR of the LHR can be expressed by Equation (1) [22–24].
This equation can be used to assess the experimental LHR performance when referenced to
the ideal shot-noise limit. In other words, it corresponds to the expected performance of an
ideal LHR in which shot noise is the sole noise [25]:

SNR = ηhet·
η·PS·

√
B·τ

h·ν·B = ηhet·
η·κ·
√

B·τ
exp
(

h·ν
k·T

)
− 1

(1)

where the overall optical coupling efficiency κ is defined as the fraction of the incoming
signal radiation transmitted through all the optical components to the photomixer [25].
For the BB, this accounts for two CaF2 lenses (transmission ~0.92 each), the PIR fiber
(transmission ~0.54), the Germanium lens (transmission ~0.99), the BS (transmission ~0.95),
the silver-plated OAPM (assumed reflectance ~0.97), and the BaF2 wedged window in
front of the photomixer (transmission ~0.95), resulting in an overall coupling efficiency of
0.396. The heterodyne efficiency ηhet of the photomixing of the sunlight beam and the LO
beam is considered to be 1 in an ideal case [26]; the quantum efficiency η of the photomixer
provided by the manufacturer at this wavelength is 0.5. Under these conditions, given
an LHR double-side bandwidth of 485 MHz (for an RF pass-band of 27.5–270 MHz) and
a 1 s time constant of the LIA at an LO frequency (1242.3 cm−1 or 3.73 × 1013 Hz), a
shot-noise-limited SNR of about 1430 was obtained. The theoretical shot-noise-limited SNR
is 3.4 times higher than the measured SNR at a photocurrent of 610 µA, or a factor ρ of
0.29 in the theoretical SNR was observed.

3.1.1. Noise Sources in the MIR LHR

In order to understand the difference between the measured and the calculated ideal
SNRs, the noises in various parts of the MIR LHR were investigated with the help of a
signal analyzer (N9000B, CXA X-Series, Keysight, Inc. Newton, MA, USA). In this study,
the total noise density Ntotal (nV/

√
Hz) of the MIR LHR can be expressed by [8,9]

Ntotal =
√

N2
Det + N2

LIN + N2
SIN (2)

N2
LIN = N2

LSN + N2
LEN (3)

and N2
SIN = N2

SSN + N2
SEN (4)
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where NDet, NLIN, and NSIN are the detection chain noise, the laser-induced noise, and the
signal-induced noise, respectively. The laser-induced noise NLIN includes laser-induced
shot noise NLSN and laser excess noise NLEN, respectively, while the signal-induced noise
NSIN includes signal-induced shot noise NSSN and signal excess noise NSEN.

The contribution of each type of noise in the above expressions is discussed below
in detail.

(1) Detection chain noise (NDet)

The detection chain noise NDet includes the background noise, the Johnson noise
resulting from the amplifier associated with the photodetector, and the dark noise [8]. It
can be measured when there is no light incident on the detector.

In order to identify noise sources, the signals at the RF output of the photomixer
were measured with the signal analyzer under different conditions: (A) with the input
of the signal analyzer directly connected to a resistance of 50 Ω (Figure 3, blue curve) for
the measurement of the background noise NSA of the signal analyzer; (B) with only the
detector output connected to the signal analyzer (Figure 3, red curve), representing the
sum of the signal analyzer’s background noise NSA and the detection chain noise NDet; (C)
with the presence of the LO but without the BB radiation injection (Figure 3, green curve),
representing the sum of the signal analyzer’s background noise NSA, the detection chain
noise NDet, and the laser-induced noise NLIN; (D) with the presence of both LO and BB
radiations (Figure 3, black curve), representing the sum of the heterodyne signal, the signal
analyzer’s background noise NSA, the detection chain noise NDet, the laser-induced noise
NLIN, and the BB source-induced noise NSIN.
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Comparing the RF output (after the associated amplifier to the photodetector) of the
photomixer with both the LO and BB radiation injections (Figure 3, black curve) to that of the
photomixer with only the LO injection (Figure 3, green curve), the two signals were almost
overlapped, which indicates that there was almost no additional noise contribution from
the BB radiation, i.e., signal-induced noise NSIN can be neglected at this stage of analysis.

Therefore, the total noise density Ntotal (Equation (2)) of the LHR system becomes

Ntotal =
√

N2
Det + N2

LIN (5)

As can be seen in Figure 3, the LHR system noise (measured at the RF output of the
photomixer) was mainly distributed in the range of 1 kHz–100 MHz. The noise is mainly
composed of 1/f and white noises. In the low-frequency range, the noise is dominated
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by 1/f, and then the noise distribution tends to be flat. Therefore, the pass-band should
be selected in the higher-frequency range where 1/f is significantly reduced. In order to
study the characteristics of white noise in the high-frequency range, the detection chain
noise NDet was analyzed at 150 MHz, where the noise is dominated by white noise.

Given the readings from the signal analyzer at 150 MHz, 0.00709 mV for the noise
amplitude of the signal analyzer’s background noise (Figure 3, blue curve) and 0.02370 mV
for the noise amplitude (Figure 3, red curve), resulting from the signal analyzer background
noise and the detection chain noise, respectively, the detection chain noise amplitude of
0.02261 mV can be deduced. This was the integrated detection chain noise level within
the set resolution bandwidth (RBW) of 100 kHz; the corresponding detection chain noise
density NDet was, thus, 71.5 nV/

√
Hz.

Comparing the signal levels with the LO injection (Figure 3, green curve) and without
the LO injection (Figure 3, black curve), an increase in the noise level was observed, which
primarily indicates an influence by the LO injection, including laser-induced shot noise and
laser excess noise, both resulting from the EC-QCL LO that was used.

Next, laser-induced noise NLIN, including laser-induced shot noise NLSN and laser
excess noise NLEN, was analyzed.

(2) Laser-induced noise (NLIN)

In order to quantitatively analyze the contributions of laser-induced shot noise NLSN
and laser excess noise NLEN, a detailed study was carried out. The LO power injected
into the photomixer was adjusted through a polarizer in front of the LO laser, and the
LO power-induced photocurrent was used as the indicator of the LO power injected into
the photomixer.

Noise from the RF output of the photomixer within its pass-band of 1 kHz–500 MHz
was analyzed using the signal analyzer, as shown in Figure 4 upper, at different LO
photocurrents (note: here the signal analyzer background noise has all been subtracted).

The system total noise density Ntotal in [nV/
√

Hz] (Figure 5, black square) was cal-
culated by dividing the mean of all the total noise amplitudes (including detection chain
noise NDet and laser-induced noise NLIN) measured in the pass-band of 27.5–270 MHz
(i.e., the pass-band of the used RF filter) (Figure 4 lower) by the square root of the RBW
(100 kHz). Given the detection chain noise density NDet of 71.5 nV/

√
Hz (Figure 5, gray

line) determined above, the laser-induced noise (Figure 5, blue triangle) was calculated by
subtracting the detection chain noise NDet (Figure 5, gray line) from the system total noise
density Ntotal (Figure 5, black square), based on Equation (5).

Based on the laser-induced noise NLIN deduced as shown in Figure 5, the laser-induced
shot noise NLSN and laser excess noise NLEN are studied in detail.

(2.1) Laser-induced shot noise (NLSN)

The voltage VSN and current ISN of the laser-induced shot noise can be calculated
using Equations (6) and (7), respectively [27]:

VSN(V) = Rti·ISN(A) (6)

ISN(A) =
√

2·e·IDC(µA)·10−6·B (7)

and IDC(µA) = VDC(V)·106/Rti (8)

where Rti = 6000 V/A is the transimpedance of the photomixer, e = 1.602 × 10−19 C is
the electric charge, B = 5 × 108 Hz is the bandwidth of the photomixer over which the
noise is considered, IDC is the DC LO photocurrent induced by the LO laser power in the
photomixer, VDC is the DC LO voltage induced by LO laser power monitored at the output
of the photomixer, and 106 represents the unit conversion from V to µV.
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Figure 4. (upper) noise density spectra from the RF output of the photomixer at different LO power-
induced photocurrents measured with a signal analyzer; (lower) zoom of the upper figure in the
pass-band of 27.5–270 MHz.
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From Equations (6)–(8), the laser-induced shot-noise density NLSN (in [nV/
√

Hz]) can
be expressed as [28]

NLSN

(
nV/
√

Hz
)
= 3.396·

√
IDC(µA) (9)

The calculated laser-induced shot-noise density NLSN is plotted in Figure 5 (red circle).

(2.2) Laser excess noise (NLEN)

The laser excess noise NLEN (Figure 5, green star) can then be calculated using
Equations (3) and (9), that is, by subtracting the laser-induced shot noise NLSN (Figure 5,
red circle) from the laser-induced noise NLIN (Figure 5, blue triangle).

As can be seen from Figure 5, at LO photocurrents IDC < 450 µA, the detection chain
noise NDet (gray line) is larger than the laser-induced shot noise NLSN (red circle); however,
only in the range of 450 µA < IDC < 656 µA are the laser excess noise NLEN (green star) and
the detection chain noise NDet (gray line) both smaller than the laser-induced shot noise
NLSN (red circle), so the LHR system operates in a shot-noise dominated regime (with a
shot-noise-limited high-sensitivity performance). The higher LO photocurrent limit could
not be verified, because saturation of the detector preamplifier for optical powers above
733 µA was observed.

3.1.2. Theoretical SNR vs. Measured SNR

Based on the above analysis of the LHR system noises, when comparing the measured
SNR (~419) to the theoretical SNR (~1430), the factor of 0.29 (=419/1430) is analyzed
as follows:

(1) At an LO power-induced photocurrent of 610 µA, at which SNR = 419 was deter-
mined, the laser excess noise NLEN (Figure 5, green star) and the detection chain noise NDet
(Figure 5, gray line) were both 0.9 times the laser-induced shot noise NLSN (Figure 5, red
circle). The total noise of the LHR system Ntotal, thus, exceeds the laser-induced shot noise
NLSN, using Equations (2)–(4), by

Ntotal =
√

N2
Det + N2

LSN + N2
LEN = 1.62·NLSN (10)

The system total noise Ntotal is 1.62 times the laser-induced shot noise NLSN, and a
correction factor ρ1 of 0.62 (=1/1.62) is obtained for the theoretically calculated SNR under
the ideal shot-noise condition.

(2) The overall optical coupling efficiency κ of 0.40 for the BB radiation, based on the
transmission of each optical component given by the manufacturer, would be overestimated.
The measured overall optical coupling efficiency was about 0.27, and this difference in κ,
between 0.27 and 0.40, may be due to the long-time exposure of these optical components
to the humid and salty environment of the seaside. An additional correction factor ρ2 of
0.68 (=0.27/0.40) was obtained.

(3) The heterodyne efficiency ηhet of 1 for the ideal case would be overestimated. The
difference in the shaped beam sizes of sunlight (12.5 mm) and the LO light (7.5 mm) caused
a heterodyne efficiency of ~0.8 [9]. In addition, the photomixer has a small photo-sensitive
area of 0.5 × 0.5 mm2, so even a small mismatched angle would result in a heterodyne
efficiency of ~0.9 [9]. An additional correction factor ρ3 of 0.72 (=0.8 × 0.9) was achieved.

Based on the above analysis, the total correction factor ρexp for the theoretical SNR,
resulting from the above reasons, is

ρexp = ρ1·ρ2·ρ3 = 0.30 (11)

This value is comparable to the factor ρ of 0.29.

3.1.3. Heterodyne Signal and SNR of the LHR vs. LO Photocurrent

Based on the study performed on the noises as the function of the LO power-induced
photocurrent, the heterodyne signal and the corresponding SNR, as the function of the LO
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photocurrent, were investigated. The LO power was varied by adjusting a polarizer in
front of the LO output, which both the mean heterodyne signal and its standard deviation
were measured from, and the corresponding SNR was derived. The results are shown in
Figure 6.
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Figure 6. Evolution of heterodyne signal (black square) and SNR (red square) as a function of
LO photocurrent.

Figure 6 clearly shows that the amplitude of the heterodyne signal increases almost
linearly at a low LO photocurrent (black square), which is consistent with PHET ∝ PS × PL,
before reaching a rollover point at an LO photocurrent of ~610 µA. The SNR increases
with the LO power and reaches a maximum when the LO photocurrent is also equal
to 610 µA. Above 610 µA, the heterodyne signal becomes smaller, and the noise on the
heterodyne signal rapidly increased (c.f. Figure 5), that is, the SNR significantly decreased.
The data show that the maximum SNR of the LHR can be obtained with an optimum LO
photocurrent. The optimum LO photocurrent is highly dependent on the technology and
characteristics of the detector (which is used as the photomixer) [25]. For each type of
detector, the optimum LO photocurrent must be determined because saturation effects,
detection chain noise, and detector response homogeneity will affect the performance.

Therefore, the LO power should be precisely adjusted in order to significantly reduce
the noise on the heterodyne signal to achieve a high SNR, without any device saturation.

3.2. Spectroscopic Performance of the LHR System

Under the optimal LO photocurrent of ~610 µA, the spectroscopic performance of
the LHR prototype was evaluated. To that end, the BB radiation was coupled to a direct
absorption cell through the PIR fiber.

3.2.1. Impact of RF Pass-Band on LHR Spectrum

To investigate the impact of the RF filter pass-band on the LHR spectral signal, the
heterodyne absorption spectra of CH4 in a single-pass cell at 280 mbar were experimentally
extracted and analysed with different pass-bands of the RF filters. In this study, the LO
laser frequency was scanned at around 1242.00 cm−1, with a frequency scanning rate of
500 mHz; the LIA sensitivity and time constant were set to 5 mV and 10 ms, respectively.

LHR noise was investigated at first. Figure 7 shows the noise amplitude spectrum
of an LHR signal from the RF output of the photomixer recorded using a signal analyzer
(with a RBW of 100 kHz). As can be seen, there are strong 1/f noises in the low-frequency
range, which have to be filtered out.
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Figure 7. Noise amplitude spectrum from the RF output of the photomixer in the 1 kHz–500 MHz range.

The noise densities within the different pass-bands of the RF filters available in the
present work were estimated by dividing the integral noise over each pass-band by both
the bandwidth and the square root of the RBW (100 kHz) (Table 1). As shown in Table 1,
the noise density of the RF filter with a pass-band of 27.5–270 MHz was the lowest, and the
corresponding SNR was the highest because of its wider filter bandwidth.

Table 1. Noise density with different RF filter pass-bands.

Pass-Band (MHz) DC-270 DC-520 DC-720 27–33 27.5–270

Noise density
(µV/

√
Hz)

0.396 0.239 0.239 0.180 0.149

Using a PZT, driven by a sine-wave signal (with an amplitude of +3.0 VPP and an offset
of +1.6 VDC), to scan the external cavity (EC) of the LO laser and, hence, the laser frequency,
the LHR CH4 absorption spectra were then recorded with the five available RF filters, as
shown in Figure 8. The LHR CH4 absorption spectra were measured with AC-coupling
band-pass RF filters (Figure 8 left), which can significantly filter out low frequency noises,
and had a higher SNR and better spectral line shape, while the spectra measured with the
DC-coupling low-pass RF filters (Figure 8 right) are noisy, resulting from high 1/f noise.
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Figure 8. Heterodyne spectra of CH4 extracted with different RF filter pass-bands.

The noise level of the spectrum measured with the RF filter with a pass-band of
27.5–270 MHz (Figure 8 left, black) is lower than that measured with a pass-band of
27–33 MHz (Figure 8 left, red). Moreover, there is no obvious difference in the spectral line
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widths between the two LHR CH4 absorption spectra. The reason is that the theoretical
spectral line width (FWHM) of the CH4 absorption around 1242.00 cm−1 at 280 mbar
is 0.034 cm−1 (1020 MHz [29–32], which is wider than the doubled RF filter bandwidths
(12 MHz and 485 MHz); therefore, there is not any obvious effect of the RF filter bandwidths
on the measured line widths.

Based on such an analysis, the RF filter with a pass-band of 27.5–270 MHz was selected
for the current LHR system.

3.2.2. LHR Spectral Line Shape vs. Scanning Speed of LO Frequency

In order to obtain a high-precision heterodyne spectrum (with a minimized line shape
shift and distortion), the scanning time ∆Tscan across the halfwidth of the absorption line
∆νHWHM (in (cm−1)), which is also dependent on the scanning speed of the LO frequency
υsc (in (cm−1/s)), should be appropriately adapted to an LIA time constant τ, such that [33]

∆Tscan = ∆νHWHM/υSC ≥ 14·τ (12)

An experimental investigation on the BB-based heterodyne spectra using different
scanning speeds with a selected LIA time constant of 1 ms was carried out. In this study,
the LO laser frequency was scanned at around 1242.00 cm−1; the LIA sensitivity was
set to 2 mV; and the pressure of the CH4 mixture in the air in the single-pass cell was
about 280 mbar.

The LHR CH4 absorption spectra recorded by scanning the LO frequency at different
speeds (see Table 2), using the same LIA time constant of 1 ms, are plotted in Figure 9. As
can be seen, the selection of the scanning speed of the LO frequency should be well-matched
to the applied LIA time constant. Comparing these four heterodyne absorption spectra, the
linewidth broadening ∆νb (FWHM), line shift δν, and noise level (1σ) of these spectra were
analyzed based on their Voigt profile fit (Figure 9, blue) and summarized in Table 2. Given
the combination of the 1 ms time constant and the 0.3935 cm−1/s scanning speed (with a
scanning time of 36 ms), the heterodyne spectrum has a lower noise level and a smaller
line shift, while keeping a high spectral resolution (Figure 9b and Table 2).

Table 2. Analysis of BB-based heterodyne spectra (Figure 9) of CH4 absorption with the used time
constants (τ) of 1 ms at different scanning speeds of the LO frequency (υsc). (Note: the halfwidth of
the used CH4 line ∆νHWHM at 280 mbar is 0.014 cm−1 [29]; 1 σ: Standard Deviation (SD)).

τ

(ms)
υsc

(cm−1/s)
∆Tscan
(ms)

∆νb
(cm−1)

Absorption
Depth

δν
(cm−1)

Fit Residual
(1σ)

1

0.1574 89 0.038 0.1142 1.6 × 10−4 0.0091

0.3935 36 0.042 0.1037 4.0 × 10−4 0.0043

0.7870 18 0.048 0.0975 8.2 × 10−4 0.0032

1.1799 12 0.079 0.0909 1.2 × 10−3 0.0021

Meanwhile, it is generally considered that the scanning speed of the LO frequency υsc
being set to a slower value, which meets Equation (12) well, can limit the distortion of the
line shape.

As can be seen from Table 2, at an LO frequency scanning speed of 0.1574 cm−1/s, the
scanning time of 89 ms was far more than 14 times the applied LIA time constant of 1 ms.
In this case, the measured line shift was the smallest, the absorption depth was the deepest,
and the linewidth ∆νb (Table 2) was the narrowest and close to the theoretical value of
~0.036 cm−1 [29–32]. However, the noise (1 σ: 0.0091) was the highest (Table 2). Hence, a
trade-off has to be made. Therefore, at the LIA time constant of 1 ms, when the scanning
speed of the LO frequency was 0.3935 cm−1/s (the scanning time of 36 ms), for which the
noise (1 σ: 0.0043) was relatively low, the line shift (~0.0004 cm−1) was relatively small, and



Sensors 2023, 23, 978 12 of 14

the achievable spectral resolution (spectral line width of ~0.042 cm−1) was relatively high.
Thus, this was selected for the LHR measurement.
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υsc (in (cm−1/s)), should be appropriately adapted to an LIA time constant τ, such that [33]  

∆𝑇𝑠𝑐𝑎𝑛 = ∆𝜈𝐻𝑊𝐻𝑀 𝜐𝑆𝐶 ≥ 14 ∙ 𝜏⁄  (12) 

An experimental investigation on the BB-based heterodyne spectra using different 

scanning speeds with a selected LIA time constant of 1 ms was carried out. In this study, 

the LO laser frequency was scanned at around 1242.00 cm−1; the LIA sensitivity was set to 

2 mV; and the pressure of the CH4 mixture in the air in the single-pass cell was about 280 

mbar. 

The LHR CH4 absorption spectra recorded by scanning the LO frequency at different 

speeds (see Table 2), using the same LIA time constant of 1 ms, are plotted in Figure 9. As 

can be seen, the selection of the scanning speed of the LO frequency should be well-

matched to the applied LIA time constant. Comparing these four heterodyne absorption 

spectra, the linewidth broadening Δνb (FWHM), line shift δν, and noise level (1σ) of these 

spectra were analyzed based on their Voigt profile fit (Figure 9, blue) and summarized in 

Table 2. Given the combination of the 1 ms time constant and the 0.3935 cm−1/s scanning 

speed (with a scanning time of 36 ms), the heterodyne spectrum has a lower noise level 

and a smaller line shift, while keeping a high spectral resolution (Figure 9b and Table 2). 
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Figure 9. Heterodyne absorption spectra of CH4 (red) at scanning speeds of 0.1574 cm−1/s
(a), 0.3935 cm−1/s (b), 0.7870 cm−1/s (c),and 1.1799 cm−1/s (d), respectively, fitted with Voigt
profiles (blue).

4. Conclusions

In this paper, the evaluation and optimization of the fully transportable MIR LHR,
with the help of a stable high temperature BB source to simulate the sunlight, was per-
formed. The noise sources, heterodyne signal, and SNR of the MIR LHR were analyzed,
and the optimum operating LO photocurrent was experimentally obtained. The spectro-
scopic performance of the MIR HR was finally evaluated. This work demonstrated that the
developed transportable MIR LHR could be used for ground-based atmospheric sounding
measurements of trace gases in the atmospheric column. In future work, the developed
LHR prototype will be tested and validated via ground-based field measurements of the
tropospheric trace gases in the atmospheric column, and vertical profiles of the trace gases
in the atmospheric column will be retrieved from the ground-based measured LHR spec-
trum using a retrieval algorithm, given a decent knowledge of the additional atmospheric
parameters such as the solar angle, atmospheric temperature, atmospheric pressure, com-
position of the atmosphere, and refractive index [10]. In addition, this developed LHR
prototype also has a high potential for applications on spacecraft or on an airborne platform.
For the ongoing developments, we propose to develop a next generation LHR (NexLHR)
based on the current, modern photonic integrated circuits (ICs) technology. The objective is
to realize an “on-chip” LHR receiver. This will make the NexLHR cost-effective, energy
efficient, autonomous, and ultra-portable, which will be most suitable for field deploy-
ment to measure the atmospheric vertical profiles of key atmospheric species through
in situ ground-based measurements, aircraft, and satellite observations as well as to be
integrated into the currently operational worldwide observation networks. Meanwhile,
the proposed infrared LHR instrument presents a high potential for technology transfer
and commercialization.
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