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Abstract: The Autonomous Underwater Vehicle (AUV) is usually equipped with multiple sensors,
such as an inertial navigation system (INS), ultra-short baseline system (USBL), and Doppler velocity
log (DVL), to achieve autonomous navigation. Multi-source information fusion is the key to realizing
high-precision underwater navigation and positioning. To solve the problem, a fusion scheme based
on factor graph optimization (FGO) is proposed. Due to multiple iterations and joint optimization
of historical data, FGO could usually show a better performance than the traditional Kalman filter.
In addition, considering that USBL and DVL are usually heavily influenced by the environment,
outliers are often present. A robust integrated navigation algorithm based on a maximum correntropy
criterion and FGO scheme is proposed. The proposed algorithm solves the problem of multi-sensor
fusion and non-Gaussian noise. Numerical simulations and field tests demonstrate that the proposed
FGO scheme shows a better performance and robustness than the traditional Kalman filter. Compared
with the traditional Kalman filtering, the positioning accuracy is improved by 5.3%, 9.1%, and 5.1%
in the east, north, and height directions. It can realize a more accurate navigation and positioning of
underwater multi-sensors.

Keywords: USBL; DVL; inertial navigation; underwater navigation; factor graph

1. Introduction

Underwater navigation has always been a challenging research hotspot [1]. Navigation
based on satellite signals is often unavailable due to the limited underwater environment.
An inertial navigation system (INS) is an autonomous navigation model [2], free from
environmental interference. It can be applied to underwater navigation. However, inertial
navigation has the problem of a cumulative divergence of errors over time. Error sup-
pression of inertial navigation is always a difficult problem in underwater navigation and
positioning.

Acoustic navigation is an effective underwater navigation scheme. The ultrashort
baseline system (USBL) is an alternative navigation method. Therefore, inertial naviga-
tion assisted by an ultra-short baseline [3,4] has been a research hotspot of underwater
navigation in recent years. Back in 2006, Morgado first proposed an INS/USBL integrated
navigation model [5], in which a simplified INS mechanization is used to conduct the state
model. In 2013, experiments verified the positioning accuracy of integrated navigation [6].
However, the mathematical model of INS is simplified, and the accuracy of integrated
navigation is limited. To improve the accuracy of underwater navigation based on USBL,
Zhang proposed a loosely coupled integrated navigation model based on a high-precision
strap-down inertial navigation mechanical model [7]. In [8], Zhang also proposed a tightly
coupled model based on relative measurement information, which has a better performance
than the loosely coupled model. However, the positioning range of the USBL is limited.

In addition to USBL, another common method of underwater navigation is the Doppler
velocity log (DVL). The research on INS/DVL focuses mainly on error calibration [9], initial
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alignment [10], and fusion algorithm [11]. For example, in [9], an iterative method is
designed to calibrate the scale factor and installation angle. The error calibration is the basis
of integrated navigation. In [11], the INS/DVL is assisted by ZUPT to reduce the drift. To
improve the INS/DVL integrated navigation accuracy, Wang proposed a correction method
by INS attitude dynamics [12]. Different from the traditional velocity-matching integrating
scheme, Liu proposed an integrated model based on DVL beam measurements [13]. To
deal with the interference of outliers, an M-estimation-based interacting multiple model
for INS/DVL navigation is proposed [14]. Different from USBL, DVL is not restricted
by distance and can realize navigation and positioning functions in any environment.
However, due to the velocity-matching navigation model, its positioning accuracy is not as
high as the USBL.

Considering the advantages of USBL and DVL, respectively, an INS/DVL/USBL
integrated navigation system is a feasible scheme for Autonomous Underwater vehicles
(AUV). Integrated navigation filtering methods can be divided into centralized filtering [15]
and federal filtering [16]. In [15], a grid INS/USBL/DVL integrated navigation algorithm
for polar navigation based on centralized filtering was proposed. A vector fault detection
method was designed to improve the robustness of the system. Different from the central-
ized filtering, an INS/USBL/DVL integrated navigation model based on federal filtering
is proposed in [16]. To isolate the faulty sub-filter, it improves its fault tolerance. In [17],
experiments showed that the integrated navigation system had been proven to perform
better than INS/USBL or INS/DVL systems. However, both of them are based on the filter
scheme. The improvement in accuracy is very limited.

The optimization-based method is widely used in simultaneous localization and
mapping (SLAM) systems [18]. However, the application of a factor graph is not limited
to SLAM but also has many applications in other localization fields. As early as 2012,
factor graph optimization (FGO) was applied to global navigation satellite system (GNSS)
positioning [19]. Since then, FGO has been successfully used to improve the positioning
accuracy of GNSS [20,21]. In the GNSS/INS integrated navigation system, Wen first verified
that the positioning accuracy based on FGO was better than that of the Kalman filter under
tightly coupled conditions [22].

In view of the advantages of FGO compared with the Kalman filter in the field of
underwater navigation, an FGO-based fusion scheme is proposed for the underwater
INS/DVL/USBL system. Due to multiple iterations and a large amount of historical data, a
higher positioning accuracy can be obtained. In addition, considering the effect of outliers,
we add a robust algorithm based on the maximum entropy criterion to the factor graph
model.

The contributions of our work are summarized in three points:

(1) An optimization-based INS/USBL/DVL integrated navigation model is proposed.
Measurement factors such as the IMU factor, USBL factor, and DVL factor are designed.
It could play a superior performance to the traditional filter method.

(2) A robust estimation method combining the maximum entropy criterion and FGO is
proposed. It can overcome the influence of outliers and improve the robustness of the
integrated system.

(3) Experiments have been conducted to show that it can achieve a more accurate and
robust localization than the traditional methods for underwater positioning.

2. System Model

The coordinate systems used in the paper include a body frame (b-frame), naviga-
tion frame (n-frame), USBL frame (u-frame), and geographic frame (g-frame). Detailed
definitions can be found in [8].

The AUV is equipped with a USBL and DVL, as shown in Figure 1.
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Figure 1. Sketch of AUV positioning.

The transducer of USBL on AUV sends an acoustic signal to the underwater transpon-
der, which receives the signal and returns it to the transducer. The slant distance (r) is
calculated from the round-trip time of the acoustic signal. The bearing angles (α,β) are
measured according to the angle-of-arrival.

Thus, the relative position of the transponder in the u-frame is calculated by:

tu =

tu,x
tu,y
tu,z

 =

 r cosα
r cosβ

−
√

r2 − (rcosα)2 − (rcosβ)2

 (1)

The transponder position (tg =
[
λt Lt ht

]T) is known. Thus, the position of AUV
(pg) can be obtained:

pg = tg −Cg
nCn

b Cb
utu (2)

where Cb
u denotes the installation error matrix from the u-frame to b-frame. It can be cali-

brated in advance [23]. Cn
b is the attitude matrix. Cg

n denotes the coordinate transformation
matrix from the n-frame to g-frame, which is represented as follows:

Cg
n =

 0 1
RM+h 0

sec L
(RN+h) 0 0

0 0 1

 (3)

where the definitions of RN and RM can be seen in [2]. h denotes the height.
The DVL also emits sound waves to the ocean floor, as Figure 1 shows. Assume that

the frequency of transmitting acoustic signals is f0. The angle between the beam and the
horizontal plane is a. The frequency of sound waves as they reach the seafloor is f1. The
frequency is f2 when it reaches AUV again after reflection, and the angle between the beam
and the horizontal plane is b. According to the principle of Doppler frequency shift, f1 can
be obtained:

f1 =
c0 · f0

c0− vycosa
(4)

where c0 is the sound speed. vy is the moving speed in the y direction in the b-frame.
f2 can be obtained:

f2 =
f1
(
c0 + vycosb

)
c0

=
f0
(
c0 + vycosb

)
c0− vycosa

(5)

Thus, the velocity of AUV in the b-frame can be obtained [24]:

Vb =

 0
c0 · fd
2 f0cosa

0

 (6)

where fd = f2 − f0.
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3. FGO-Based Integrated Navigation Algorithm

In this section, we will propose a robust integrated navigation algorithm based on
FGO and the maximum entropy criterion.

In an integrated navigation system, the state estimation problem can be formulated as:

~
x = argmax ∏

k,i
P(zk|xk)∏

k
P(xk|xk−1) (7)

where
~
x denotes the optimal state estimation. xk represents the system state at time k. zk

represents the measurement vector at time k.
In FGO, we combine the measurements of all historical nodes, and the optimal estima-

tion problem can be treated as a maximum likelihood estimation (MAP) problem. It can be
obtained:

~
x = argmax ∏

k,i
P(zk|xk)∏

k
P(xk|xk−1) (8)

where f j
(
xj
)

is the j-th factor. It can be formulated as:

f j
(
xj
)

∝ exp
(
−‖hj

(
xj
)
− zj‖2

Σj

)
(9)

where hj
(
xj
)

is the measurement function and zj is the j-th measurement. Σj is the covari-
ance matrix.

Thus, (8) is equal to the following [25]:

~
X = argmax

x

(
∑

j
‖hj
(
xj
)
− zj‖2

Σj

)
(10)

Based on the above FGO theory, we organized the graph model of the integrated
navigation as Figure 2 follows:
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Figure 2. The graph model of the integrated navigation.

The factors involved in the graph model will be analyzed in detail in the following.
The algorithm is designed in two parts. One is the design of the measurement factors,
including the IMU pre-integration factor, USBL factor, and DVL factor. With the design of
the factors, the graph model of FGO can be conducted. The other is the design of the outlier
elimination model. It can suppress the influence of outliers and improve the robustness of
the system.
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3.1. IMU Pre-Integration Factor

The output of IMU can be modeled as follows:

~
ω

b
ib =ωb

ib + bg + ng
~
f

b
= fb + ba + na

(11)

where
~
ω

b
ib and f̃

b
are the actual output of IMU. bg is the gyroscope bias, and ba is the

accelerometer bias. ωb
ib and fb are the ideal outputs of IMU. ng is the white noise of the

gyroscope, and na is the white noise of the accelerometer.
Assume that the interval of pre-integration is [tk, tk+1]. The pre-integration measure-

ments using the output of IMU can be expressed as follows:

αbk
bk+1 =

s tk+1
tk

Cbk
bt

(
~
f

b
− ba

)
dt

βbk
bk+1 =

∫ tm+1
tm

Cbm
bt

(
~
f

b
− ba

)
dt

γbk
bk+1 =

∫ tk+1
tk

1
2 Ω
(

~
ω

b
ib − bg

)
γ

bk
bt

dt

(12)

where:

Ω(ω) =

[
−[ω]× ω

−ωT 0

]
(13)

where [ω]× denotes the skew-symmetric matrix.
The position’s pre-integration is expressed as:

~
α

bk
bk+1 = Cbk

nk+1

(
Pn

k+1 − Pn
k −Vn

k ∆tk,k+1 −
1
2

gn∆t2
k,k+1 +

1
2
(2ωn

ie +ω
n
en)×Vn

k ∆t2
k,k+1

)
(14)

where Pn
k denotes the position at epoch m. Vn

k denotes the velocity at epoch m. gn denotes
the gravity vector in the n-frame. ∆tk,k+1 is the time interval from tk to tk+1. ωn

en andωn
ie

are expressed as follows:

ωn
ie =

[
0 ωie cos L ωie sin L

]T

ωn
en =

[
− VN

RM+h
VE

RN+h VE tan L/(RN + h)
]T (15)

whereωie is the earth rotation rate.
The velocity pre-integration with respect to the states is expressed as:

~
β

bk

bk+1 = Cbk
nk+1

(
Vn

k+1 −Vn
k − gn∆tk,k+1 + (2ωn

ie +ω
n
en)×

(
Vn

k+1 + Vn
k
)1

2
∆tk,k+1

)
(16)

The attitude’s pre-integration with respect to the states is expressed as:

~
γ

bk
bk+1 =

((
qnk+1

bk+1

)−1
⊗ qnk+1

nk ⊗ qnk
bk

)−1
(17)

where qnm+1
nm is updated as follows:

.
C

in0
n = Cin0

n (ωn
in×) (18)
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If the estimation of bias changes, the pre-integration measurements can be expressed
as follows: 

~
α

bk
bk+1 ≈

~
α

bk
bk+1 + Jαbgδbg + Jαbaδba

~
β

bk

bk+1 ≈
~
β

bk

bk+1 + Jβbgδbg + Jβbaδba

~
γ

bk
bk+1 ≈

~
γ

bk
bk+1 ⊗

[
1

1
2 Jγbgδbg

] (19)

where Jαbg, Jαba, Jβbg, Jβba, Jγbg are the sub-matrix, which can be seen in [18].
Thus, the corresponding IMU pre-integration residuals can be expressed as:

rimu(Zimu,k, X) =



αbk
bk+1 −

~
α

bk
bk+1

βbk
bk+1 −

~
β

bk

bk+1

2
[(

qnk+1
bk+1

)−1
⊗ qnk+1

nk ⊗ qnk
bk ⊗

~
γ

bk
bk+1

]
xyz

bgk+1 − bgk
bak+1 − bak


(20)

3.2. USBL Factor

The USBL measurements contain the slant distance and bearing angles.
According to (2), the slant distance can be calculated as:

r̃ = ‖Cn
g(t

g − pg)‖ (21)

The bearing angles can be calculated as:{
α̃ = acos(tu,x/r)
β̃ = acos

(
tu,y/r

) (22)

Thus, the USBL residuals can be expressed as:

rusbl(Zusbl,k, X) =

 r̃− r
α̃−α
β̃−β

 (23)

3.3. DVL Factor

The DVL measures the speed in the b-frame. It has the following relationship with the
AUV velocity:

Vn = Cn
b Vb + ndvl (24)

where ndvl is the measurement noise, which obeys the Gaussian distribution.
Thus, the residuals of the DVL factor can be expressed as:

rdvl(Zdvl,k, X) = Cb
nVn −Vb (25)

Based on (20), (23) and (25), the optimization problem can be expressed as:

min
x

{
‖rp −Hp‖X2

Σp
+ ∑

k∈[0,n]
‖rimu(Zimu,k, X)‖2

Σimu,k

+ ∑
k[0,n]
‖rusbl(Zusbl,k, X)‖2

Σusbl,k
+ ∑

k∈[0,n]
‖rdvl(Zdvl,k, X)‖2

Σdvl,k

} (26)

where Σimu,k, Σusbl,k, and Σdvl,k are the measurement covariance. ‖rp −HpX‖2
Σp

is the prior
factor, and Σp is the prior covariance.
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3.4. Outlier Elimination Algorithm

To reduce the influence of outliers, the residual processing method based on the
maximum correlation entropy criterion is used in FGO.

The correlation entropy between two random variables X and Y can be defined as:

V(X, Y) = E[κ(X, Y)] =
x

κ(X, Y)F(X, Y)dxdy (27)

where E[·] is the expectation. κ(X, Y) denotes the kernel function. F(X, Y) denotes the joint
probability density function of the random variables X and Y.

The Gaussian function is selected as the Kernel function, which is as follows:

κ(xi, yi) = Gσ(ei) = exp

(
e2

i
2σ2

)
(28)

where {xi, yi}N
i=1 means the N samples satisfying the joint probability density F(X, Y).

ei = xi − yi. σ denotes the bandwidth of the kernel function.
The estimated value of correlation entropy can be expressed as:

V(X, Y) =
1
N

N

∑
i=1

κ(xi, yi) (29)

In (26), rusbl(Zusbl,k, X) and rdvl(Zdvl,k, X) can be formulated as:{
rusbl(Zusbl,k, X) = Zusbl,k −Husbk,kX

rdvl(Zdvl,k, X) = Zdvl,k −Hdvl,kX
(30)

where Zusbl,k and Zdvl,k are measurements. Husbk,k and Hdvl,k are the Jacobian matrix.
The optimization function can be expressed as:

min
x

{
‖rp −HpX‖2

Σp
+ ∑

k∈[0,n]
‖rimu(Zimu,k, X)‖2

Σimu,k

+ ∑
k[0,n]
‖Zusbl,k −Husbk,kX‖2

Σusbl,k

+ ∑
k∈[0,n]

‖Zdvl,k −Hdvl,kX‖2
Σdvl,k

} (31)

Let eusbl,k = Σ−1/2
usbl,k(Zusbl,k −Husbk,kX), edvl,k = Σ−1/2

dvl,k (Zdvl,k −Hdvl,kX). Then, (31) can
be reformulated as follows:

min
x

‖rp −HpX‖2
Σp

+ ∑
k∈[0,n]

‖rimu(Zimu,k, X)‖2
Σimu,k

+ ∑
k[0,n]

l

∑
i=1

e2
usbl,ki + ∑

k∈[0,n]

m

∑
i=1

e2
dvl,ki

 (32)

where l and m are the dimensions of the measurement.
The Gaussian Kernel of the maximum entropy criterion is introduced into the mea-

sured part of the cost function.

min
x

‖rp −HpX‖2
Σp

+ ∑
k∈[0,n]

‖rimu(Zimu,k, X)‖2
Σimu,k

+ ∑
k[0,n]

σ2
l

∑
i=1

Gσ(eusbl,ki) + ∑
k∈[0,n]

σ2
m

∑
i=1

Gσ(edvl,ki)

 (33)

Take the USBL and DVL measurement parts at epoch k as an example, and the deriva-
tive at X is:

l

∑
i=1

Gσ(eusbl,ki)eusbl,ki
∂eusbl,ki

∂X
+

l

∑
i=1

Gσ(edvl,ki)edvl,ki
∂edvl,ki

∂X
= 0 (34)
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(34) can be reformulated as follows:

HT
usbl,kΣ−T/2

usbl,kψusbl,keusbl,k + HT
dvl,kΣ−T/2

dvl,k ψdvl,kedvl,k = 0 (35)

where ψusbl,k = diag[Gσ(eusbl,ki)]. ψdvl,k = diag[Gσ(edvl,ki)].
Based on (35), (31) can be reformulated as follows:

min
x

{
‖rp −HpX‖2

Σp
+ ∑

k∈[0,n]
‖rimu(Zimu,k, X)‖2

Σimu,k

+ ∑
k[0,n]
‖Zusbl,k −Husbk,kX‖2

Σ̃usbl,k

+ ∑
k∈[0,n]

‖Zdvl,k −Hdvl,kX‖2
Σ̃dvl,k

} (36)

where Σ̃usbl,k = Σ−T/2
usbl,kψusbl,kΣ−1/2

usbl,k,Σ̃dvl,k = Σ−T/2
dvl,k ψdvl,kΣ−1/2

dvl,k .
The influence of outliers on the estimation results can be eliminated by adjusting the

covariance matrix Σ̃usbl,k and Σ̃dvl,k.
In (36), the residual function rimu(Zimu,k, X) is from the IMU factor, as (20) shows. The

residual function Zusbl,k −Husbk,kX is from the USBL factor, as (23) shows, and Zdvl,k −
Hdvl,kX is from the DVL factor, as (25) shows.

The integrated navigation algorithm is implemented by (36). It is a typical MAP
problem. When the measurements of DVL, USBL, and IMU are obtained, the residual
function can be formulated as (36). The object is to obtain the optimal solution of X by
solving Equation (36). The state X contains the position, velocity, and attitude information
of the vehicles.

The Ceres Solver [26] is used to solve the MAP problem. The Jacobian matrix of USBL
and DVL are computed by the automatic derivative function of Ceres.

4. Simulation and Field Test

Simulation and field tests will be conducted in this section. First, a simulation test
with different measurement noise values is conducted. The simulation test is necessary as
the sensor data is ideal, and it can verify the accuracy of the model and algorithm. Second,
a field test is conducted. The field test was carried out in the Yangtze River, and it can verify
the effectiveness of the algorithm in the real world and prove its practicality. Thus, both
tests are necessary.

All algorithms run on a laptop equipped with AMD Ryzen 7 5800U CPU, whose
Radeon Graphics is 1.90 GHz and 16 G RAM.

4.1. Simulation Test

In this section, a series of simulation experiments are designed to verify the effective-
ness and improvement of the proposed method.

Symbols used in the simulation experiment are listed as follows:
‘KF’ represents the traditional Kalman filter.
‘HKF’ denotes the robust Kalman filter based a Huber M-estimation.
‘FGO’ denotes the traditional FGO algorithm as described in [27].
‘RFGO’ denotes the proposed robust FGO algorithm based on the maximum correla-

tion entropy criterion.
In the simulation, the bias of the gyroscope is 0.01◦/h, and its random walk noise

is 0.005◦/
√

h. The bias of the accelerometer is 100 µg, and its random walk noise is
50ug/

√
Hz. The bearing error of USBL is 0.2

◦
, and the slant distance error is 1.5 m. Assume

that the DVL’s bottom track is available throughout the test and that 0.05 m/s random noise
is added to the measurement. The output frequency of IMU, USBL, and DVL is 200 Hz,
1/2 Hz, and 1 Hz.
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The measurement noise of the system is set as follows:

V2 ∼
{

N(0, Rv) w.p. 0.95
N(0, 100Rv) w.p. 0.05

V2 ∼
{

N(0, Rr) w.p. 0.95
N(0, 200Rr) w.p. 0.05

V1 ∼
{

N(0, Ra) w.p. 0.95
N(0, 20Ra) w.p. 0.05

(37)

where V1, V2, and V3 are the bearing, slant distance noise, and DVL velocity noise, respec-
tively, which obey the Gaussian distribution. w.p. 0.95 denotes the normal data, which
appears with probabilities of 95%, and w.p. 0.05 denotes the outlier‘s probability, which is
5% [28].

In the integrated navigation system, the initial attitude error is set as
[
0.05

◦
0.05

◦
0.1

◦]T.

The initial velocity and position error are set as
[
0.1 0.1 0.1

]Tm/s and
[
1 1 3

]Tm. The

initial absolute position is set as
[
118.7718

◦
E 32.0575

◦
N 300m

]T.
The measurement covariance matrixes of USBL and DVL are set to be the same in

these methods, as shown below:
Rusbl = diag(

[
2.25 1.2e− 5 1.2e− 5

]
) and Rdvl = 0.01I3×3.

The simulation trajectory of the vehicle is shown in Figure 3.
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Figure 3. The AUV simulation trajectory.

The velocity of the AUV is set as 2 m/s, and the transponder is shown as the purple
circle in Figure 3.

The position errors of different algorithms are shown in Figure 4.
In Figure 4, the KF method without a robust algorithm suffers from the influence

of outliers. The HKF method can suppress the influence of outliers. The Huber-based
approach is limited in its ability to handle large outliers. Thus, it shows a worse performance
than the proposed method. Even the traditional FGO method shows a worse performance
than the KF method, as the yellow line shows. This is because the INS mechanization
in [27] is simplified, with the angular rateωn

en being ignored. The estimation accuracy is
not as high as that of the Kalman filtering method in high-precision inertial navigation. The
proposed RFGO method shows a superior performance to the Kalman-filter-based method
due to multiple iterations and a joint optimization of historical data.
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In order to quantitatively analyze the estimation results, RMSE is used as the perfor-
mance metric.

The RMSE results of different methods are listed in Table 1.

Table 1. Comparison of the positioning error in the simulation.

PE(m) PN(m) PU(m)

KF 0.79 0.96 0.34
HKF 0.34 0.56 0.34
FGO 1.14 1.12 0.36

RFGO 0.30 0.36 0.26
PE, PN, and PU denote the position error in east, north, and up directions.

In Table 1, RFGO performs best among these methods. The position accuracy is
improved by 56.9%, 11.8%, and 70.4% compared with the KF, HKF, and FGO in the east
direction, respectively. It is also improved by 62.4%, 35.4%, and 67.8% in the north direction
and by 23.4%, 22.2%, and 28.8% in the up direction.

To make the results more convincing, we conducted statistics on the results of 50 inde-
pendent experiments.

The RMSE of the Monte Carlo simulation test is used as the performance metric.
The error bar of different algorithms is shown in Figure 5.
In Figure 5, the proposed method has the highest accuracy and the most obvious

performance improvement. In the case of nonlinearity and outliers, the advantage of our
method is more obvious.
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4.2. Field Test

In this section, a field test is designed to verify the effectiveness and improvement of
the proposed method. The field test was carried out in the Yangtze River.

The equipment used in the test includes the USBL, DVL, IMU, and RTK GPS/PHINS
integrated system, where the output of the RTK GPS/PHINS integrated system is used as
the true value. As Figure 6 shows:
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Figure 6. Diagram of the field test equipment.

In the field test, the transponder position and the installation error of USBL [29], as
well as the scale factor of DVL [30], are calibrated in advance.

The performance of the sensors is as Table 2 follows.
In the field test, the initial navigation errors are set as follows:
Initial position error:

[
0.1 0.1 0.1

]
m; Initial velocity error:

[
0.1 0.1 0.1

]
m/s; Ini-

tial attitude error:
[
0.05 0.05 0.1

]
deg;

The measurement covariance matrixes of USBL and DVL are set to be the same in
these methods, as shown below:

Rusbl = diag(
[
1 7e− 4 7e− 4

]
) and Rdvl = 0.1I3×3.
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Table 2. Parameters of the sensors.

Parameters Value

IMU
Gyroscope Constant < 0.01◦/hr

Random < 0.005◦/
√

hr

Accelerometer
Constant < 5× 10−4 g
Random 100 ug

USBL
Positioning error 0.1 m + 1%r
Output frequency 1/2 Hz

DVL
Velocity tracking accuracy ±0.5%± 5 mm/s

Output frequency 1 Hz
PHINS/GPS Positioning error 0.02–0.05 m

The vehicle trajectory in the field test is shown in Figure 7.
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In Figure 8, due to multiple iterations, the joint optimization of historical data, and the
robust module based on the maximum correntropy criterion, the RFGO method outper-
forms the traditional Kalman-filter-based method. The traditional FGO method performs
the worst due to the simplified INS mechanization and lack of a robust module. To quanti-
tatively analyze the estimation results, RMSE is used as the performance metric.

The RMSE results of different methods are listed in Table 3.

Table 3. Comparison of the positioning error in the test.

PE(m) PN(m) PU(m)

KF 1.33 1.54 2.57
HKF 1.32 1.46 2.54
FGO 1.59 1.72 2.60

RFGO 1.26 1.40 2.44

The position errors of the RFGO method are significantly smaller than those of the
Kalman filtering algorithm and the traditional FGO method. The proposed method has a
higher positioning accuracy.

Computational burden is also one of the factors that reflect the performance of the
algorithm. The execution time of different algorithms is an indicator of the computa-
tional burden, as paper [22] shows. To show the computational load of these methods, a
comparison of the execution time among different algorithms is given in Figure 9.

It can be seen from Figure 9 that since only the current state is processed, the compu-
tational burden of the KF and HKF methods is minimal. The proposed FGO method is
more complex than the FGO method, as the fault detection module is added. Although
the proposed method is the most computationally intensive, it has the best localization
performance and is an optional solution as long as the computer’s performance is adequate.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 16 
 

 

The RMSE results of different methods are listed in Table 3. 

Table 3. Comparison of the positioning error in the test. 

 PE(m) PN(m) PU(m) 

KF 1.33 1.54 2.57 

HKF 1.32 1.46 2.54 

FGO 1.59 1.72 2.60 

RFGO 1.26 1.40 2.44 

The position errors of the RFGO method are significantly smaller than those of the 

Kalman filtering algorithm and the traditional FGO method. The proposed method has a 

higher positioning accuracy. 

Computational burden is also one of the factors that reflect the performance of the 

algorithm. The execution time of different algorithms is an indicator of the computational 

burden, as paper [22] shows. To show the computational load of these methods, a com-

parison of the execution time among different algorithms is given in Figure 9. 

 

Figure 9. Execution time among different algorithms. 

It can be seen from Figure 9 that since only the current state is processed, the compu-

tational burden of the KF and HKF methods is minimal. The proposed FGO method is 

more complex than the FGO method, as the fault detection module is added. Although 

the proposed method is the most computationally intensive, it has the best localization 

performance and is an optional solution as long as the computer’s performance is ade-

quate. 

5. Conclusions 

Underwater multi-sensor fusion is always the key to achieving a high-precision nav-

igation and positioning of AUV. Different from the traditional filtering-based fusion 

scheme, we propose a factor graph optimization scheme, which is suitable for underwater 

INS/USBL/DVL integrated navigation systems. Multiple iterations and the re-lineariza-

tion of FGO enable it to better solve the nonlinear problems of the system and improve 

Figure 9. Execution time among different algorithms.

5. Conclusions

Underwater multi-sensor fusion is always the key to achieving a high-precision
navigation and positioning of AUV. Different from the traditional filtering-based fusion
scheme, we propose a factor graph optimization scheme, which is suitable for underwater
INS/USBL/DVL integrated navigation systems. Multiple iterations and the re-linearization
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of FGO enable it to better solve the nonlinear problems of the system and improve the
positioning accuracy. Considering the influence of outliers in the integrated navigation
system, a robust fusion algorithm based on the maximum correlation entropy criterion in
the FGO scheme is proposed. Numerical simulations and field tests demonstrate that the
proposed scheme has a higher positioning accuracy and better robustness.
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