ﬁ Sensors

Article

Reinforcement Learning Based Topology Control for

UAV Networks

Taehoon Yoo ¥, Sangmin Lee ¥, Kyeonghyun Yoo ‘© and Hwangnam Kim *

check for
updates

Citation: Yoo, T.; Lee, S.; Yoo, K.;
Kim, H. Reinforcement Learning
Based Topology Control for UAV
Networks. Sensors 2023, 23, 921.
https:/ /doi.org/10.3390/523020921

Academic Editor: Petros S. Bithas

Received: 4 November 2022
Revised: 14 December 2022
Accepted: 10 January 2023
Published: 13 January 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
* Correspondence: hnkim@korea.ac.kr; Tel.: +82-2-3290-4821

Abstract: The recent development of unmanned aerial vehicle (UAV) technology has shown the
possibility of using UAVs in many research and industrial fields. One of them is for UAVs moving
in swarms to provide wireless networks in environments where there is no network infrastructure.
Although this method has the advantage of being able to provide a network quickly and at a low
cost, it may cause scalability problems in multi-hop connectivity and UAV control when trying
to cover a large area. Therefore, as more UAVs are used to form drone networks, the problem of
efficiently controlling the network topology must be solved. To solve this problem, we propose a
topology control system for drone networks, which analyzes relative positions among UAVs within
a swarm, then optimizes connectivity among them in perspective of both interference and energy
consumption, and finally reshapes a logical structure of drone networks by choosing neighbors
per UAV and mapping data flows over them. The most important function in the scheme is the
connectivity optimization because it should be adaptively conducted according to the dynamically
changing complex network conditions, which includes network characteristics such as user density
and UAV characteristics such as power consumption. Since neither a simple mathematical framework
nor a network simulation tool for optimization can be a solution, we need to resort to reinforcement
learning, specifically DDPG, with which each UAV can adjust its connectivity to other drones. In
addition, the proposed system minimizes the learning time by flexibly changing the number of steps
used for parameter learning according to the deployment of new UAVs. The performance of the
proposed system was verified through simulation experiments and theoretical analysis on various
topologies consisting of multiple UAVs.

Keywords: wireless network topology; UAV formation control; deep reinforcement learning;
step optimization

1. Introduction

Recent advances in Unmanned Aerial Vehicle (UAV) technology have opened up the
possibility of utilizing UAVs in many research and industrial areas. Initially, UAVs were
developed for military purposes, but now UAVs can be used in a wide variety of civilian
fields, such as video shooting, surveillance for crime investigations, logistics delivery, and
communication infrastructure provision [1]. Meanwhile, UAVs have also become smaller,
cheaper to use, and have advanced in terms of freedom and maneuverability. This has
led to the emergence of approaches to flocking multiple UAVs for different missions. As a
representative example of such an approach, there are many studies to provide a network
infrastructure using UAVs in an area where there is no infrastructure or in a disaster
situation in which the network infrastructure is lost. In such a network environment, using
the high mobility and freedom of UAVs to the fullest and using multiple UAVs in a swarm
has the great advantage of quickly providing a low-cost network.

However, in order to provide an efficient network topology by utilizing these multiple
UAVs, it is necessary to provide an optimal network topology in consideration of network
operating conditions according to the constantly changing surrounding environment. In

Sensors 2023, 23, 921. https:/ /doi.org/10.3390/523020921 https:/ /www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020921
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5660-0994
https://orcid.org/0000-0003-2554-2749
https://orcid.org/0000-0002-3041-754X
https://orcid.org/0000-0003-4322-8518
https://doi.org/10.3390/s23020921
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020921?type=check_update&version=1

Sensors 2023, 23,921

20f18

other words, the network topology must be structured in a way that maximizes network
throughput and energy efficiency while maintaining connectivity between UAVs. In a
typical conventional UAV network control, each UAV makes a link connection to all UAVs
within transmission range. Numerous link connections can provide stability to the entire
network, but it is extremely inefficient. Those link connections generate more network
overhead and consume more power than is actually required.

Although some research has been conducted to control the transmission power of a
network topology composed of numerous nodes [1], the presence of a centralized controller
may limit the scalability of network control using multiple UAVs. To overcome these
limitations, a control system that configures a network topology for multiple UAVs based
on the Minimum Spanning Tree (MST) concept can be a desirable solution. With this
scheme, each UAV partitions its surrounding 3D space into a given number of subspaces,
then builds up an MST for each subspace, and finally it can create a forest of multiple
MSTs that forms a topological network structure that minimizes power consumption,
maximizes network throughput, and maintains optimal connectivity for a given formation
of UAVs. However, there are two important issues to address in this system. The one
is how to optimally determine the number of subspaces, since each UAV has its own
connectivity and network environment that varies over time; the other one is to speed up
the procedure of deciding that number. To address the first issue, we employ reinforcement
learning, specifically deep deterministic policy gradient (DDPG). The resulting scheme
allows the network topology to efficiently learn to maximize energy efficiency and network
throughput in a continuous action space. Then, to resolve the second issue, the proposed
scheme speeds up the learning speed by flexibly changing the number of steps to adjust
parameter learning whenever a new UAV is deployed. Finally, the resulting network
adapts to a given environment and provides an optimal network topology, providing a
drone network with optimal energy efficiency and network throughput at high speed. To
summarize the contributions of this paper:

* The proposed system can provide an optimal network topology by using multiple
UAVs in an environment without network infrastructure.

¢ The proposed system can construct a UAV network topology network by leveraging
MST, which can optimize energy consumption and network throughput.

¢ The proposed system learns the optimal network topology using RL.

e The proposed system adjusts the number of steps used in RL to reduce training time
for parameters and optimize learning.

The remainder of this paper is organized as follows. Section 2 introduces prior re-
search on UAV networking technology, RL, and ADAM optimizer. Section 3 describes the
overall design of the proposed system. Section 4 shows the experiments and performance
evaluation results. Finally, Section 5 concludes this paper with explaining remarks.

2. Related Work

Many other studies are underway related to our work to build a wireless network
topology utilizing multiple UAVs. This section describes recent studies related to UAV
formation algorithm, DDPG algorithm of RL, and ADAM Optimizer.

Research on the problem of arranging multiple UAVs in optimal positions is being
conducted from various aspects. Depending on the purpose, multiple UAVs can perform
various missions such as obstacle collision avoidance [2], flight information of multiple
UAVs [3], and surveillance tasks such as target reconnaissance [4]. For the successful use of
UAVs in a variety of missions, there have been studies using a deep learning approach to ac-
curate localization techniques to improve accuracy [5] or using ultra-wideband positioning
system to provide high positioning accuracy and low latency for indoor environments [6].
In addition, in order to improve the accuracy of UAV position estimation, a study using
RTCM messages of RTK-GPS was conducted [7]. Furthermore, in relation to the problem

Sensors 2023, 23,921

30f18

of transmitting information distributed in the phased array of several UAVs, a study was
conducted to formulate it as a differential game problem [8]. They tried to solve this by
designing an open-loop Nash strategy rather than a classical Nash strategy. Since the algo-
rithm for forming such a UAV aims to construct an optimal network topology according
to a given mission performance environment, it is possible to construct an optimal UAV
network topology through a system that can control the dynamic network topology.

Research on the problem of deploying multiple UAVs in optimal locations is closely
related to the problem of constructing optimal wireless network topologies. Since the key
parameters considered in the UAV positioning problem are also used as key parameters
in the network topology configuration, a series of studies related to UAV position have a
direct impact on the network topology configuration. There is also an approach to achieve
energy efficiency by optimizing fuel consumption in practical UAV operation [9]. There are
also attempts to solve the energy efficiency problem by utilizing genetic algorithms when
constructing a large number of UAVs [10]. An approach to construct an optimal network
topology by applying game theory to the problem of energy efficiency [11], or a study to
solve the problem of energy efficiency by efficiently managing the collected data in terms of
energy is in progress [12]. In this paper, the problem of energy efficiency is solved through
efficient configuration of network topology using MST [13,14].

The DDPG algorithm is an algorithm that extends the idea of deep Q-learning into
continuous action domains [15]. Learning in these continuous action domains can be
applied in a variety of fields. Even if sparse rewards are provided, DDPG can be quickly
learned when implemented in real world environments such as robots [16]. Effective results
can be obtained because learning proceeds with continuous action domains even in complex
environments where cars are trained for autonomous driving [17]. DDPG can also be used
to find optimal voltage control in operating power grids [18]. As follows, DDPG shows
good performance in various learning in continuous action space. Consequently, it can
also be applied to the problem of partitioning a three-dimensional continuous space for
constructing a network topology.

ADAM is a method for optimizing parameter learning in reinforcement learning by
referencing past gradient changes and applying variable step sizes based on them. ADAM
is known to have superior performance compared to other optimizers. ADAM has already
shown optimal performance in the field of RL, but various studies are being conducted
to develop it [19,20]. As one of the various studies, there have been attempts to converge
faster using the Nesterov method than using the momentum method when using expo-
nential moving averages [21]. In another paper, research on the problem of convergence
to local minima that may occur while using ADAM is conducted. The authors solve the
problem by using an exponential moving average that gives small weights to historical
information [22]. In addition, studies have been conducted to prove the convergence of the
ADAM optimization method [23].

3. System Design
3.1. System Concept

We propose a RL-based UAV network topology control system that optimizes a
network consisting of multiple UAVs moving in swarms. The proposed system aims
to continuously maintain an optimal network topology by reflecting changes in the
position information of each UAV. Figure 1 shows the overview of the proposed system.
UAVs deployed in three-dimensional space construct a network topology based on space
partitioning technology. In the next step, RL is used to reflect the real-time position
information of UAVs and provide an optimal network topology. Finally, we optimize the
entire system by shortening the learning time of RL by adjusting the size and number of
step functions.

Sensors 2023, 23,921

40f18

Figure 1. The overview of proposed topology control.

% MST of UAVs in a partition

[S T
» ,’ Disconnect links considering

topology complexity

Select one-hop links from

Figure 2 shows the overall learning procedures in the system. The proposed system
consists of three modules: network topology control, RL and step optimization. Through
the network topology module, each UAV collects connection information for neighboring
UAVs within its maximum transmission range. Each UAV then partitions the surrounding
3D space into multiple subspaces according to a given number of subspaces, and then
builds a minimal spanning tree (MST) based topology for each subspace. Finally, these
topologies reshape the connections, preserving the original connections obtained when
gathering information from neighboring UAVs. Therefore, the problem of how many spaces
to divide for each UAV is fundamental in the proposed network topology module.

/ Network Topology Control

Position Neighbc}r Update

Sector Selection Link Configuration

-

i
A
w7

Reinforcement Learning

Initialize networks » Select action & ,> Update
& parameters ”| Observe rewards | Critic network

$ Update)| Update Target
Actor policy md network parameters

_

E

-

Step Optimization

J \;)

Change the Update
number of Steps Step fuction

Observation of Variable step size
Reward Results setting
.

J

Figure 2. The overall oprations of proposed system.

Sensors 2023, 23,921

50f18

In the RL module, the optimal network topology is learned through the actor and
critic network of the neural network and policy updates. The reward calculated in this
process updates the parameters of the critic network, actor policy, and target network.
Finally, the Step Optimization module optimizes the step function used for RL to reduce
the training time. This module observes the reward values derived as a result of learning
and continuously adjusts the size and number of training steps. Using variable training
steps reduces the training time for real-time changing network topologies and increases the
adaptability of the entire system.

3.2. Network Topology Control

This subsection describes the UAV network topology control module. Each UAV
recognizes other UAVs within the maximum transmission range. Next, the UAV divides
the space around itself according to the number of subspaces. Then, it connects the links
by selecting the nearest other UAVs in the divided spaces. Consequently, the network
topology control algorithm constructs an optimal network topology using MST for each
patitioned space. Table 1 lists the variables used in proposed system and Algorithm 1
shows the pseudocode for network topology control algorithm.

Algorithm 1 Network Topology Control Algorithm

1: Initialize neighbor UAVs’ position, distance, geometry vector:
Puav,Duav,Guav < @

2: for 1 < episode < Epiyay do

3: Update neighbor UAVs’ position: P4y ¢ < updated position

4: Calculate Distance between UAVs: Dyj4y ¢ < calculated distance

5. Select links from the MST of UAVs in a partition:
Guav, + updated link information

6: Get average hop-count, power, and degree information related to network topology:
Thop,tr Tpower,t/ Tdegree,t A GUAV,t

7. Set state from hop-count, power, and degree information:
STOPO,t = [Thop,t/ TPOZUET’J/ Tdegree,t]

8: end for

Algorithm 1 is performed to construct a network topology of UAVs. At the beginning
of the algorithm, the current position information of the UAVs is updated in Py 4y. Beacon
messages are used when collecting location information. Each UAV periodically broadcasts
a beacon message specifying its current location, disseminating its location information
throughout the network in real time. Next, distance information Dy 4y to other surrounding
UAVs is calculated based on the updated position information of UAVs. The network
topology control module connects the UAVs with the calculated distance information of the
UAVs. Periodically, each UAV divides its transmission range evenly into several partitions.
In each partitioned space, the UAV selects one or more nearby UAVs and removes other
links. This process removes unnecessary link connections and configures an MST-based
network structure in the divided subspace.

Since each UAV determines the number of links to be connected with nearby UAVs
based on the number of divided partitions, reasonable space partitioning is essential for
optimal link connectivity. If the number of partitions is large, too many link connections will
be formed over the whole network and power consumption will increase. If the number of
partitions is small, too small link connections can generate a lot of network overhead. As a
result, we introduce the concept of reinforcement learning for optimal space segmentation,
which is discussed in a subsequent section. The completed network topology is stored in
Guav and used for evaluation of the entire network topology.

Sensors 2023, 23,921

6 of 18

Table 1. Variables used in proposed system.

Notation Description Notation Description
Position information . .
Pyav of UAVs t Number of steps per time period
Distance information .
Dyav of UAVs Stepmax Maximum number of steps
Guav Geometry YTOPO The target value of RL

information of UAVs
Average number of

Thop hops for the Ltoro The loss function of RL
network topology
Average energy
Tpower consumption of 62 Critic network parameter
topology links
Average degree of the
Tegree all network o Actor network parameter
topology nodes
Stopro Stgifet(:;é?sg;f B Replay buffer value of DDPG
Atop0 Action vajue used N Noise used in RL
Agize Step size of action T V;:\i,asmmeilelrvsll)lilzfsr
A Variable step size r Sum of the reward results of the
change of action sum last steps
R Reward value used F Average of the reward results of the
ToPO in RL g last steps
' Total number Hyperparameters that control the
Epimax of episodes Hione number of s.teps u§ed for
step optimization
Epi T/F value to end H Hyperparameters of results close to
Ptdone the episode fearn the upper limit of rewards

3.3. Reinforcement Learning

In configuring a network topology using multiple UAVs, the problem of determining
the number of sectors to partition is an important problem for efficient network topology
control. According to Algorithm 1, each UAV builds an MST-based network topology for
each subspace, which may be optimal for that space. However, it may not be optimal
over the entire space, as it cannot be assumed that the UAV placement follows a uniform
distribution in terms of number and location of UAVs. Thus, the process of determining
how each UAV partitions the space around it (or into how many subspaces) determines
the final optimality of the overall network topology. We adopt the RL to optimize sector
partitioning problems.

In order to train the proposed system, we had to find a suitable algorithm for learning
continuous changes in the 3D space. Compared with Deep Q-Networks (DQN), the DDPG
is known to continuously expand the action space to enable a variety of learning in more
dimensions. The DDPG is an off-policy algorithm that combines the advantages of DOQN
with an actor-critic approach, and is a policy gradient algorithm that computes deterministic
policies. DDPG uses a replay buffer to reduce correlation between learning samples. Since
the proposed system needs to use a continuous action space for spatial division in 3D
environment, the DDPG that learns in a continuous space is suitable.

Algorithm 2 shows the detailed process of RL of the proposed system. In the training
of the system, the agent observes the state S; of the environment at time step t. The actor
network Q(S, A | #9) with the network parameter 69 is used to determine the action to
perform in a given state S;. The agent performs the selected task, the state transitions to the
new state S;1 1, and the agent receives the reward R;. For every time step, the agent stores
the trajectory segments [St, As, Ry, Sp41] in the replay buffer. A critic network pu(S | 6/)

Sensors 2023, 23,921

7 of 18

with network parameter 6# evaluates whether the behavior led the agent to a better state,
and the feedback from the critic network is used to optimize the actor network. Based on
the DDPG, after a set number of steps, a gradient for optimization of the actor and critic
networks is calculated using the replay buffer.

Algorithm 2 RL Algorithm

1: Randomly initialize critic network Q(Stopo, Atopo | 89) and actor u(Stopo | 6#) with
weights 62 and 6#

2. Initialize target network Q' and p’ with weights 62 « 69, 91 « 6#

3: Initialize replay buffer B

4: for1 < episode < Epiyuy do

5. Initialize a random process N for action exploration

6: Receive initial observation state S;

7. forl <t < Stepyax do

8: Select action Ay = (S | 6#) + N; according to the current policy and explo-

ration noise

9: Execute action Arppo; and observe reward Rropo; and observe new state
STOPOt+1
10: Store transition (STOPO,t/ ATOPO,t/ RTOPO,tr STOPO,H—l) in B
11: Sample a random minibatch of N transitions (S¢, At, Ry, S¢41) from B
! /
12: Set yropo,s = Rroro, + 1Q' (Storot+1, # (Stopo,+1 | 07) | 69)
13: Update critic by minimizing the loss :
Lroro = 5 Lt (yroros — Q(Storo Atoroy | 09))?
14: Update the actor policy using the sampled policy gradient :
Vor] = 5 Lt VaQ(Storo, Atoro | 09) |s—s, a—u(s;) Ver#(S | ") Isono,
15: Update the target networks parameters :

09 « 02 + (1 — 1)6<
o1 — 0 + (1 — 7)o"
16: end for
17: end for

In the proposed system, feedback is applied using the object function yropo in the
actor network and the loss function Ltopp in the critic network. Lropo is a loss function
of the critic network, and the critic network updates in the direction of minimizing the
loss. After the critic network is modified, the actor network updates the new policy using
the modified value using the object function y1opp. In the general policy gradient of the
system, the target value yropo for the target actor network can be calculated as follows:

yroros = Rroro +1Q' (Storori1, #' (Stopost | 61) | 69). @
After that, the calculated target value is updated through the following loss function:

1
Lroro = Y (vroro — Q(Storo,t Atoro,:
t

69))%. ©)

The actor network applies feedback from the critic network to maximize and update the
objective function as follows:

1
Vo] ~ NZVAQ(SrA 169) 55, a—u(s,) Vori(S | 60") |s,. (©)
t

Finally, the DDPG updates the parameters of the target neural network. Here, T is a very
small value, which determines the rate of reflection of the target network when updating:

09 « 162+ (1 — 1), 4)

Sensors 2023, 23,921

8 of 18

0"« O + (1—1)6" . ()

3.4. Optimization Modeling

In RL, the optimization method commonly adopted for parameter learning is the
ADAM. Typically, the step function for updating parameters iterates as much as the initial
fixed value and then ends the episode. The number of step functions required for learning
depends on the formation of the network topology. It is inefficient to use the same number
of learning step functions for all network topologies. Therefore, the proposed system intro-
duces an adaptive and variable learning processes that can flexibly reflect the modifying
network topology. We use a modified step function to increase the learning rate of the entire
reinforcement learning system. As the learning rate of the network topology increases, the
time sensitivity of the system simultaneously increases. Algorithm 3 provides a detailed
description of step function optimization.

Algorithm 3 Step Function Optimization

1: while exception occurred do

2: ift > Hyyye then

3: fort — Hyppe < k < tdo
4: Fsum, Favg 0

5: Foum < Foum + RTOPO,k
6: F[wg <~ Fsum/Hdone

7: if Favg > Hjpprny then
8: Epijone = True

9: else
10: Epij,e = False
11: Asize < Asize + Achange
12: end if
13: end for
14: end if

15: end while

As the learning is repeated within the episode, the step optimization function is
executed when the number of step functions increases to more than the specific optimization
hyperparameter Hj,,,. In the step optimization function, the average of recent steps is
obtained by the number of Hy,,,, and compared with Hj,,,,,, which is a value close to the
maximum reward result. If the average value Fyq of the recent step is greater than Hj.y.,,,
the learning of the corresponding episode is terminated. Otherwise, the step optimization
function changes the size of the action and repeats the same process. The action size of the
next step is adjusted to reflect the learning progress for each UAV network topology. The
system runs iteratively and checks the reward of each step. If the average of recent step
rewards remains high enough, the system evaluates that learning has converged and ends
the episode. As a result, the proposed system optimizes learning by adjusting the size and
number of steps used for training.

3.5. System Environment

The agents continually interact with the environment while performing learning, so
it is important to construct an appropriate environment. As the episodes pass, UAVs
move and form a new network topology. The proposed system initially forms the network
topology with the number of sectors declared as hyperparameters. After that, the number
of sectors for the optimal network topology is learned according to the changing location
information by reflecting the learning results. In the proposed system, it is initially planned
to train using 100 episodes of 1000 step functions. This subsection provides a detailed
description of the state, action, and reward.

Sensors 2023, 23,921

90f18

3.5.1. State

The states used for learning are as follows:

Storot = [Thop,t/ Tpower,tr Tdegree,t] (6)

The state is composed of three elements: hop, power consumption, and degree, which
can best represent the UAV network topology. First, the hop means the average number of
links each UAV has. Increasing the number of hops in a network topology means increasing
the number of links in the network topology, which usually negatively affects the overall
network topology. Second, power consumption measures the energy consumption of the
link according to the distance between UAVs. Good energy efficiency can be obtained if
the distance of the links constituting the network topology is efficiently planned. Third,
the degree is the average of the number of UAVs that one UAV is connecting in one-hop.
If it becomes too large, the overhead of the network increases. Since these three elements
can represent various characteristics of the UAV network topology, they are suitable as a
component of the state for the learning model.

3.5.2. Action

In the proposed system, the number of sectors dividing the space around the UAV is
used as an action for learning. As the number of sectors changes, the number of links that
UAV connects to one-hop changes, so state components such as hop, power consumption,
and degree are all affected. As a result, a change in action leads to a change in the next
state, enabling smooth learning of the entire system.

3.5.3. Reward

The rewards used for learning are as follows:

Riisconnects if disconnection occurs
R(t) = Rout, if ATOPO/t > Aporder (7)
Rropo,t = Hpop * Thop,t+ otherwise

Hpower * Tpower,t + Hdegree * Tdegree,t

Rewards are given in three cases. First, Ryjsconnect is @ reward given when UAVs in 3D
space construct a network topology according to a given action, and unconnected UAVs
occur. In this case, no reward is given and the system explores another action. The second
is a reward given when the action exceeds Ay, 40, due to increasing action. Ap4., is set to
20 as a hyperparameter, and if the action value exceeds this, a negative reward is given for
smooth learning because the calculated reward value is inappropriate for learning. The
third is the case where the action is appropriately set so that learning can be performed by
calculating the reward of the network topology. The reward is calculated as the weighted
sum of the three hyperparameters of Hj,,, Hpower and Hyegree and the network components
of Thop,t/ Tpower,t and Tdegree,t-

4. Performance Evaluation

We designed our proposed system and configured an environment that can perform
the missions described in Section 3.1. We implemented the simulation using Python and
measured the numerical data to plot the results using MATLAB. We used the OpenCV
library to verify the network topology for various experimental conditions. We evaluated
the proposed system by changing the formation shape, number of UAVs, and step function.
Default value of each parameter is listed in Table 2.

Sensors 2023, 23,921 10 of 18

Table 2. Simulation parameters.

Item Value Item Value

Space size 1000 m x 1000 m x 1000 m Critic network 0.002
learning rate

Number of UAVs 10, 20, 30, 40, 50 Actor network 0.001
learning rate

Maximum

. 20 dBm Total episodes 100
transmission power

discount factor

Frequency band 2.5GHz 0.99
gamma
Antenna gain 2.5 dBi T 0.005
Receive signal .
threshold —70 dBm Buffer size (50,000, 64)

4.1. Network Topology Control for Typical Formation

In order to check whether the learning of the proposed system proceeds smoothly, the
training results of several typical deployments consisting of multiples UAVs were checked.
Each typical structure considered the shape that the UAV fleet is likely to construct in a real
environment. As a result, several typical UAV formations of 30 UAVs were deployed in
the simulation space: sphere, cube and pyramid. The deployed UAVs hover by moving
their position slightly, maintaining the first defined typical formation for 100 episodes.
Because the position change of each UAV is small, learning converges quickly based on
the proposed system. When the proposed system reaches a certain level of convergence,
step optimization is applied to reduce the number of repeated step functions. The system
confirmed that learning proceeds well in the network topology of each typical formation.

Figure 3 compares the degree of connectivity before training ((a), (b), and (c)) and after
training ((d), (e), and (f)). Figure 3a shows the initial network connectivity before training,
with 30 UAVs are placed in a spherical shape in a three-dimensional space. In more detail,
the spherical structure is a formation in which each UAV is placed almost similar distance
from the center point of the sphere and is evenly spaced on the surface of the sphere.
Similarly, Figure 3b shows the initial network connectivity before training, with 30 UAVs
are placed in the form of a cube in a three-dimensional space. The cube structure uses a
total of 26 UAVs to form the vertex of the cube and the center point of the cube surface, and
4 UAVs are placed in the middle layer inside the cube. Finally, Figure 3c shows the initial
network connectivity before learning, with 30 UAVs placed in a pyramid shape within
a three-dimensional space. The pyramid structure was considered a hierarchical form
consisting of a total of four layers. The four layers are composed of 1, 4, 9, and 16 UAVs
from the top, respectively, forming a pyramid shape. Before training, the network topology
constructed by multiple UAVs consists of connections to all neighboring UAVs within the
transmission range. The network topology without training shows a link connection state
that significantly increases network overhead due to too many connections.

Figure 3d—f shows the learning results for the sphere, cube, and pyramid topology
described above. After learning, the network topology has eliminated all unnecessary link
connections compared to previous connection states. It was confirmed that as the episodes
increased and learning progressed, the network topology remained in a stable formation.

Sensors 2023, 23,921

110f18

(@) (b) (0)

(d) (e) ()

Figure 3. Network connectivity of typical UAV formation after training: (a) Full connection of Sphere.
(b) Full connection of Cube. (c) Full connection of Pyramid. (d) Training result of Sphere. (e) Training
result of Cube. (f) Training result of Pyramid.

Figure 4 shows the simulation result of typical UAV formations. Figure 4a shows
the subspace change results for given UAV formations (sphere, cube, and pyramid). The
simulation results show that all three typical formations show that the changes in the sector
are quite subtle even though training proceeds with the increase in episodes. When the
episode progressed about 50 times, it was confirmed that the system, which judged itself to
have fallen into the local minima, went through the action search process for a while and
then restored to a stable state.

0 —
22 Sphere
Sphere ~500 Cube
20 Cube ! Pyramid
Pyramid
18 1,000
16 o
0 s -1,500
[=]
2 3
g 4
2 © -2,000
o (=2}
g 8
o
£ Z 2500
5
=z
3,000
-3,500
2 4,000
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 920 100
Episode Episode
(a) (b)

Figure 4. Simulation results of typical UAV formation (spheres, cubes, pyramids): (a) Subspace
Change. (b) Episodic Reward.

Figure 4b shows the episodic reward for typical UAV formations. The episodic rewards
had already converged to a near-optimal state before 10 episodes passed. Since the learning
of the network topology was continuously output with high rewards, it could be observed
that the episodic rewards were rather reduced when the exploration process for new actions
was included.

Sensors 2023, 23,921

12 0f 18

4.2. Reinforcement Learning Results for Multiple Nodes

Figure 5 compares the simulation results of 5 randomly selected nodes to check
whether all nodes of the proposed system are trained. The five selected nodes were
constituent nodes of a 30-node UAV network and their positions were changed at the start
of each episode. The nodes divided the surrounding space using the position information
and distance information of the surrounding nodes in each episode. Next, these nodes
formed a network topology using the MST structure in the divided space.

20

T -
! ————Node 1 0
i
18 ' ‘1 Node 2 | |
[———-Node 3
i Node 4 500 |4
16 Hl]\ ————Node5 |

» Bt Average

5 i -1,000

=] b) 3

n ! 8

© ! 5 ~1.500

5 ! g

g " :% —-& - Node 1

z it -2000 Node 2
——— Node 3

Node 4
-2500 ——=— Node 5
—S— Average
-3,000 - - L L
4 L L L L 0 20 40 60 80 100
0 20 40 60 80 100 Episode

Episode
@

Figure 5. Simulation results of multiple nodes: (a) Subspace Change. (b) Episodic Reward.

(b)

Figure 5a shows the change in the number of sectors divided by each node as a result
of learning. It can be seen that the average value of the sectors of the five nodes maintains
between 7 and 10. It was confirmed that the position of each node was changed according
to the episode, resulting in slight differences.

Figure 5b shows the episodic reward results of the five nodes. Although the degree
of detailed learning varies depending on the position of the node, it was confirmed that a
high reward value was obtained after about 60 episodes.

4.3. Network Topology Control for Arbitrary Formation

In order to verify that the proposed system works well in the real environment, we
randomly placed UAVs in 3D space and observed the results. Furthermore, we have
verified using various numbers of UAVs to evaluate the scalability of the proposed system.
The simulations used 10, 20, 30, 40, and 50 UAVs, and the topology of the UAV fleet was
updated every 100 episodes. Among the many simulation results, the network connectivity
of the UAV fleet composed of 30, 40, and 50 UAVs was confirmed. Figure 6 shows the
diffenrence in connectivity between before training ((a), (b), and (c)) and after training ((d),
(e), and (f)).

Figure 6a—c shows the initial network connectivity before training, with 30, 40, and
50 UAVs are placed in arbitrary formation in a three-dimensional space, respectively.
Figure 6a shows the network connectivity of UAV fleet composed of 30 UAVs are placed
in arbitrary formation in a three-dimensional space. The 30 UAVs randomly placed in
the virtual space updated information on the surrounding UAVs and connected links to
construct the network topology. However, since the proposed system has not been applied,
it is a topological state with many unnecessary links. Figure 6b,c shows the network con-
nectivity of UAV fleet composed of 40 and 50 UAVs are placed in arbitrary formation in a
three-dimensional space. Even though the number of UAVs increased to 40 or 50, the same
pattern was shown at the beginning of the episode.

Sensors 2023, 23,921

13 0f 18

(d) (e) ()

Figure 6. Network connectivity of arbitrary UAV formations after training: (a) Full connection of
30 UAVs. (b) Full connection of 40 UAVs. (c) Full connection of 50 UAVs. (d) Network topology
control of 30 UAVs. (e) Network topology control of 40 UAVs. (f) Network topology control of
50 UAVs.

The proposed system constructed an efficient network topology by excluding unnec-
essary links as learning progressed. Training was performed consistently even though the
number of UAVs constituting the network topology increased. These positive learning
results were confirmed in Figure 6d—f. Figure 6d shows that a UAV fleet of 30 UAVs
maintains an optimal topology. The number of links constituting the entire UAV network
topology has been suitably reduced, resulting in improved network connectivity compared
to before learning. Likewise, Figure 6e shows network connectivity of 40 UAVs after learn-
ing. As with other simulation results, it can be confirmed that all UAVs are connected to
surrounding UAVs using at least one link without an isolated UAYV, forming the entire
network topology. Lastly, Figure 6f shows the network connectivity composed of 50 UAVs.
Through the continuous simulation results for the proposed system, it was confirmed
that even if the number of UAVs constituting the fleet increased, the learning for effective
topology configuration was well performed.

Figure 7 shows the simulation result of arbitrary UAV formation. Figure 7a shows the
subspace change results for given arbitrary UAV formations (10, 20, 30, 40, and 50 UAVs).
The fleet composed of 10 UAVs conducted training to find the optimal topology while
widely changing the subspace from 4 to 18. As a result, in a fleet of 10 UAVs, the proposed
system learned that the topology constructed using about 12 subspaces is the optimal state.
The number of subspaces is higher than that measured in a fleet with a larger number of
UAVs. Since the number of UAVs in space is smaller than in other situations, the number of
subspaces increased to connect links with as many UAVs as possible. Fleets composed of
more than 20 UAVs showed almost similar learning results. Each fleet formed an optimal
topology using about 6 to 10 subspaces.

Figure 7b shows the episodic reward for arbitrary UAV formations. It was confirmed
that the reward convergence of the formation composed of more than 30 UAVs is performed
before 10 episodes, whereas the reward convergence of the formation composed of 20 or
less UAVs is performed at 40 episodes. The proposed system outputs the optimal network
topology after a certain episode has passed in all verified situations.

Sensors 2023, 23,921

14 0f 18

0 vy -
22 ; g —&—10 UAVs
——touavs g 20 UAVs
20 20 UAVS 2,000 . #- 30 UAVs
30 UAVs 4 40 UAVs
18 M 40 UAVs & —*—50 UAVs
| i o 50 UAVS vf

-4,000 @

S

-6,000

Average Reward

Number of Sectors
3 ®

-8,000

® o

-10,000

-

-12,000
0 10 20 30 40 50 80 70 80 90 100 0 10 20 30 40 50 60 70 80 920 100

Episode Episode

[

() (b)

Figure 7. Simulation results of the arbitrary UAV formations (10, 20, 30, 40, 50 UAVs): (a) Subspace
Change. (b) Episodic Reward.

A video of the simulation results is referred in [24]. This video contains the results
of experiments conducted in Sections 4.1 and 4.3. In the early part of the simulation, the
learning results of the proposed system are visually shown for UAV formations randomly
placed in 3D space using 30, 40, and 50 nodes. It can be seen that the optimal network
topology is maintained even though the random formation formed by the UAV changes
with the increase of episodes. The next part of the simulation shows the process of forming
a typical UAV formation using 30 nodes and learning the most efficient network topology
from that shape. In a typical UAV formation, 30 UAVs constituting a network sequentially
change into a sphere-cube-pyramid shape. In the process of moving the formation, it
can seen that the learning is not interrupted and the optimal topology is continuously
maintained through the video.

4.4. Step Function Optimization

The verification related to the learning of the proposed system was conducted in both
Sections 4.1-4.3. The simulations performed in the previous section are designed to allow
learning to proceed for a long time by utilizing as many and sufficient number of step
functions as possible for each episode, focusing on whether the proposed system learns or
not. However, in order to optimize the network topology using UAVs, a fast learning rate
that can reflect the high mobility of UAVs is essential. Therefore, two approaches for the
number and size of steps for step function optimization were verified through simulation.
By applying the changing step size and number of times, the change in the step function
actually used for learning was verified.

Figure 8a shows the reduction in the actual number of steps used for learning. As a
result of applying the variable step function algorithm, it was found that the number of
steps used for training was reduced by 80% when the number of steps was changed and by
85% when the step size was changed. It was confirmed that when the number and size of
steps were adjusted together, the number of steps was reduced by about 86%. Reducing
the number of iterative step function executions directly means that the learning rate of the
proposed system increases.

Figure 8b shows the number of step functions required for each episode in the learning
process applying step optimization. The step optimization algorithm determines that
learning has been completed to some extent, it ends the learning of the corresponding
episode and moves on to the next episode. After a certain period of parameter learning,
the overall number of step functions used for learning has decreased. Many step functions
were used for learning in the early episodes of learning, but almost similar results could be
obtained with a relatively small number of steps and a considerably shorter learning time
after few episode progressed. The green and blue symbols in the graph each means the
number of step functions used for step optimization when the number of step and the step
size is changed. Subsequently, the black symbol indicates the number of step functions

Sensors 2023, 23,921

150f18

required for each episode when both the number and size of steps are changed for step
optimization. As a result, it was confirmed that the optimization algorithm with variable

steps helps to reduce the number of steps in an episode.

1100

1000 [
900
800
700 -
600 [
500
400 |

Average Number of Steps

300 -
200
100

0

3
g

W
g\eis\

00?0

@)

5\?&

&°

%5\19
-
%\e\>

Number of Steps

1000

900

800 [

700 -

600

500

400

300

200

+ DDPG

“ Step Number Optimization

x Step Size Optimization

O Step Number & Size Optimization

o

, o

100
0

20 40 60 80
Episode

(b)

100

Figure 8. Change of steps after step optimization: (a) Average Number of Steps. (b) Number of Steps
used in Episode.

Figure 9 compares the episodic reward results and sector change results of the existing
algorithm with the step optimization results. Figure 9a shows the result of sector change
simulation applying the step optimization method. The simulation used a formation in
which 30 UAVs were randomly placed in the simulation space, and the entire system was
learned through 100 episodes consisting of an initial 1000 step functions. Compared to
the existing algorithm, the algorithm with step optimization showed similar sector change
results, although the number of steps used for learning was decreased. In addition, more
stable simulation results could be obtained from the algorithm integrating the number of
steps and size adjustment.

20 :
DDPG 0
18t Step Number Optimization
‘ Step Size Optimization
‘ Step Number & Size Optimization -2,000 -
16+ | 1
g ‘ 4,000 -
g 1ar ‘ { g™
@ | g
81|
“
°© 12 | \ o 6000
2 | ‘ | | g
| 3
ol || [A 12
z WAl] '\J \ -8,000
) \l
8 A I\ i A 5oPG
| /N ; —8—
) j/‘H/ VIV MY I \ I ~10000 &, Step Number Optimization
6 [AV AR A \ | —%— Step Size Optimization
| \ —— Step Number & Size Optimizati
-12,000 -
*o 20 40 60 80 100 0 ® 40 60 80 100
Episode Episode
(a) (b)

Figure 9. Simulation results of step optimization: (a) Subspace Change. (b) Episodic Reward.

Figure 9b shows that the step optimization algorithm using the variable number of
steps obtains the episodic reward almost identical to the existing method. Even later in the
learning, the use of step optimization algorithms showed higher episodic reward results
despite using significantly fewer step functions for learning compared to existing DDPG
algorithms. In addition, it was confirmed that higher rewards could be obtained faster
when learned by integrating the number and size of steps.

4.5. Verification in Real Flight Scenarios

Prior to verifying the proposed system through actual UAV flight, we verified it in an
AirSim environment that can fully reflect the actual environment. AirSim is a simulator

Sensors 2023, 23,921

16 of 18

developed by Microsoft for machine learning development. AirSim uses Unreal Engine
4 to visually reflect real-world environments in greater detail. In addition, this simulator
provides an interface with Mavlink, and there are APIs for both pixhawk firmware such as
PX4, python, and C++.

Furthermore, AirSim uses various sensors such as cameras and LiDAR to implement
an environment that is almost identical to the real environment inside the simulator [25,26].
Accordingly, we validate our real UAV formation flight scenarios within AirSim. A video
of the experiment can be found in [27].

Figure 10 shows the implementation of a scenario where a fleet of 10 UAVs is flying in
an AirSim environment. In urban areas, UAV fleet can fly between buildings and fulfill
a variety of roles, such as transporting logistics, flying performances, collecting weather
data, controlling traffic conditions, and monitoring high-crime areas in the city. Efficient
communication between UAVs is essential to fulfill these diverse roles. In the video, it
was confirmed that the proposed system maintains the optimal topology for continuous
UAV communication.

Figure 10. Simulation results of UAV topology control in AirSim.

5. Conclusions

Recent advances in UAV technology have proposed the use of UAV fleets to pro-
vide wireless networks in environments where there is no network infrastructure. While
this method has the advantage of providing a fast and inexpensive network, multi-hop
connectivity and UAV control can cause scalability problems when trying to cover large
areas. Therefore, the problem of efficiently controlling the network topology to form an
UAV network is very important, and based on these observations, this paper proposes a
RL-based topology control system for UAV networks.

The proposed system divides the surrounding space and configures the network
topology for each subspace based on MST structure. In addition, the optimal network
topology is constructed by solving the spatial partitioning problem through training using
RL. Finally, by changing the number of steps of parameter learning, the time sensitivity and
adaptability of the system are increased by interacting the changing environmental factors.
Our research can be used to achieve efficient mission performance and energy efficiency in
a network topology composed of multiple UAVs to perform various purposes.

We have several directions for future work. We will optimize the proposed system
using more diverse learning algorithms. For deep learning-based learning algorithms or
other reinforcement learning algorithm, more complex state, action, and reward designs
can be developed. In addition, the optimal learning algorithm can be implemented by

Sensors 2023, 23,921 17 of 18

considering various learning algorithms in combination. We will implement an optimal
learning algorithm by studying the reflection ratio of individual algorithms in the complex
learning algorithm. Finally, further research can be conducted on the application of variable
steps in learning. By applying variable steps to learning through more complex modeling,
faster training speed will be achieved.

Author Contributions: Conceptualization, T.Y.; methodology, T.Y. and H.K; software, T.Y.; validation,
TY., S.L., KY. and HK,; formal analysis, T.Y., S.L. and HK.; investigation, T.Y.; resources, T.Y.; data
curation, T.Y.; writing—draft preparation, T.Y., S.L. and H.K.; writing—review and editing, T.Y.,
S.L. and H.K; visualization, T.Y. and K.Y.; supervision, H.K,; project administration, H.K.; funding
acquisition, H.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Human Resources Program in Energy Technology of
the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of
Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20204010600220). This work was
supported by the National Research Foundation of Korea funded by the Korean Government (grant
2020R1A2C1012389).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
DDPG Deep Deterministic Policy Gradient

RL Reinforcement Learning

ADAM ADAptive Moment Estimation

MST Minimum Spanning Tree

References

1.

10.

11.

12.

13.
14.

Katila, C.J.; Okolo, B.; Buratti, C.; Verdone, R.; Caire, G. UAV-to-ground multi-hop communication using backpressure and
FlashLinQ-based algorithms. In Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), Bologna, Italy, 9-12 September 2018; pp. 1179-1184.

Wang, X.; Yadav, V.; Balakrishnan, S. Cooperative UAV formation flying with obstacle/collision avoidance. IEEE Trans. Control.
Syst. Technol. 2007, 15, 672-679. [CrossRef]

Paul, T.; Krogstad, T.R.; Gravdahl,].T. Modelling of UAV formation flight using 3D potential field. Simul. Model. Pract. Theory
2008, 16, 1453-1462. [CrossRef]

Van der Walle, D.; Fidan, B.; Sutton, A.; Yu, C.; Anderson, B.D. Non-hierarchical UAV formation control for surveillance tasks. In
Proceedings of the 2008 American Control Conference, Seattle, WA, USA, 11-13 June 2008; pp. 777-782.

Kim, H.T,; Kim, H. Precise localization of a UAV with single vision camera and deep learning. In Proceedings of the GLOBECOM
2020-2020 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4-8 December 2020; pp. 1-6.

Lee, S.; Yoo, S.; Lee,].Y.; Park, S.; Kim, H. Drone Positioning System Using UWB Sensing and Out-of-Band Control. IEEE Sens.].
2021, 22, 5329-5343. [CrossRef]

Um, I; Park, S.; Oh, S.; Kim, H. Analyzing location accuracy of unmanned vehicle according to RTCM message frequency of
RTK-GPS. In Proceedings of the 2019 25th Asia-Pacific Conference on Communications (APCC), Ho Chi Minh City, Vietnam,
6-8 November 2019; pp. 326-330.

Lin, W. Distributed UAV formation control using differential game approach. Aerosp. Sci. Technol. 2014, 35, 54-62. [CrossRef]
Choi,].; Kim, Y. Fuel efficient three dimensional controller for leader-follower UAV formation flight. In Proceedings of the 2007
International Conference on Control, Automation and Systems, Seoul, Republic of Korea, 17-20 October 2007; pp. 806-811.
Duan, H,; Luo, Q.; Shi, Y.; Ma, G. Hybrid particle swarm optimization and genetic algorithm for multi-UAV formation
reconfiguration. IEEE Comput. Intell. Mag. 2013, 8, 16-27. [CrossRef]

Luan, H.; Xu, Y,; Liu, D.; Du, Z,; Qian, H.; Liu, X.; Tong, X. Energy efficient task cooperation for multi-UAV networks: A coalition
formation game approach. IEEE Access 2020, 8, 149372-149384. [CrossRef]

Xiong, F.; Zheng, H.; Ruan, L.; Wang, H.; Tang, L.; Dong, X.; Li, A. Energy-saving data aggregation for multi-UAV system. [EEE
Trans. Veh. Technol. 2020, 69, 9002-9016. [CrossRef]

Pettie, S.; Ramachandran, V. An optimal minimum spanning tree algorithm. J. ACM (JACM) 2002, 49, 16-34. [CrossRef]

Park, S.; Kim, H.T.; Kim, H. Energy-efficient topology control for UAV networks. Energies 2019, 12, 4523. [CrossRef]

http://doi.org/10.1109/TCST.2007.899191
http://dx.doi.org/10.1016/j.simpat.2008.08.005
http://dx.doi.org/10.1109/JSEN.2021.3127233
http://dx.doi.org/10.1016/j.ast.2014.02.004
http://dx.doi.org/10.1109/MCI.2013.2264577
http://dx.doi.org/10.1109/ACCESS.2020.3016009
http://dx.doi.org/10.1109/TVT.2020.2999374
http://dx.doi.org/10.1145/505241.505243
http://dx.doi.org/10.3390/en12234523

Sensors 2023, 23,921 18 of 18

15.

16.

17.
18.

19.
20.
21.
22.
23.
24.

25.

26.

27.

Lillicrap, T.P; Hunt,].J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

Vecerik, M.; Hester, T.; Scholz, J.; Wang, F.; Pietquin, O.; Piot, B.; Heess, N.; Rothorl, T.; Lampe, T.; Riedmiller, M. Leveraging
demonstrations for deep reinforcement learning on robotics problems with sparse rewards. arXiv 2017, arXiv:1707.08817.
Wang, S.; Jia, D.; Weng, X. Deep reinforcement learning for autonomous driving. arXiv 2018, arXiv:1811.11329.

Duan, J.; Shi, D.; Diao, R.; Li, H.; Wang, Z.; Zhang, B.; Bian, D.; Yi, Z. Deep-reinforcement-learning-based autonomous voltage
control for power grid operations. IEEE Trans. Power Syst. 2019, 35, 814-817. [CrossRef]

Jais, LK.M.; Ismail, A.R.; Nisa, S.Q. Adam optimization algorithm for wide and deep neural network. Knowl. Eng. Data Sci. 2019,
2, 41-46. [CrossRef]

Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International
Symposium on Quality of Service IWQoS), Banff, AB, Canada, 4-6 June 2018; pp. 1-2.

Dozat, T. Incorporating nesterov momentum into adam. 2016. Available online: https://openreview.net/pdf/OMOjvwB8jIp5
7ZJitNEZ.pdf (accessed on 19 February 2016) .

Kingma, D.P; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Reddi, S.J.; Kale, S.; Kumar, S. On the convergence of adam and beyond. arXiv 2019, arXiv:1904.09237.

Yoo, T. Snapvideo of Simulation Results: UAV Network Topology Control. Available online: https:/ /www.youtube.com/watch?
v=Dt2WM2d66-I (accessed on 18 October 2022).

Hentati, A.L; Krichen, L.; Fourati, M.; Fourati, L.C. Simulation tools, environments and frameworks for UAV systems performance
analysis. In Proceedings of the 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC),
Limassol, Cyprus, 25-29 June 2018; pp. 1495-1500.

Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field
and Service Robotics; Springer: New York, NY, USA, 2018; pp. 621-635.

Yoo, T. Snapvideo of Airsim Simulation Results: UAV Topology Control Airsim Simulation. Available online: https://www.
youtube.com/watch?v=50ceO0120Sk (accessed on 14 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPWRS.2019.2941134
http://dx.doi.org/10.17977/um018v2i12019p41-46
https://openreview.net/pdf/OM0jvwB8jIp57ZJjtNEZ.pdf
https://openreview.net/pdf/OM0jvwB8jIp57ZJjtNEZ.pdf
https://www.youtube.com/watch?v=Dt2WM2d66-I
https://www.youtube.com/watch?v=Dt2WM2d66-I
https://www.youtube.com/watch?v=SOceO012oSk
https://www.youtube.com/watch?v=SOceO012oSk

	Introduction
	Related Work
	System Design
	System Concept
	Network Topology Control
	Reinforcement Learning
	Optimization Modeling
	System Environment
	State
	Action
	Reward

	Performance Evaluation
	Network Topology Control for Typical Formation
	Reinforcement Learning Results for Multiple Nodes
	Network Topology Control for Arbitrary Formation
	Step Function Optimization
	Verification in Real Flight Scenarios

	Conclusions
	References

