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Abstract: We propose a multi-threaded algorithm that can improve the performance of geometric
acoustic (GA)-based sound propagation algorithms in mobile devices. In general, sound propagation
algorithms require high computational cost because they perform based on ray tracing algorithms.
For this reason, it is difficult to operate sound propagation algorithms in mobile environments. To
solve this problem, we processed the early reflection and late reverberation steps in parallel and
verified the performance in four scenes based on eight sound sources. The experimental results
showed that the performance of the proposed method was on average 1.77 times better than that
of the single-threaded method, demonstrating that our algorithm can improve the performance of
mobile devices.
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1. Introduction

Recently, as interest in blockchain/metaverse/XR/VR/MR has increased [1,2], more
research to improve the sense of reality and immersion has been conducted. However,
many studies have focused only on the visual element. To improve immersion in virtual
environments or multimedia applications, high quality auditory as well as visual elements
is essential [3], and sound rendering provides users with a higher quality of auditory
elements by giving them a better understanding of intuitive spatial cues.

Sound rendering, which produces high-quality audio, consists of two steps: sound
propagation and auralization. The former deals with the propagation of sound waves
in virtual space, creating impulse responses (IRs) that are encoded with direction, delay,
and frequency-dependent attenuation from a source to a listener. The latter convolves
prerecorded or synthetically generated dry audio with IRs to generate the final audio signal
and output it to an output device such as speakers or headphones.

In general, the sound propagation stage has the highest computational cost and
requires the most resources in the entire sound rendering process [4]. There are two main
ways to do this. One is a wave-based numerical method and the other is a geometric
acoustic (GA) method. The wave-based numerical method numerically calculates wave
equations in the time domain [5] or frequency domain [6]. In this way, the computational
cost increases exponentially as the scene size and frequencies increase. Although it has
the advantage of being able to generate realistic sounds, it is not suitable for real-time
applications because it requires considerable time and computing power [7].

In contrast, the GA method uses ray, beam, or frustum tracing to find valid propagation
paths, such as direct, transmission, reflection, and diffraction paths, between a listener and
a sound source and to estimate multiple reverberation parameters according to space (e.g.,
size, absorption coefficients). IRs are calculated using the information finally computed
through these processes. Therefore, the GA method is suitable for interactive applications
because it has a relatively fast processing speed compared to the wave-based numerical

Sensors 2023, 23, 973. https://doi.org/10.3390/s23020973 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020973
https://doi.org/10.3390/s23020973
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6547-3640
https://doi.org/10.3390/s23020973
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020973?type=check_update&version=1


Sensors 2023, 23, 973 2 of 17

method and can track moving source–moving receiver (MS–MR) and geometry scene data
at every frame.

Most of the current studies employing the GA method use the high computational
power on the PC platform to accelerate the sound propagation algorithm, thereby achiev-
ing real-time rates (e.g., 30 fps) [8,9]. However, it is very challenging to perform sound
propagation algorithms at real-time rates in mobile devices with computing power and
memory constraints [10].

Moreover, numerous studies use excessive CPU (four cores or more) or GPU resources
only for the sound propagation algorithm. A sound propagation algorithm that uses
many CPU cores makes it difficult to process tasks other than sound propagation, which
is impractical. Likewise, a sound propagation algorithm using a GPU is unfeasible in
real-time applications such as games because it is difficult to use GPU resources for visual
rendering.

For the above reasons, a sound propagation algorithm in a mobile device environment
must be processed based on a CPU, and when a multi-core method is used to accelerate
this, only a minimum amount of resources should be added to deliver sufficient resources
to other tasks. This study contributes by presenting a practical multi-threaded algorithm
for accelerating sound rendering in a mobile device environment. For this purpose, three
methods are included.

First, we used Guide mode (G mode) to find combinations of hit-triangles likely to
generate valid paths by shooting multiple rays from the listener. This is the basis for
creating multithreaded algorithms. Second, we parallelized Early Reflection mode (ER
mode), which handles early reflection, and Late Reverberation mode (LR mode), which
handles late reverberation.

Since this method uses only two threads and does not continuously maintain CPU
utilization, the memory usage and CPU utilization increase rates were not large. Finally,
we showed a thread synchronization scheme suitable for our algorithm. Through this, we
solved the race condition problem that occurs during parallel processing.

We implemented this on a Galaxy 20+ smartphone using a Qualcomm Snapdragon 865
chipset equipped with the Adreno 650 GPU. We verified the performance by increasing the
number of sound sources in various scenes. As a result, the performance of the proposed
multithreaded method was about 1.77 times better on average than that of the single-
threaded method. In addition, the increase rates (%) of the proposed method (memory
usage, CPU utilization) were 1.07 and 0.87 on average, respectively, compared to the single-
threaded method. This shows that our algorithm can be easily applied to the mobile device
environment.

2. Related Work

This section gives an overview of sound propagation algorithms in the last few decades
and their components.

2.1. Sound Propagation

Wave-based numerical methods calculate IRs by solving wave equations, which are
usually second-order partial differential equations. Although such methods are accurate,
they are very slow, so they are not suitable for interactive applications. Despite the fact that
many studies have been conducted to accelerate the algorithm to solve this problem [11–14],
considerable time and resources are still required, and the conditions remain limited.

The GA method has also been studied extensively. It has covered large scenes with
many objects based on beam [15], frustum [16], or ray [17] tracing Among these, the ray
tracing technique has recently been developed in both software and hardware. Therefore,
most sound propagation algorithms supporting dynamic scenes are proposed based on ray
tracing [18].

Various techniques to accelerate ray tracing-based GA algorithms have been proposed.
The source clustering method, which combines sound sources under certain conditions
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to process many sound sources, improved the performance of the sound propagation
algorithm by about 1.9 times based on 200 sound sources [8]. Backward ray tracing,
which shoots rays from the listener rather than the sound source, lowered the cost of
sound propagation sub-linearly [17]. A visibility graph to handle high-order reflection and
diffraction was put forward [19]. An algorithm for quickly finding high-order diffraction
paths using the A* pathfinding algorithm was put forth and showed to be about 568 times
faster performance than the existing state-of-the-art method [20].

Acceleration methods using strong computing power have also been proposed, in-
cluding a method of accelerating by assigning a thread to each sound source [6] by using a
mixture of a CPU and a GPU [21] and by using a GPU [22].

However, the above methods utilize the powerful computing power of commodity
CPUs or GPUs on a PC platform and as a result, maximize the corresponding computing
resources. Hence, they utilize too many computing resources for sound rendering. In
particular, sound rendering methods using GPUs are impractical because they take away
resources for processing visual rendering. For these reasons, they are unsuitable for mobile
devices with low computing power and low resources.

2.2. Sound Propagation Components

Sound propagation creates various sound effects through three components: direct
sound, ER, and LR. Each component has different characteristics, which are the basis for
creating various sound effects (see Figure 1).

Sensors 2023, 23, x FOR PEER REVIEW 3 of 17 
 

 

most sound propagation algorithms supporting dynamic scenes are proposed based on 
ray tracing [18]. 

Various techniques to accelerate ray tracing-based GA algorithms have been pro-
posed. The source clustering method, which combines sound sources under certain con-
ditions to process many sound sources, improved the performance of the sound propaga-
tion algorithm by about 1.9 times based on 200 sound sources [8]. Backward ray tracing, 
which shoots rays from the listener rather than the sound source, lowered the cost of 
sound propagation sub-linearly [17]. A visibility graph to handle high-order reflection 
and diffraction was put forward [19]. An algorithm for quickly finding high-order diffrac-
tion paths using the A* pathfinding algorithm was put forth and showed to be about 568 
times faster performance than the existing state-of-the-art method [20]. 

Acceleration methods using strong computing power have also been proposed, in-
cluding a method of accelerating by assigning a thread to each sound source [6] by using 
a mixture of a CPU and a GPU [21] and by using a GPU [22]. 

However, the above methods utilize the powerful computing power of commodity 
CPUs or GPUs on a PC platform and as a result, maximize the corresponding computing 
resources. Hence, they utilize too many computing resources for sound rendering. In par-
ticular, sound rendering methods using GPUs are impractical because they take away re-
sources for processing visual rendering. For these reasons, they are unsuitable for mobile 
devices with low computing power and low resources. 

2.2. Sound Propagation Components 
Sound propagation creates various sound effects through three components: direct 

sound, ER, and LR. Each component has different characteristics, which are the basis for 
creating various sound effects (see Figure 1). 

 
Figure 1. Amplitude of each component over time (direct sound, ER, LR). 

Direct sound comes directly from the sound source to the listener and is the first of 
the components to arrive. Since it has the largest amplitude, it provides the maximum 
contribution to the distance and direction between the sound source and the listener. 

ERs are the first echoes created after the arrival of the direct sound and are created 
through specular reflections and diffractions. LR is a very dense group of echoes and ar-
rives last. It is created through high-order specular reflections or diffuse reflections. 

ER and LR provide important perceptual cues about the space around the user, and 
many studies have been conducted to develop them. Specular reflection has been modeled 
using ray tracing [23], approximate volume tracing [24], and the image source method 
[25]. Among these, the image source method is the most accurate, so it is widely used in 
specular reflection modeling. We adopt the image source method for specular reflection. 

There are two major methods for modeling diffraction: the Biot–Tolstoy–Medwin 
(BTM) [26] and the Uniform Theory of Diffraction (UTD) methods [27]. The BTM is more 
accurate than the UTD because it handles finite diffracting edges. However, it is not suit-
able for interactive applications because of the large amount of calculation. On the other 
hand, UTD is modeled assuming infinite diffracting edges. It is less accurate than BTM, 

Figure 1. Amplitude of each component over time (direct sound, ER, LR).

Direct sound comes directly from the sound source to the listener and is the first of
the components to arrive. Since it has the largest amplitude, it provides the maximum
contribution to the distance and direction between the sound source and the listener.

ERs are the first echoes created after the arrival of the direct sound and are created
through specular reflections and diffractions. LR is a very dense group of echoes and
arrives last. It is created through high-order specular reflections or diffuse reflections.

ER and LR provide important perceptual cues about the space around the user, and
many studies have been conducted to develop them. Specular reflection has been modeled
using ray tracing [23], approximate volume tracing [24], and the image source method [25].
Among these, the image source method is the most accurate, so it is widely used in specular
reflection modeling. We adopt the image source method for specular reflection.

There are two major methods for modeling diffraction: the Biot–Tolstoy–Medwin
(BTM) [26] and the Uniform Theory of Diffraction (UTD) methods [27]. The BTM is more
accurate than the UTD because it handles finite diffracting edges. However, it is not suitable
for interactive applications because of the large amount of calculation. On the other hand,
UTD is modeled assuming infinite diffracting edges. It is less accurate than BTM, but it is
fast enough to be applied in interactive applications. For this reason, we adopt the UTD
method for the diffraction.

Diffuse reflection is modeled using ray tracing [28], path tracing [29], and radiosity [30].
Since this generally requires a large amount of computation, it is not suitable for a mobile
device environment.
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3. Processing Flow and Analysis of Sound Rendering

This section introduces the sound rendering pipeline (Section 3.1) and the single-
threaded sound propagation algorithm, which is the basis of the proposed algorithm
(Section 3.2) and performance analysis (Section 3.3).

3.1. Sound Rendering Pipeline

Figure 2 shows the proposed sound rendering pipeline. It has two threads: a main
thread that finds a valid path according to the location of the sound source and listener and
calculates IRs and an auralization thread that creates the final sound using the IRs.
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thread that creates final audio output signal.

The main thread first imports scene data, such as geometry data and audio files,
and then creates an acceleration structure (AS) such as a kd-tree or BVH for static objects
through preprocessing. We adopt the AS as a kd-tree for fast search.

The auralization thread reads dry audio (PCM) as needed for every frame of the
audio files imported by the main thread. Then, IRs received from sound propagation
and the dry audio are convoluted to generate the final output signal, which is output to
an output device (speakers or headphones). The above process is repeated through an
auralization loop.

3.2. Single-Threaded Sound Propagation Algorithm

The proposed algorithm is implemented based on a single-threaded sound propaga-
tion algorithm. It is GA-based and uses ray tracing algorithms to create sound effects such
as ER or LR. The ER is created through specular reflections (up to four-order) based on the
image source method and edge diffractions (up to two-order) based on the UTD, and the
LR is created through specular reflections (four-order).

Figure 3 shows a flowchart of the single thread sound propagation algorithm, images
of the sound propagation modes included in the algorithm, and ray tracing processing in
each mode.

The sound propagation algorithm is processed in the order of build acceleration
structure, PathCache mode (PC mode), direct/transmission mode (DT mode), ER mode,
and LR mode. Each step is as follows.
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First, build acceleration structure build acceleration structure is a step of updating
the kd-tree for dynamic objects. This enables the sound propagation algorithm to process
dynamic scenes. Next, the sound propagation modes are performed. Those are the steps to
create sound effects through ray tracing processing and include PC mode, DT mode, ER
mode, and LR mode.

The PC mode is a step of finding valid reflection or diffraction paths in the current
frame through propagation path caching. In other words, this process searches for valid
paths in a path–cache–buffer where valid paths found in the previous frame are stored
based on the location of the changed sound source and listener in the current frame.

Ray tracing algorithms create frame coherency issues due to the random directionality
of the rays. To avoid such issues, propagation path caching is used in many interactive
sound propagation algorithms [6,15].

DT, ER, and LR modes are steps for generating direct sound, ER, and LR, respectively.
They find valid paths through the ray tracing processing and repeat the number of sound
sources, the number of guide rays shot from listeners, and the number of source rays shot
from sound sources, respectively.

All rays are processed through the ray tracing processing, in the order of ray generation,
traversal and intersection (TnI), propagation path validation (PPV), and IR calculation.
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This is repeated for the maximum depth of the ray defined in the sound propagation. Each
processing step is as follows.

Ray generation generates guide rays in PC and ER modes and source rays in DT and
LR mode through random spherical sampling. TnI performs traversal to find hit-triangles
using guide and source ray and then ray-triangle intersection tests. If the intersection tests
are successful, PPV is conducted.

PPV finds valid paths through the validation test, as shown in Figure 4, based on the
hit-triangles found by TnI. Then, the IR calculation describes the propagation effect by
calculating the IRs between the sound source and the listener. It supports four frequency
bands (0–250 Hz, 250–100 Hz, 1000–2000 Hz, 2000–4000 Hz) for each listener–source pair.
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Figure 4. Two examples showing validation test for 2-order specular reflection path (left) and 1-order
diffraction path (right), respectively. Validation test for reflection path: The listener (L) is reflected
recursively over the sequence of reflecting hit-triangles. Through this, listener mirror images (M1,
M2) are created. Then, occlusion tests are performed while a validation ray shooting from the sound
source (S) to the last listener image (M2) is specularly reflected back to the L. If the tests are successful,
valid reflection paths are created. The validation test for the diffraction path: Check if L is in the
shadow region based on the wedge containing the hit-triangle. If L is within the region, the three

edge points closest to the
→
LS straight line are calculated for the three edges included in the hit-triangle.

Then, occlusion tests are performed through the validation rays shooting from the edge points to L. If
the tests are successful, valid diffraction paths are created.

IRs of sound propagation modes have attenuation parameters of direction, delay,
and frequency. The delay is calculated by dividing the length of the paths by the sound
velocity, and the attenuation parameters are calculated by accumulating attenuation based
on distance and frequency dependent wall absorption coefficients.

LRs’ IRs require additional parameters. We employ the widely used Eyring model [31]
as the LR model. The parameters of this model are the volume of the room, the total
absorbing surface area of the room, and the average absorption coefficient of the surfaces.
They are computed using hit-triangles found by the guide and source rays. The IRs with the
above information encoded are passed to the auralization thread to create the final sound.

3.3. Performance Analysis of Sound Propagation Modes

To effectively accelerate the sound propagation algorithm, it is essential to find which
part of the existing single-threaded sound propagation algorithm is the bottleneck. To do
so, we analyzed the performance of the sound propagation modes, which are the core of
the sound propagation algorithm.

We performed the sound propagation algorithm in four scenes as shown in Figure 5
with a Galaxy 20+ smartphone using a Qualcomm Snapdragon 865 chipset equipped
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with the Adreno 650 GPU. In addition, we used eight static sound sources to increase the
performance load, and shot 1024 guide and source rays, respectively.
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Figure 5. Four benchmark scenes: (a) sibenik (indoor)—64k; (b) concerthall (indoor)—38k;
(c) angrybot (indoor + outdoor)—24k; (d) racelake (indoor + outdoor)—8k.

Table 1 shows the performance of each sound propagation mode for eight sound
sources. All the scenes spend a lot of time in ER and LR modes and relatively little time in
PC and DT modes. Since more than 96% of the total time is spent in ER and LR modes, they
clearly have many bottlenecks. For this reason, it is essential to accelerate the corresponding
modes to improve the performance of the sound propagation algorithm, and we propose a
multi-threaded sound propagation algorithm to overcome this problem.

Table 1. Performance by modes of single-threaded sound propagation algorithm for eight sound
sources (frame time: ms).

PC Mode DT Mode ER Mode LR Mode Total Time

Sibenik 8.15 0.00 125.19 168.90 302.6

Concerthall 10.82 0.00 142.86 161.91 315.6

Angrybot 2.06 0.00 38.59 60.45 101.1

RaceLake 8.04 0.00 78.91 131.44 218.4

4. Proposed Multi-Threaded Sound Propagation Algorithm

This section introduces the proposed multi-threaded-based techniques and structures
to improve the performance of sound propagation algorithms. For this purpose, addi-
tional and modified sound propagation modes (Section 4.1) and synchronization methods
(Section 4.2) are described.

4.1. Multi-Threaded Sound Propagation Algorithm

To apply GA-based sound rendering to interactive applications, it is very important to
improve the performance of the sound propagation algorithm. However, since sound prop-
agation algorithms are generally implemented based on ray tracing, it is very challenging
to do so.

In particular, the cost of ER and LR increases rapidly with the number of valid paths
and sound sources, which makes it much more difficult for them to perform at real-
time rates. We propose a multi-threaded sound propagation algorithm to improve its
performance.

Our basic idea is to accelerate the algorithm by performing multi-threaded ER and LR.
For this, the single-threaded sound propagation algorithm is modified, and a new sound
propagation mode is added to enable multi-threaded execution.

Figure 6 shows the flowchart of the proposed multi-threaded sound propagation
algorithm. This is executed in the order of build acceleration structure, DT mode, and G
mode, and then ER and LR modes are processed in parallel through two threads. Finally,
the IRs from the two parallelized modes are merged through merge IRs. This is finally
delivered to an auralization thread, and the algorithm is terminated.
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The proposed algorithm has three newly proposed techniques for the parallelization
of ER and LR. First, G mode, a key mode for parallelizing the sound propagation algorithm,
is newly added. The goal of G mode is to find combinations of hit-triangles that are likely
to be valid paths around the listener.

G mode has two stages: Step 01, which finds combinations of hit-triangles, and Step
02, which sorts the found combinations and removes duplicate elements (See Figure 7).
The detailed process is as follows.
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Figure 7. Description of G mode: Find combinations of hit-triangles through guide ray (Step 01) and
remove duplicate combinations among combinations using a merge sort (Step 02).

G mode shoots as many rays as the maximum number of guide rays set by the user
to find combinations. The origin of the ray is set to the position of the listener, and the
direction of the ray is calculated through spherical random sampling. Next, through ray
tracing processing, G mode finds combinations of hit-triangles based on the ray. Then, the
found combinations are stored in the combinations buffer.

Based on the found combinations, a sort is performed for each depth using a merge–
sort based on an index of hit-triangles in the combinations. Then, duplicate combinations
are removed by looping as many times as the number of combinations. The combinations
made in this way are delivered to ER and LR modes. The pseudocode for G mode is
summarized in Algorithm 1.
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Algorithm 1 G Mode

1: Rn ← Ray, index : n = {0, 1, 2 . . . , N − 1} , N = maximum number of guide ray
2: TB← Tree build data
3: L← Listener
4: CHT← Combinations of hit-triangles
5: CB← Combinations buffer
6: procedure Guide mode (L, TB, CB)
7: Step 01: Finds combination of hit-triangles
8: for R ∈ {R0, · · ·Rn−1} do
9: R← Set origin position (position of L) and random direction
10: CHT← Ray tracing processing (R, TB)
11: if CHT is valid then
12: CB← Add CHT
13: end if
14: end for
15: Step 02: Sorts and removes duplicate combination of hit-triangles
16: for d = 0 to 3 do // depth loop
17: Merge-sort CHT that have depth d in CB
18: end for
19: for i = 0 to N − 1, j = 0 to N − 1 do // N is number of combinations
20: if CHTi is equal to CHTj then
21: j← j + 1
22: else
23: Remove from CHTi+1 to CHTj−1
24: i← j
25: j← j + 1
26: end if
27: end for
28: end procedure

Second, the ray tracing processing of ER and LR modes is changed, and PC mode is
removed. In particular, ER mode typically finds valid paths while performing an amount
of work in proportion to the maximum number of guide rays. However, the proposed
method precalculates combinations of hit-triangles that are likely to be valid paths in G
mode. For this reason, the ray tracing processing of the modes used in single-threaded
algorithm is not suitable for our multi-threaded method, so it needs to be modified. The
work processed in PC mode is processed by the newly added merge-hit-triangles in G
mode and setup-hit-triangles in ER mode.

Figure 8 shows the flowchart of ER mode. It calculates additional information for
calculating IR based on the combinations of hit-triangles generated by G mode and then
generates IRs for ER. The steps of the processing are changed compared to the single-
threaded method: a setup-hit-triangles step is added, and ray generation and TnI steps are
removed because combinations of triangles are presearched in G mode.

The detailed processing process of setup-hit-triangles is as follows. It receives Cn (com-
binations of triangles) imported from G mode where 0≤ n≤N (number of combinations)—
1, L (listener), and S (sound source) serve as input.

First, a merge–sort is performed on the combinations in Cn and the combinations in a
path–cache–buffer of S. This is the same as Step 02 seen in G mode through which duplicate
combinations are removed.
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new step (red box).

Then, additional information is calculated for T (triangles) in each combination while
looping through Cn. To complete this, setup-hit-triangles determines the type for each
T. The type variable indicates what kind of path will be created and includes reflection,
diffraction, and none. If S is positioned toward the normal side of T, the type of S is
reflection; otherwise, it is diffraction. If T is invalid, the type of T is determined to be none.

Through this, setup-hit-triangles determines what information needs to be addition-
ally calculated for T. If T’s type is reflection, setup-hit-triangles calculates listener mirror
positions for the image source method. Conversely, if it is diffraction, it computes edges
information (edge point, edge vector) for UTD. The pseudocode for setup-hit-triangles is
summarized in Algorithm 2.

Algorithm 2 Setup-Hit-Triangles

1: Cn ← Combination of triangles by G mode, index:i = {0, 1, . . . , N − 1}
2: L ← Listener

3: S ← Sound source
4: PC← PathCacheBuffer of S
5: Td ← Triangle, depth:d = {0, 1, 2, 3}
6: TP(Td)← Type of Td = {Reflection, Diffraction, None}
7: procedure Setup-hit-triangles (Cn, L, S)
8: Cn ← Merge sort combinations in Cn and combinations in PC
9: for C ∈ {C0, · · ·Cn−1} do
10: for T ∈ {T0, · · ·T3} do
11: TP(Td)← GetTypeOfTriangle(Td, S)
12: if TP(Td) is a reflection type then
13: Calculate image mirror positions based on Td and L
14: T← update the image mirror positions
15: else if TP(Td) is a diffraction type then
16: Calculate edge information based on Td, S, and L
17: T← update edge information

18: else // None
19: continue
20: end if
21: end for
22: end for
23: end procedure

Then, PPV in ray tracing processing finds a valid path among combinations as in
Figure 4. After that, it is processed in the same way as the single-threaded algorithm.
Through this, the IR for ER is created and passed to the merge-IRs step in Figure 6.
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LR mode does not differ significantly from the existing single-threaded method, but
the method of generating combinations for calculating IR is slightly different (see Figure 9).
Since the single-threaded method proceeds sequentially, IRs are calculated immediately
whenever source rays are shot one by one in LR mode after the combination for the listener
is calculated in ER mode.
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However, in the multi-threaded method, since ER and LR mode are divided into
two threads, IRs cannot be calculated immediately in LR mode. Thus, when a valid path
(combination of hit-triangles) is found by PPV, it temporarily stores the valid path without
calculating the IR immediately.

In addition, when ray tracing processing is finished, combinations are merged through
the merge-hit-triangle step as in G mode (Step 02) based on the combinations by LR mode
and combinations imported from G mode. At this time, the same triangles included in both
combinations are designated as triangles that can be contributed to the Eyring model, and
IRs are calculated based on the triangles.

The final change is to separate the IRs memory for ER and LR mode. Multi-threaded
algorithms cause data races due to shared resources. To prevent this, a synchronization
lock such as a mutex is required, but the cost of such a lock degrades the performance of
the algorithm.

To reduce this cost, we remove locks for the synchronization in the IR buffer that stores
IRs in each thread, and separate buffers for ER and LR to store IRs. If two threads create
IRs and store them in respective IR buffers, the IRs in the two buffers are merged through
the merge-IR step, as shown in Figure 6.

4.2. Thread Synchronization

As the proposed algorithm performs parallel processing through two threads, thread
synchronization is essential. We use three functions (Wait, SetEvent, ResetEvent) for
thread synchronization. Wait (Object) is a function that waits until a specific event object
becomes true. Set/ResetEvent (Object) are functions that change the signal of an event
object to true/false. For example, if there is an event object called T0 and Wait (T0) is
called, the thread waits until SetEvent (T0) is called. Conversely, ResetEvent (T0) blocks the
corresponding thread.

We perform thread synchronization as shown in Figure 10. Thread01 performs DT,
G and ER modes and thread02 performs LR mode. We divide LR mode into ray tracing
processing for LR and (merge-hit-triangles + IR calculation) to increase the parallelism of
the algorithm.
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Thread02 starts after SetEvent (LR0) is called on thread01. Then, thread02 waits until G
mode finishes. If SetEvent (LR1) is called in thread01, merge-hit-triangles and IR calculation
are performed in thread02. In thread01, merge-IRs are executed when IR calculation of LR
is finished.

5. Experimental Results

This section introduces the experimental environment and settings (Section 5.1) and
describes the experiments performed to determine the appropriate number of rays for load-
balancing of the proposed algorithm (Section 5.2). In addition, it evaluates the performance
of the proposed multi-threaded algorithm through a performance comparison with the
single-threaded algorithm (Section 5.3) and assesses algorithm overhead by determining
the memory usage and CPU utilization of single-threaded and multi-threaded algorithms
(Section 5.4).

5.1. Experimental Setup

We implemented the sound propagation algorithm in the form of a native plug-in (.so,
.dll) and connected it to the Unity game engine to conduct experiments (see Figure 11).
The performance of the sound propagation algorithm varies greatly depending on the ray
depths and the number of triangles and valid paths, which are inherently changed by the
characteristics of the scenes.
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Figure 11. Sound propagation algorithm running on Galaxy S20+.

For this reason, as shown in Figure 5, we adopted two indoor scenes and two hybrid
scenes mixed with indoor and outdoor. Sibenik, concerthall, and angrybot scenes are static
scenes, and racelake is a dynamic scene. We conducted experiments with the sound source
and listener stopped to give a performance load to the sound propagation algorithm, and
the experiment device was a Galaxy S20+.

5.2. Load-Balancing

When the sound propagation algorithm-based ray tracing shoots more rays, it finds
more valid paths, making it more likely to generate appropriate audio that matches the
visual rendering. However, shooting a large number of rays (10k, 100k) degrades sound
rendering performance.

In addition, in a multi-threaded algorithm, appropriate load-balancing between
threads performing tasks is essential. We needed to appropriately adjust the number of
rays that most affect the performance of the two threads to find the optimal load-balancing
in our algorithm. Thus, we conducted an experiment to find an appropriate ratio between
the number of guide rays used in G and ER modes and the number of source rays used in
LR mode.

We set the number of sound sources, the number of guide rays, and the maximum
depth to 8, 1024, and 4, respectively, in the Sibenik scene, which is the worst case of the
scenes. After that, we measured the increase rate of the performance of the multi-threaded
algorithm compared to that of the single-threaded algorithm by increasing the number of
source rays (64 to 4096) for each sound source (see Figure 12). The load-balancing of the
two threads improved with the performance increase.
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The experimental results showed that the performance increase rate gradually rose
when the number of source rays went from 64 to 1024, and the performance increase rate
was the highest when the number of source rays was 1024.

This means that when the number of source rays is less than 1024, LR mode must wait
for a certain time until ER mode is finished because the throughput of LR mode is greater
than that of ER mode. This waiting time causes performance degradation.

Conversely, when the number of source rays is 1024 to 4096, the throughput of LR
mode is higher than that of ER mode. Because of this, ER mode must wait for a certain time
until LR mode is finished, so the rate of increase in performance gradually decreases. That
is, the proposed algorithm shows the best performance and the best load-balancing when
the ratio of the number of guide rays to the total number of source rays is about 1:8 in the
worst case.

5.3. Performance

Table 2 shows the performance comparison of the single-threaded and multi-threaded
algorithms for the four scenes. We set the maximum depth, the number of guide rays, and
the number of source rays to 4, 1024, and 1024, respectively. We measured the number
of valid reflection and diffraction paths and the average frame time for 100 frames while
increasing the number of sound sources (1, 2, 4, and 8) for each scene.

Table 2. Performance comparison of single-threaded and multi-threaded algorithms for four scenes.

SoundSource Reflection Path
(max: 4-Order)

Diffraction
Path

(max: 2-Order)

Single-
Threaded

Frame Time
(ms)

Multi-
Threaded

Frame Time
(ms)

Increase
Rate (%)

Sibenik

1 36 7 57.2 32.4 76.54

2 77 18 90.2 49.2 83.33

4 153 20 162.6 82.8 96.38

8 315 53 302.6 163.6 84.96

Concert
hall

1 62 0 57.8 35.8 61.45

2 128 2 95.0 50.4 88.49

4 266 8 167.4 84..8 97..41

8 562 16 315.6 154.2 104.67

Angrybot

1 11 2 25.4 14.4 76.39

2 30 9 37.8 19.8 90.91

4 53 15 62.2 34.6 79.77

8 84 28 100.1 64.6 54.95

RaceLake

1 75 0 45.8 25.2 81.75

2 180 0 78.6 50.6 55.34

4 295 2 139.8 97.4 43.53

8 608 5 218.4 132.8 64.46

The experimental results showed that the performance increase rate for each scene
based on 8 sound sources was 84.96% in sibenik, 104.67% in concerthall, 54.95% in angrybot,
and 64.46% in racelake. These showed that the performance of the proposed multi-threaded
method was on average 77.26% better than the of the single-threaded method.
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5.4. Memory Usage and CPU Utilization

We measured CPU utilization and memory usage to assess the overhead introduced
by our multithreaded algorithm and compared it to that of the single-threaded algorithm.
We used Snapdragon Profiler as the program for measurement.

In the case of the CPU utilization experiment, we fixed the FPS of the two comparison
groups for a fair experiment and set the maximum depth, number of sound sources, number
of source rays, and number of guide rays to 4, 8, 1024, and 1024, respectively. We then
measured the average CPU utilization for 30 s.

Table 3 shows the average CPU utilization and the difference between the single-
threaded and multi-threaded algorithms. The experimental results showed that the CPU
utilization of the single-threaded algorithm was lower than that of the multi-threaded
algorithm in all scenes.

Table 3. Average CPU utilization comparison of single-threaded and multi-threaded algorithms.

Average CPU Utilization (%)

Scene Single-Threaded Multi-Threaded Difference

Sibenik 16.30 17.30 1.00

Concert hall 17.80 19.20 1.40

Angrybot 11.20 11.60 0.38

RaceLake 14.60 15.40 0.71

However, the difference (%) between the two utilizations was 1.00, 1.40, 0.38, and 0.71
in sibenik, concerthall, angrybot, and racelake, respectively. In other words, our algorithm
does not use many CPU resources even though it uses a multi-threaded method. This is
because it uses only two threads and does not constantly use CPU resources.

In the case of the memory usage experiment, we used the same conditions as in the
CPU utilization experiment and measured only the memory usage used in the sound
propagation algorithms for 30 s while increasing the number of sound sources (1–8) in
sibenik.

Table 4 shows the memory usage and the difference between the two algorithms. The
experimental results showed that the difference in memory usage (MB) was 1.80, 1.49, 0.63,
and 0.39, respectively, depending on the number of sound sources (1–8). This can be said to
have low memory overhead because multi-threaded algorithms do not increase memory
usage significantly.

Table 4. Average memory usage comparison of single-threaded and multi-threaded algorithms in
sibenik.

Average Memory Usage (MB)

Sound Source Single-Threaded Multi-Threaded Difference

1 378.63 380.43 1.80

2 382.04 383.52 1.49

4 386.16 386.79 0.63

8 395.49 395.88 0.39

As can be seen from the above experimental results, the proposed multi-threaded
algorithm not only has higher performance than the single-threaded method, but also is
more suitable for the mobile device environment as it minimizes the increase in memory
usage and CPU utilization.
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6. Conclusions

This paper proposed a multi-threaded sound propagation algorithm to improve the
performance of sound propagation algorithms in mobile devices. To achieve this, we
mainly used three methods. First, we performed what is called G mode for parallel task
processing. This enabled ER and LR modes to perform in parallel by finding combinations
of hit-triangles likely to create valid paths by shooting multiple rays from the listener.

Second, we split the processing into two threads: ER mode, which produces early
reflection, and LR mode, which produces late reverberation. Finally, we solved the problem
of the race condition by applying a suitable thread synchronization technique.

Based on this, we showed that the two modes can be simultaneously processed in
parallel to improve the performance of the sound propagation algorithm. In addition,
since this method uses only two threads and does not increase the memory usage or CPU
utilization rate compared to the single-threaded method, we found that it is suitable for
application in the mobile device environment.

We verified the performance, memory usage, and CPU utilization of the proposed
algorithm in various scenes. The experimental results showed that the performance of
the multi-threaded method was about 1.77 times better than that of the single-threaded
method. Moreover, the average increase rates (%) in terms of memory usage and CPU
utilization of the multi-threaded algorithm were 1.07 and 0.87. These increase rates were
with negligible overhead, indicating no burden of additional overhead. That is, it showed
that our algorithm is suitable for application in a mobile device environment and exhibits a
certain increase in performance.
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