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Abstract: Due to the rapid growth in the use of smartphones, the digital traces (e.g., mobile phone
data, call detail records) left by the use of these devices have been widely employed to assess and
predict human communication behaviors and mobility patterns in various disciplines and domains,
such as urban sensing, epidemiology, public transportation, data protection, and criminology. These
digital traces provide significant spatiotemporal (geospatial and time-related) data, revealing people’s
mobility patterns as well as communication (incoming and outgoing calls) data, revealing people’s
social networks and interactions. Thus, service providers collect smartphone data by recording the
details of every user activity or interaction (e.g., making a phone call, sending a text message, or
accessing the internet) done using a smartphone and storing these details on their databases. This
paper surveys different methods and approaches for assessing and predicting human communication
behaviors and mobility patterns from mobile phone data and differentiates them in terms of their
strengths and weaknesses. It also gives information about spatial, temporal, and call characteristics
that have been extracted from mobile phone data and used to model how people communicate
and move. We survey mobile phone data research published between 2013 and 2021 from eight
main databases, namely, the ACM Digital Library, IEEE Xplore, MDPI, SAGE, Science Direct, Sco-
pus, SpringerLink, and Web of Science. Based on our inclusion and exclusion criteria, 148 studies
were selected.

Keywords: mobile phone data; call detail records (CDRs); mobility patterns; communication behav-
iors; urban crime patterns; urban sensors; smartphones

1. Introduction

In the past few decades, mobile phone data has grown into a stand-alone topic [1].
Due to the wide use of smartphones [2], the digital traces left by smartphone use have
come to provide valuable real-time information about human activities. These digital traces
facilitate the study of human behaviors. Various techniques and analytical perspectives
have been employed to capture many aspects of human behaviors from mobile phone data,
which has resulted in various applications. These analytical perspectives, such as human
mobility, communication patterns, social networks, and mobile phone usage activities, have
been built on various spatiotemporal and call characteristics extracted from mobile phone
data.

For example, in the context of criminology, refs. [3,4] constructed a criminal network
based on the communication traces that had been left by criminals over a period of time.
The traces included details about the locations where the criminals had received calls,
the timestamps of their communications, the frequency of their calls, and the periods of
their activity. When these traces were collected over a period of time and put together,
they provided insights into the communication patterns of the individuals concerned,
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which were then used to infer their criminal behavior and relationships. Griffiths et al. [5]
analyzed the mobility traces of criminals based on the digital traces they had left at their
homes and at other meaningful locations (e.g., the crime scene) to determine whether the
criminals’ movements were regular or random. The researchers subsequently concluded
that there was a high degree of spatial regularity in the criminals’ movements. In the field
of urban sensing, the same process has been used for a number of other things, such as
figuring out people’s social ties and interactions [6] and figuring out how the population
changes every day [7].

Spatiotemporal mobility patterns and mobile phone activity patterns have also been
widely extracted from mobile phone data for other practical applications, such as capturing
individuals’ activities associated with urban zones, transportation, and the COVID-19
pandemic. The authors of [8–12], among others, explored or captured human activity
patterns from mobile phone data to infer land use types based on spatiotemporal call
volume patterns. This feature represents the total call volume (the number of incoming
calls received, and outgoing calls made from all smartphones) managed by a given base
transceiver station (BTS) within a given period of time. On the other hand, Mao et al. [13],
Lenormand et al. [14], and Ríos and Muñoz [15] inferred land use based on temporal
changes in human activities. For example, Ríos and Muñoz [15] detected land use patterns
based on changes over time (temporal changes) in human activities. They did this by
extracting the spatiotemporal features from mobile phone data, such as the number of calls
managed by every BTS every hour per week. Empirically, to identify human behavior
patterns based on temporal changes, the activity pattern (total number of calls) of each BTS
in a week (from Sunday to Saturday and every hour) is depicted by the number of calls
managed by the BTS every hour over a seven-day week. This results in a list of consecutive
time frames (time windows) [15] or creates a 7-day/24-h call pattern time series.

Another example of practical application of extracting mobile phone activity patterns
from mobile phone data is mapping population distributions based on mobility patterns
that shape human presence and mobility in space and time [16] and allow for understanding
the spatiotemporal dynamics of an urban population [17]. Here, multiple spatiotemporal
features have been extracted to depict human mobility patterns. For example, the cell tower
ID shows the geographical location of the smartphone from which a call was made or
received (smartphones connect regularly to the nearest cell towers), along with a timestamp
record of when the interactive event happened. It also shows whether users are more active
during the daytime or nighttime [17], based on when the calls were made.

We noticed that the human activity characteristics extracted from mobile phone data
varied from one study to another. The concept of circadian rhythm in human activities has
been empirically depicted in different ways. Thus, as mentioned earlier, this survey was
conducted to provide a detailed description of the multiple features extracted from mobile
phone data to depict human activities. Furthermore, the extant literature provides various
processing techniques and analytical perspectives to capture and depict different aspects of
human behavior, such as human mobility patterns, social networks, and communication
behaviors. As mentioned earlier, these analytical perspectives have been built based on
multiple spatiotemporal and call characteristics and features extracted from mobile phone
data. Additionally, different types of mobile phone data show that different spatiotemporal
and call characteristics can be extracted to map people’s behaviors. The goal of this survey
was to figure out what these characteristics are and what they do.

In short, this survey looks at the aspects of human behavior (mobility, communication,
and social networks) that can be learned about by analyzing mobile phone data. This
includes the spatiotemporal and call features of the data, which show patterns in how
people move and talk to each other, as well as the methods that have been used to analyze
mobile phone data to learn about these things.

The primary objective of this review is to investigate the current state of mobile phone
data applications in various domains, with a specific focus on topics that the current litera-
ture has not covered, especially in the fields of criminology and urban sensing. Although
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Blondel et al. [1], Ghahramani et al. [2], and Calabrese et al. [18] made impressive contribu-
tions by examining mobile phone data applications in several studies, there is still a lack
of research relating to mobile phone data in crime and land use. For example, Blondel
et al. [1] reviewed social network applications that can be derived from mobile phone data
in various disciplines and domains, such as urban sensing, epidemics, public transportation,
and data protection. In addition, Ghahramani et al. [2] and Calabrese et al. [18] presented a
survey of mobile phone data applications in the urban sensing domain. However, to the
best of our knowledge, this is the first survey on the use of mobile phone data in crime and
land use applications. No one had fully reviewed or discussed criminal applications for
mobile phone data. This paper’s key contributions are its discussions of various techniques
and analytical perspectives that have been derived from mobile phone data to capture
many aspects of human behavior, such as communication, social networking, and mobility
patterns. The review also places a heavy focus on human attributes and characteristics
that can be derived from mobile phone data by explaining the spatiotemporal and call
features that have been extracted from mobile phone data to model human mobility and
communication patterns and differentiate their functionalities. The review also sheds light
on anomaly detection, churn prediction, and crime prediction applications, other topics
that the literature lacks.

The remainder of the paper is organized as follows: in Section 2, we present the
research methodology. In Section 3, we describe different types of mobile phone data.
Mobile phone data applications in urban crime and urban sensing are discussed in Section 4.
Section 5 discusses mobile phone social network applications. Section 6 discusses publicly
available datasets, managerial implications, and methods. Section 7 provides potential
research opportunities. Section 8 discusses privacy concerns, and Section 9 concludes the
review.

2. Survey Methodology

This study reviews state-of-the-art methods and techniques regarding the use of
mobile phone data in crime and urban research to generate the focus of the survey. In
addition, the survey aimed to shed light on related studies or contributions made in mobile
phone data research that the literature lacks, such as anomaly detection, churn prediction,
and privacy concerns across various disciplines. Therefore, the survey was conducted using
eight databases to search for relevant journal articles and conference papers. These sources
include the following databases and digital libraries: ACM Digital Library, IEEE Xplore,
MDPI, SAGE, Science Direct, Scopus, SpringerLink, and Web of Science. We ran keyword
searches against titles, abstracts, or keywords in these data sources, allowing us to select the
most relevant research journals and conference proceedings. The main keywords we used
for our searches were “mobile phone data,” “call detailed records,” “call detail records,”
“call data records,” “mobile phone datasets,” “mobile phone networks,” “mobile phone
network data,” “mobile network data,” “mobile network activity,” “mobile communication
data,” and “mobile phone call detail records.” After that, we filtered the results for articles
published between 2013 and 2021 according to our inclusion and exclusion criteria. This
allowed us to choose 148 articles for review. The following are the inclusion criteria (IC)
and exclusion criteria (EC) that were used to decide which articles to choose and which
ones to leave out.

• IC1: A study has to be in a journal or proceedings
• IC2: Studies are peer-reviewed articles
• IC3: A study must be written in the English language
• IC4: A study must be published from 2013 to 2021
• EC1: Articles that are not written in English
• EC2: A study that is not published between 2013 and 2021
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3. Mobile Phone Data Types

According to the literature [1,18,19], there are two types of mobile phone data: a type
that records the details of an interaction between a mobile device and the network, known
as event-driven mobile phone data, and another type, based on the cell tower location
updates of mobile phones, known as network-driven mobile phone data.

In the first type, the data records the details of communication events that occur when
mobile phones receive or initiate phone calls, text messages, or access the internet. The
details of each communication event are held in a record that includes the IDs of the caller
and the callee, the caller’s connected cell tower ID, the callee’s connected cell tower ID,
the duration of the call, and a timestamp. Thus, this type is called “event-based mobile
phone data,” and it can be formed at individual and group (aggregated) levels. At the
individual level, the data convey details about the communication and mobility behaviors
of each party involved in the call; and at the group level (where the data are aggregated
based on grouping a certain number of users in a certain area based on their connection to
the cellular tower at various spatial and temporal scales), the aggregated data can provide
relevant details including the user ID, the timestamp, and the cell tower ID for each of the
individuals who are involved in the call.

The aggregated mobile phone data (usually called aggregated CDRs (call detail
records), or mobile phone data at aggregated level) differs from the individual data (usually
called mobile phone data at the individual level, or CDRs data) in the sense that they are
anonymized and aggregated at different spatial and temporal scales. Thus, they are easier
to collect and acquire, and their management is simpler compared to the individual data
because they are aggregated based on the mobile phone devices that are connected to the
BTS at different spatial and temporal scales. As a result, this allows for: the observation and
monitoring of the spatial and temporal fluctuations of the population’s activities at various
scales (e.g., hourly, daily, seasonal) based on their movement patterns; the classification
and clustering of users by parameters derived from location information, such as the most
visited places or the most frequent locations that the users are present in; or to distinguish
the residents of a place from visitors based on calling volume (the number of phone calls)
that can depict the amount of activity in a given location. All of these measures can be
acquired from the aggregated CDR data that offers spatiotemporal mobility patterns and
communication behaviors. In contrast, the non-aggregated mobile phone data at the indi-
vidual level (CDRs) requires permission from authorities for their collections and is difficult
to manage due to the raw nature of the data, which requires cleaning and preprocessing
steps before the data can be fully utilized. In addition, the raw data are hard to understand,
and you need data mining tools to get useful information out of it.

Alternatively, the second type of mobile phone data aggregated at the cell tower level
(which is also called “location-based mobile phone data”, “passive mobile phone records”,
or “network-driven mobile phone data”) primarily involves storing location information
updates of mobile devices based on cell tower locations. In this type, the data records
passive location updates of a mobile device from the base transceiver station (BTS) (also
known as a cell, cell tower, or node B in 3G networks) at regular intervals and whenever the
mobile device is switched on or off, receives a signal from the mobile network, or changes
the type of connection. This type of data stores a record that details every event, including
the user’s ID, the timestamp, and the location (the cell ID), where each record is geolocated
based on the nearest BTS the mobile device is connected to. Thus, in every geographical
area, there is a defined number of BTS that cover the given area to ensure the quality of the
communication services and optimize the signaling. Each of the mobile network events is
recorded to a BTS through a base station controller (BSC) that controls and manages a set
of BTS by governing the network traffic and performing network handover. Accordingly,
whenever the signal between a mobile device and a connected BTS becomes weak, the
BSC will hand over the connection to another BTS to guarantee an optimal transmission
signal for that connection. This type differs from the first one in the sense that it neither
depends on active events initiated by the user nor does it reveal communication (calling)
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information about the receiving device and its location (i.e., the terminating user ID and
the cell ID); thus, mobile phone data at cell tower level mostly captures spatial–temporal
human mobility patterns due to the fact that only spatiotemporal information is recorded.
Additionally, this type of data can record events either actively or passively based on how
the mobile device interacts with the cell towers (passively, when the phone is turned on or
off, receives a signal from the mobile network, changes the type of connection, etc.; actively,
when a call is made, a text message is sent, etc.).

4. Human Mobility Patterns

Spatiotemporal information provided by mobile phone data can provide clearer in-
sights into human movements and interactions in various applications. For instance, mobile
phone data have been used to detect certain types of behaviors in cities and urban zones
based on human mobility patterns, to investigate the relationship between human dynam-
ics and crimes, to estimate population density, and to detect home and work locations.
Therefore, analyzing human dynamics and movements is crucial to understanding their
actions and activities.

4.1. Urban Environment

With the rapid growth and usage of mobile devices in urban environments, mobile
phone data have been widely used as urban monitoring sensors, resulting in many diverse
applications such as land use classification, estimating population density, home-to-work
identification, urban hotspot detection, and others. So, looking into urban sensing applica-
tions is a good way to find out where and how much people do things in cities [2].

4.2. Classification of Urban Land Use

In mobile phone data studies, land use inference is based on human dynamics and
activities as extracted from their mobility and call patterns. Spatiotemporal information
extracted from human mobility patterns can, in this manner, be used to depict human
activity patterns that shape land use types, with human activity patterns assumed to be
linked to the time and location of recorded mobile phone usage based on the locations in
which such activities take place [20]. Because of this, people’s mobility and movement can
stand in for many of the things they do, which can then be used to figure out how they use
the land.

Empirically, human activity patterns based on mobile phone data are derived from
specific characteristics provided by such data, specifically the temporal and spatial charac-
teristics of mobile phone users as represented by concentrations of locations and times of
mobile activities; for example, more activities occurring during the day (8 a.m. to 6 p.m.)
on weekdays may imply that the main land use is for commercial or business areas, due
to the fact that these types of areas have higher concentrations of mobile activities. Such
human activity patterns as extracted from mobile phone data have been used to represent
human activity patterns to infer land use over several studies, with most feature types being
used, including spatiotemporal calling volume pattern features. This allows the capture
of the hourly patterns of human activities across a given period of time. Human activity
and mobility patterns are thus assumed to be reflected in call volume patterns, and such
patterns can be captured when users make phone calls; their locations are recorded [21]
and can thus be used to identify land use. Several studies have thus examined different
features extracted from mobile phone data and used varying approaches to infer land use
based on human activities.

Being able to capture human daily activities based on mobile phone data allows
for basic classification of land use areas. Thus, several studies in this application have
intended to apply classification and clustering methods to identify land use types. A semi-
supervised clustering fuzzy c-means (FCM) method was proposed to classify urban land
use in Singapore into five land use types: residential, business, commercial, open space,
and other [8]. The authors constructed a synthesized vector from a linear combination
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of two real vectors. These two vectors represent human activity patterns extracted from
mobile phone data, showing the total calling volume and hourly call volume managed by
each BTS. This was intended to overcome the gap left in previous studies where the time
series of the call volume for two-day patterns were considered to infer land use types. The
semi-supervised FCM was then used to classify the urban land use based on the synthetic
vector. The same features were extracted from mobile phone data by [9] to represent human
activities; however, they used a different approach whereby an unsupervised algorithm
known as non-negative matrix factorization (NMF), which is well known for its use in
dimensional reduction and feature extraction, was applied. The authors thus decomposed
the call pattern matrix A, which contained only non-negative coefficients representing
human activity patterns, into the product of two matrices, W and H (also composed of
non-negative coefficients). After decomposing the call pattern matrix in this way, two basis
vectors were identified, which illustrate the commercial/business/industrial (C/B/I) (work
pattern) and residential (out-of-work pattern) characteristics of various areas. Mao et al. [13]
used a similar approach to identify land use types with an extra feature extracted to depict
human activities more precisely: temporal mobile phone call patterns were thus extracted
to reveal different land uses along with total call volumes as aggregated at each cell tower.
These two feature types helped to distinguish between those human activities that varied
from weekdays to weekends. For example, the amount of time people spend at home
during weekdays, based on features generated to represent the call volume by the hour of
the day for each day of the week, showed that human activity in residential areas is up to
three times higher at weekends due to the fact that people go to work on weekdays and
stay at home more during weekends. Thus, during weekdays, activity reaches a peak in the
middle of the day, between 12 p.m. and 6 p.m. in business areas. Yuan et al. [12] presented
an unsupervised k-means clustering model that aimed to identify urban functional areas
(UFAs) based on citizens’ daily activities and communication activity intensity. To model
this communication activity intensity (CAI), various spatial and temporal characteristics
were extracted from mobile phone data, including the ratio of the number of calls made or
received in a specific geographical area subdivision (GASs) during a specific time interval.
Lastly, Furno et al. [22] used an unsupervised signature clustering algorithm to try to
improve land use classification by combining mobile phone data with additional mobility
information taken from GPS data, specifically the GPS traces of cars that were floating.

Using a supervised learning model to classify land use has been attempted by [11]
and [23], with a sample of land use initially labeled to train the classifier. Zinman and
Lerner [23] applied a random forest (RF) algorithm to classify urban areas in Tel Aviv by
extracting two types of features previously used across the literature [8–10,12,13] along with
additional feature types representing communication habits to capture human communica-
tion behaviors, such as call duration, contact type (phone calls, accessing the internet), the
weekly pattern features based on differences in communication activity between weekdays
and weekends, and contact features such as the average number of days on which people
engaged in or performed cellular contact in a given cell over one hour. Similarly, [11]
applied a support vector machine (SVM) classifier algorithm, one of the most popular
supervised learning algorithms, to classify urban land use types in Beijing. These were
split into six classes: (a) residential, (b) business, (c) scenic, (d) open, (e) other, and (f)
entertainment. As SVM is a supervised ML approach, it requires training datasets with
land use labels to train the model. Thus, based on the fact that mobile phone data are not
inherently labeled data, the authors selected land use labeled samples from Google Earth™
at a resolution of 2776 pixels as the training samples to train the appropriate classifiers.
During the process of putting together human activity patterns from mobile phone data,
the authors used the same spatiotemporal characteristics to show human activity patterns
as those most often used in previous studies [8–10,12,13].

A different approach based on community detection techniques (community graph
clustering), which is different from traditional clustering techniques such as K-means, FCM,
and hierarchical cluster analysis (HCA) to detect land use types, was adopted by [14].
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Lenormand et al. [14] wanted to make activity profiles based on the weekly activity that
show the number of mobile phone users per hour during the days of the week to find four
land use types (residential, business, logistics/industrial, and nightlife) in Spain.

As a way to improve land use classification outside of classical clustering techniques,
Ríos and Muñoz [15] proposed a new clustering technique that aims to detect land use in
Santiago City. This was based on adopting a latent variable clustering technique.

Other studies have attempted not only to classify land use but also to investigate
additional information about the relationships between human activities and urban land
use and how different urban land use types can influence or impact people’s lives. Jacobs-
Crisioni et al. [20] aimed to investigate the impact of mixed and dense land use on urban
activity dynamics in Amsterdam, Netherlands, to determine whether land use density and
mix can prolong high levels of activity in urban areas; they thus extracted spatiotemporal
characteristics from mobile phone data to depict human activity levels and then applied
spatial regression models. The results showed that urban areas with high attraction levels
corresponded with increased urban activity intensity, supporting the hypothesis that mixed
land use diversifies urban activity dynamics and increases profiling activity intensity. Put
simply, mixing shops, businesses, and meeting places has an additive effect on activity
levels. Yang et al. [24] aimed to explore the relationship between human convergence
and divergence patterns extracted from mobile phone data and land use characteristics
(commercial, industrial, residential, public, and transport land). To achieve such a goal, the
authors first extracted spatial and temporal characteristics provided by mobile phone data
to depict human convergence–divergence patterns and then applied multinomial logistic
regression (MLR) to reveal the effects of land use characteristics on human convergence–
divergence dynamics. Liu et al. [25] used commuting flow patterns (origin–destination
(OD) commuting flows) to depict human activities with the aim of exploring urban land
use types as well as investigating whether urban land use influences commuting flows.
By using a Louvain modularity-based algorithm, Novovic et al. [26] attempted to apply
community detection techniques based on users’ dynamics and activity variations over
space and time to infer the correlations between human dynamics and land use. The idea of
modularity has been used a lot in research on mobile phone data as a good way to measure
how good a partition is.

The variation in researchers’ findings on land use can be attributed to different per-
spectives on how to analyze mobile phone data in order to depict human activities. For
example, individuals’ behaviors have been interpreted in diverse ways, including, among
others, user dynamics, human activities and mobility patterns, commute flow patterns,
temporal activity patterns, and human convergence/divergence dynamics. These multiple
analytical perspectives have been developed to deal with the diverse spatiotemporal and
call features extracted from mobile phone data, such as spatiotemporal call volume, users’
daily trajectories, communication habits, weekly patterns, and contact features.

Table 1 shows the different analytical perspectives and features extracted, as well as
the methods used to infer land use. Previous studies have shown that detecting land use
is best handled as a clustering problem to which algorithms can be applied, while other
statistical methods have been used to uncover the relationships between human activities
and land use.
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Table 1. Prior research on human activities and land use based on mobile phone data.

Reference Analytical Perspective Feature/Characteristic Application Description Algorithm/Technique

[8,9,11–13] Human activities and
mobility patterns

Spatiotemporal call volume: total
and hourly call volume managed by
each base transceiver station (BTS)

(i.e., total number of calls or mobile
phone devices managed by a given

BTS over a given period)

Classification of urban land
use types

These studies have depicted human activity
patterns based on extracting spatiotemporal

call volume features

FCM [8], NMF [9,13],
SVM [11], and k-means

[12]

[13–15] Temporal changes in
human activities

Temporal call patterns and volume:
calculations or estimations of the
number of calls or mobile phone

devices managed by each BTS tower
every hour in a seven-day week (i.e.,

weekdays and weekends)

Land use detection

These studies have detected land use
patterns based on temporal changes in

human activities to capture human
behaviors’ variation over time (e.g., human
activity trough in the middle of the day on

weekends)

NMF [13], community
detection algorithms [14],

and latent Dirichlet
allocation [15]

[26] Human dynamics

Spatiotemporal features: cell tower
identification that shows BTSs’ exact

location and aggregated mobile
network traffic activity for each BTS

at 10-min time intervals

Investigation of relationship
between human dynamics

and land use

This study investigated the correlations
between land use and human dynamics,
depicting human dynamics as a graph in
which nodes are BTS towers and edges

represent communication traffic between
two nodes

Community detection
algorithms

[25] Human commuting
patterns

Users’ daily trajectories based on
spatiotemporal features: users’

location represented by cell tower
location (e.g., a residence location

can be identified based on the most
frequently used cell tower locations

during the night hours)

Clarification of relationship
between commuting flows

and variables such as
industrial, commercial,

residential, and educational
land use

This study’s main goal was to gain a fuller
understanding of the relationship between

land use variables and commuting flows, so
a gravity model was used (i.e., a widely
used technique for assessing commuting

flow patterns), which shows that commuting
between two locations i and j, with origin
population mi and destination population
mj, is proportional to the product of these

populations and inversely proportional to a
power law of the distance between them [25]

Gravity and regression
models

[23] Human daily and weekly
activity patterns

Spatiotemporal call features:
spatiotemporal call volume (i.e., total

call volume and compared call
patterns), communication habits,

weekly patterns, and contact features

Land use classification

This study focused on various features to
capture many aspects of human activity
patterns and depict variation in human
activities on weekdays and weekends

RF



Sensors 2023, 23, 908 9 of 34

4.3. Urban Crime Research

Investigating densely populated urban environments where criminal activities are
much more likely to occur has long been a popular topic in mobile phone data research.
The structure of built urban environments can be seen in many attractions and centers of
activity such as bars, clubs, hotels, shops, and schools that draw many people and create
opportunities to commit crimes as these places are known for being crowded. Urbanization
pulls multiple individuals to cities and thus results in more crime [27]. Empirical research
has shown that urban environments where people concentrate and participate in daily
activities, for example, schools, stations, shopping centers, sports venues, and entertainment
areas, can be defined as crime generators. Crime attractors, in turn, are places that are
not crowded but attract people who want to commit crimes [28], such as bars, nightclubs,
automatic teller machines, and banks [27].

Mobile phone data have been used to prevent, fight, and deter urban crime by pre-
dicting crime hotspots, detecting and identifying suspects and criminals, and investigating
the relationships between human mobility patterns and criminal activity patterns. The
digital tracks left by people at locations where a crime has taken place can reveal a rep-
resentative sample of the population present at the crime scene at a given time, thereby
providing insights into correlations between individuals’ mobility and criminal activities.
Mobile phones connect to a given cell tower located in the area where a crime has taken
place, leaving digital traces or evidence that can be used to conduct empirical research on
crime patterns and the dynamics of criminal behavior from a people- and place-centric
perspective.

The literature reports various crime-related applications that have been derived from
mobile phone data aggregated at the cell tower level. For example, some studies [29,30]
have identified crime hotspots in London by extracting human mobility patterns from
mobile phone records. To depict these mobility behaviors, the cited authors focused on
spatiotemporal features, such as the total numbers of calls or mobile phone devices for each
cell tower every hour. Other researchers [27,28,31–33] have similarly relied on defining
specific populations’ spatiotemporal patterns to investigate the relationships between
human dynamics and spatiotemporal crime patterns. These studies have tracked features
of ambient populations that indicate specific areas are at risk of criminal activities or that
individuals are in danger of becoming victims of theft or assault, thereby confirming that
ambient populations’ configurations have a significant impact on crime patterns and rates.

Scholars have discovered additional applications by analyzing mobile phone data
at the individual level, or CDRs. For example, previous studies [34–38] have detected or
constructed criminal social networks based on criminals’ communication behaviors. To
depict this type of communication, the cited authors have extracted call features such as
the duration of calls between two criminals, the frequency with which they make calls,
the maximum, average, and minimum duration of these calls, and the maximum number
of outgoing phone calls or messages. These features then allow these researchers [34–38]
to represent criminal organization networks that show whether nodes (i.e., criminals)
are highly influential or less influential members. The results can, in turn, help criminal
investigators understand criminal networks’ hierarchical structure, as criminal investigators
have trouble determining who belongs to criminal organizations, who heads them, and
what relationships exist within them due to the nature of the raw data available.

Still, other studies [4,39,40] have built forensic detection models to separate suspects
from non-suspects. The cited authors have analyzed criminal communication behaviors by
extracting suspects’ call features such as timestamp, frequency, and average, maximum,
average, and minimum duration. Table 2 presents crime-related applications based on
mobile phone data, the various features extracted to depict human behaviors, and the
methods used.
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Table 2. List of applications, methods, and features used in criminology based on mobile phone data.

Reference Analysis Perspective Feature/Characteristic Application Description Algorithm/Technique Geographical
Unit/Spatial Unit

[29,30] Human mobility
patterns

Spatiotemporal features: cell
tower IDs and timestamps to
calculate the total number of
mobile phone devices in each

cell tower every hour

Crime prediction

Human mobility patterns
extracted from mobile phone
data can be used to predict

crime hotspots

RF Cellular network cells:
124,119 cells

[41] Human mobility
patterns

Spatiotemporal features such
as cell tower IDs and

timestamps to estimate
footfall count entries in each

cell per hour

Crime prediction

The results show that the
relationship between crime

activities and the diversity of
the ages and ratios of visitors

negatively correlated

Correlational analysis:
Tjostheim’s coefficient

Grid cells: the
geographic area is

divided into 23,164 grid
cells.

[42]

Human daily mobility
patterns or daily

population mobility
patterns

Extracted spatiotemporal
features: cell tower IDs and

timestamps
Crime prediction

The daily mobility flows of the
general population have been

captured to provide a
template of the daily mobility

of criminals

Regression analysis:
conditional logit discrete

choice models

Census units:
1616 census units

[33]
Human mobility

patterns and social
activities

Spatiotemporal features and
call logs: cell tower IDs,

timestamps, and the number
of phone calls or short

message service (SMS) made
and received

Crime prediction

Mobile phone data have been
used to measure the ambient

population at risk, and results
showed a strong correlation
between ambient population

and criminal activities

Correlation analysis:
Moran’s I statistic, and

regression: negative
binomial regression

analysis

Grid cells: the study
region is partitioned into
equally sized grid cells

of (306 × 306 m).

[28] Mobile phone activity

Spatiotemporal features:
timestamps and cell tower IDs

to estimate or count the
number of times a mobile

phone device communicates
with the cell tower, which this

parameter has later used to
measure the size of the

ambient population

Crime prediction

The results showed strong
correlations between the

ambient population measures
(workday population, mobile
phone data, and population
24/7 daytime estimates) and
crime patterns (the crime of

theft from person)

Correlation analysis:
Spearman’s rank

correlation coefficient [ρ]
statistics

Lower super output
areas (LSOAs): cellular

network grid cells
converted to LSOA
geographical units
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Table 2. Cont.

Reference Analysis Perspective Feature/Characteristic Application Description Algorithm/Technique Geographical
Unit/Spatial Unit

[31,43] Mobile phone activity

Spatiotemporal features:
timestamps and cell tower IDs
to calculate the total number
of mobile phone devices in
each cell tower every hour

over a 3-month period

Crime prediction
A stronger correlation was

found between ambient
population and crime rates

Correlation analysis:
Pearson correlation

coefficient and
point-biserial correlation

coefficient

Grid cells of 200 × 200 m

[27] Human mobility
patterns

Spatiotemporal features:
timestamps and cell tower IDs Crime prediction

The results demonstrate a
negative relationship between
ambient population and street
robbers’ criminal activities, in
which ambient population has
a significant effect by reducing

opportunities to commit
crimes

Correlation and
regression analysis:

discrete choice models
and negative binomial

regression

The geographical areas
were created using
Thiessen polygons,

where 52,026 cell towers
were mapped onto

polygons

[44,45]
Intra-daily mobility

patterns of the
population

Spatiotemporal features:
timestamps and cell tower IDs

to identify the origin and
destination of each user

Crime prediction

These studies proposed a new
measure in calculating crime

rates and exploring crime
patterning, which is the

exposed population at risk,
which includes a mixed

population of, for example,
criminals, victims, and

guardians. The results showed
that the exposed population is

more significant than the
ambient population in

exploring violent crimes in
public spaces

Correlation analysis:
Spearman’s rank

correlation coefficient (ρ)
statistics [44].

Regression analysis:
negative binomial

regression model (NBM)
[45]

Lower super output
areas: 1673 LSOAs
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Table 2. Cont.

Reference Analysis Perspective Feature/Characteristic Application Description Algorithm/Technique Geographical
Unit/Spatial Unit

[32]
Daily movement

patterns of migrant and
native offenders

Spatiotemporal features
extracted: timestamp and cell
tower ID to count the number

of mobile phone devices
connected to a given cell

tower on a per-hour basis.
This feature helps to estimate

ambient population and
criminal movements when a

crime takes place

Detecting criminal
mobility patterns

The results show that the
ambient population has a
positive relationship with

dynamic patterns of violent
crimes committed by migrant

offenders

Descriptive statistics and
negative binomial
regression models

The geographical areas
were shaped using the

Thiessen polygon
technique, where 52,026

cell towers were
represented as Voronoi

cells

[5] Spatiotemporal mobility
patterns of terrorists

Spatiotemporal features of
terrorists:

(1) variation over time: this
feature depicts the mo-
bile phone spatiotempo-
ral patterns of criminals
over a given period and
then allows to distin-
guish criminal mobility
patterns and activities
that contain varied loca-
tions over time

(2) frequency: number of
times a given cell tower
has visited or contacted
by criminals

(3) distance: the distance
between the locations
where the criminals vis-
ited and their homes

Detecting mobility
patterns of terrorists

This study identified the
meaningful places for

criminals based on the digital
traces they left at home and
other visited locations. The

traces were then analyzed to
determine the changes in the
terrorist’s spatial behaviors

Correlation analysis:
Spearman’s rank

coefficient (ρ) statistics,
Pearson’s correlations,
and statistical analysis:

the cumulative
distribution function

Cellular network cells:
cell tower locations were
spatially approximated

to the postcode area,
which in the United

Kingdom covers a small
area of approximately

0.14 km2.
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Table 2. Cont.

Reference Analysis Perspective Feature/Characteristic Application Description Algorithm/Technique Geographical
Unit/Spatial Unit

[3,34–
37,46,47]

Criminal communication
behaviors

Call features:
outcoming/incoming calls,

call frequency, maximum and
minimum numbers of

incoming or outgoing calls
and messages, call

timestamps, temporal changes
in mobile phone call patterns,

caller ID, called ID, type of
communication (phone call,

SMS, MMS, or voice), and call
duration

Detecting criminal
networks

These studies built multiple
forensic systems to detect

criminal networks based on
their calling characteristics.
Here, a criminal network is

represented by a set of nodes
(criminals) and the edges or

links between them represent
a communication (i.e., a phone

call or SMS)

Social network analysis
tools and graph

algorithms such as
Prim’s minimum

spanning tree algorithm
[35], the

Girvan-Newman
algorithm [34], Space

algorithm [3], Blondel’s
community detection

algorithm [4], and
Fruchterman–Reingold

algorithm [47]

N/A
Missing location data
(i.e., the geographical
position of nodes is

unknown)

[48–52]
Communication and
mobility patterns of

suspects

Spatiotemporal and calling
features: the SIM numbers

and location ID of the
suspects, calls made between
the suspects, maximum call

duration, call frequency,
phone calls made at the crime

location, the most frequent
caller, the number of times the
suspect called other suspects,

suspect trajectories, and others

Identifying suspects and
their associates

These studies built a call detail
record query system to detect

suspects and suspicious
groups.

Big data technologies
and analytics such as

Hive, Hadoop
MapReduce, and the

Hadoop Distributed File
System

The coverage areas of
cell towers have not

been intersected with
any geographical units.

[4,39]
Suspects’

communication
behaviors

Call features: call duration
between suspects, maximum

and average call duration,
maximum duration of

outgoing and incoming calls,
standard deviation duration of

incoming calls, phone calls
made at the crime location,

and others

Suspect classification

These studies built suspect
classification models based on
machine learning approaches
that can classify suspects from

non-suspects

Bayesian network [39]
and

graph convolutional
networks [4]

N/A
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As noted in Table 2, most researchers have used statistical methods such as correlation
and regression analysis in crime prediction, and SNA tools have been widely used to
detect criminal networks. In suspect identification, big data technologies are the most
frequently used. Moreover, the variation in research on crimes can also be viewed from
various analytical perspectives, and features extracted from mobile phone data can be used
to depict human activities, as illustrated in Table 2 and Figure 1.

Figure 1. General concept of criminal activity detection.

In addition, some studies applied spatial mapping techniques to intersect or project
mobile phone locations from mobile network cells [53] into spatial units, such as census
units [42] and Lower Layer Super Output Area (LSOAs) units [44,45].

However, other studies [48–52] have not considered the spatial mapping of mobile
devices to a given spatial unit. In this case, mobile phone locations were originally assigned
to the coverage areas of a base station [16]. Consequently, undoing the spatial mapping of
mobile phone presence will affect the accuracy of the sampling population at or near crime
scenes and can lead to inaccurate detection results.

4.4. Public Health

Mobile phone data have been used in public health research to fight against infectious
diseases, understand human mobility after natural disasters, measure and estimate human
mobility in relation to the epidemiology of infectious diseases, and quantify exposure to
air pollution [54]. These above-mentioned multiple health applications have been derived
from human mobility patterns by extracting spatiotemporal characteristics of individuals
from mobile phone data. Indeed, many aspects of human daily activities and lifestyles
are linked to human mobility patterns, and measuring and monitoring human mobility
patterns can aid in combating the spread of infectious diseases and avoiding potential
threats to public safety and human health. For example, [55] depicted individual mobility
patterns by extracting their spatiotemporal features to examine and quantify their exposure
to air pollution.

Recently, human mobility patterns and interactions have allowed a better understand-
ing of COVID-19 trends and geographic distribution [56]. This is one of the important
roles that mobile phone data has played recently in controlling and preventing COVID-19
and tracking population movements. During the coronavirus disease 2019 (COVID-19)
pandemic, many COVID-19 applications were built using data from mobile phones. These
applications were used, for example, to help public health response to COVID-19 [57], to
track changes in people’s mobility patterns [58], to control how the COVID-19 pandemic
spreads [59], and to find out if there is a link between changes in mobility patterns and the
number of daily COVID-19 cases [60].

So, being able to measure and track people’s movements can help reduce health
risks [61] and people’s exposure to air pollution, which can cause health problems such as
breathing and heart problems [62]. Table 3 presents public health applications based on
mobile phone data, analysis perspectives, and study findings.
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Table 3. List of applications used in public health.

Reference Application Feature Study Finding Analysis Perspective

[62]
Dynamic estimation of
individual exposure to

air pollution.
Spatiotemporal

The results show that exposure
to nitrogen dioxide (NO2) goes

up by 4.3% during the week and
by 0.4% on the weekends. Due

to the fact that, during the week,
people who live in small towns

near big cities are exposed to
more NO2 because they work in

these cities

People’s travel patterns

[63]
Estimation of human

exposure to air
pollution

Spatiotemporal

The results indicate that the
home-based method (HBM),

which assumes that all
individuals spend the entire day
at their homes (individuals who
are not highly mobile), is still a
useful measure for estimating
their exposure to air pollution

Daily mobility patterns

[64] Controlling the spread
of dengue fever Spatiotemporal, SMS

The results show that the
spatially targeting SMS policy

that encourages people to avoid
and cancel trips to high

importation risk areas can help
to reduce the risk of disease

spread

Spatiotemporal travel
patterns

[65–67]
Controlling and

measuring the spatial
spread of malaria

Spatiotemporal

These studies prove that mobile
phone data are effective in

controlling and estimating the
spread of malaria parasites by

analyzing the mobility patterns
of individuals in countries such
as Bangladesh, South Africa, and

Madagascar

Human travel patterns

[60]

Investigation of the
correlation between

mobility patterns and
COVID-19 cases

Spatiotemporal

The results indicate that a
decrease in human movement (a

reduction in the number of
individual trips) is associated
with a decrease in the growth

rate of COVID-19 cases

Human daily mobility
patterns

[68]

Real-time predictions
of human movement

during the Tokyo
earthquake

Spatiotemporal

The proposed assimilation
method yields encouraging

results for estimating the
real-time movement of people

during earthquakes

Real-time human
movement

As noted in Table 3, several applications have been examined in health research. It
can be observed that travel and mobility patterns have been widely used to depict human
activities, allowing investigation into the effect of travel and the transmission of infectious
disease and estimating the number of trips to areas with a higher risk of COVID-19.

4.5. Transportation Research

Due to the fast growth of telecommunication networks, a large quantity of data
about how people move and behave in space and time is being generated, which could
be used to evaluate and analyze the travel patterns and social interactions of the total
population [69]. Understanding the movement of people and where they live is essential
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because it can help urban planners and organizers manage traffic flow and plan public
transportation services [2]. In this matter, mobile phone data have played an essential role
in depicting people’s mobility and social interactions in urban areas due to the wide usage
of smartphones. The digital traces (e.g., mobile phone data) left by this large number of
devices provide valuable information that facilitates the understanding of passenger travel
behaviors, human movement behaviors in urban areas, and changes in human driving
behaviors during road traffic. Because of this, knowing how people travel and act could
lead to ways to improve the quality of life in a city on a large scale.

However, one of the challenges in transportation research is to understand the travel
behavior of passengers with regard to identifying the hub passengers and detecting their
transport modes (e.g., train and subway). Analyzing the transportation hub, which is the
transition point for passengers to switch between various types of transportation (train and
subway), is necessary in order to understand passenger travel demand [70]. This ultimately
helps to support and evaluate urban transportation planning and management [71].

The second challenge on which transportation literature widely focuses is enhancing
the detection of the transport mode of passengers. This difficulty is due to the nature of
mobile phone data, which is noisy, sparse, and irregular. Several techniques have been
proposed to improve the performance of transport mode detection. For example, Graells-
Garrido et al. [72] aim to identify the distribution of usage of transportation modes in
Santiago, such as the metro, bus, and car, by building a pipeline method for inferring
trips based on user trajectories. Chin et al. [73] aim to improve the detection of transport
modes by applying multiple supervised and unsupervised detection algorithms such as
rule-based heuristics, RF, fuzzy logic, and partitioning around medoids (PAM). The author
in [74] aim to identify travelers’ transport modes, such as buses, cars, and railways, based
on detecting travel speeds for each transport mode. For example, if a trip’s travel speed
exceeds 15 km/h and there are no subway or bus stops within 500 meters of its source
or destination, the trip is designated as a car trip [69]. Finally, Bachir et al. [19] aim to
estimate total origin–destination flows by modes of transportation, such as road and rail,
by combining five different types of mobility datasets that allow for fine-grained daily
population dynamics.

There are also other problems, such as the fact that existing mode detection techniques
are mostly made to recognize easy-to-detect modes (subway, train) or more general mode
groups (e.g., rail versus road, moving versus stationary) [69,73].

The literature shows that mobile phone data have been used for many transportation
research purposes, such as estimating passenger origin–destination flows, predicting traffic
congestion, and other applications. Table 4 presents transportation applications.

Table 4. List of transportation applications in mobile phone data.

Reference Application Description

[75] Traffic congestion detection
The study aims to classify traffic conditions into high,

medium, and low traffic levels based on handover records
that show the number of handover events in a cellular tower

[76] Origin–destination flow estimation
The study aims to study traffic flow in Dhaka city by

constructing origin–destination (OD) matrices based on
phone users’ trajectories

[77–79] Urban planning and management

These studies aim to investigate and understand the
dynamics of human mobility and human travel patterns in

urban areas, which paves the way for improving traffic
planning, public transport design, and transportation

infrastructure design

[19,80,81] Transport mode detection
These studies analyze the travel behaviors of passengers in

order to identify the modes of transportation that
passengers take, such as metro, train, car, and bus
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5. Human Communication Behaviors

Mobile phone data at the individual and aggregated levels, usually called CDRs and
aggregated CDRs, respectively, can be used to investigate and study human communication
behaviors and social communication patterns due to the fact that mobile phone data at
these levels contain communication information. Mobile phone data aggregated at the
cell tower level does not contain details of the other side of communication (such as the
callee ID or the callee’s connected cell tower ID) and thus cannot be used in applications
regarding human communication behaviors. So, CDRs have been used to study a wide
range of human social-related topics in many different ways. For example, it has been used
to infer social ties and relationships, find social networking communities, find criminal
relationships, identify suspects and criminals based on their calling patterns, and do other
things that have to do with how people talk to each other.

5.1. The Construction of Social Networks

Mobile phone network data can be used to reconstruct social network interactions [1],
which depict social structures as mobile phone customer interconnections. Most of the
time, this is achieved through the use of mobile phone data as a graph consisting of a set of
nodes and a set of edges.

Generally, any social network can be represented by a graph, G, on a set of nodes, V,
and a set of edges, E. To construct a social network of criminals based on communication
behaviors extracted from CDRs, calling characteristics must be extracted, such as the
number of calls or SMS messages, duration of calls, and timestamps. Empirically, mobile
phone data can create a social network based on individuals (subscribers) making or
receiving calls or messages; these individuals are classified as actors (nodes) within the
network, and the links between the actors represent the various types of communications
(e.g., calls or messages). In a real-life scenario detecting a criminal social network, Taha
and Yoo [35,36] created a criminal social network derived from mobile phone data that
showed a criminal network consisting of 62 nodes representing all individuals involved
in the incident; this contained 153 edges, where these edges represented various reported
interactions (such as calls and SMS messages) between the actors (criminals) involved in
the incident. However, in studies of mobile phone data, different ways to build or make
social networks have been found. These ways vary from one study to the next based on the
purpose of the study and the features taken from mobile phone data.

In addition, different network metrics (see Section 4.2 for more details) may be applied
during any network analysis, such as the use of a centrality measure or metric to find
the most influential subscribers in the network or the use of a reciprocity measure [82] to
analyze linking behaviors in a network by determining whether they demonstrate transitive
behaviors between nodes [83]. Yet there are also other network metrics that are used for
different things, such as figuring out how a network is put together or figuring out how
strong the modules in a network are, such as network modularity and efficiency. Table 5
shows some studies that analyze mobile phone data based on social network analysis (SNA)
tools.
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Table 5. Summarizes social network applications, algorithms, and network metrics.

Reference Application Feature Algorithm Network Measure

[34,47] To detect criminal
networks Call features Girvan–Newman and

Fruchterman–Reingold

Degree centrality, eigenvector
centrality, closeness centrality,

transitivity, betweenness
centrality, and transitivity

[3,35] To detect criminal
networks Call features

Concept space
approach and Prim’s

algorithm
Vertex-centric, edge-centric

[84]
To detect customers

who are likely to fail to
pay their mobile bill

Call feature and
spatiotemporal features SLPA Closeness centrality and

reciprocity measures

[85] To detect users’ social
interactions Call feature Bron and Kerbosch’s Persistence, disparity, and

reciprocity measures

[86]
To detect ethnic

communities in Ivory
Coast

Call and
spatiotemporal features Louvain Asymmetries and assortativity

coefficient

[87] To detect human spatial
interactions in China

Spatiotemporal
features

Infomap, Louvain, and
REDCAP

Degree, strength, rich-club
coefficient, and assortativity

coefficient

[88]
To detect

socio-economic groups
in Ivory Coast

Call and
spatiotemporal features Louvain Rich-club coefficient and

PageRank

[26]

To detect he spatial
interactions of

communities in Milan,
Italy

Spatiotemporal
features Louvain Betweenness centrality, degree

centrality, and PageRank

[89] To detect individual ‘s
spending behaviors

Spatiotemporal
features Louvain Diversity, radius of gyration,

and homophily

[90]

To detect
socio-economic
communities in
Santiago, Chile

Spatiotemporal
features Louvain Segregation measures (i.e.,

isolation metric)

[91]
To detect urban

communities in Dublin,
Ireland

Spatiotemporal
features Louvain Newman’s modularity metric

5.2. Network Metrics

Degree centrality: The number of direct links that a node possesses can be defined
as its degree of centrality. Any nodes with a high degree of centrality may be regarded as
hubs (crucial channels of communication). Equation (1) can be used to calculate degree
centrality, in which n represents the number of vertices in the network, whilst xvu will be
equal to 1 if vertices v and u are linked. If not, this figure will be 0 [3].

CI(u) =
n

∑
v 6=u

xvu (1)

Betweenness centrality: This metric assesses the distance between a specific node
and other nodes in the same network. These intermediate elements can exert strategic
control and influence on other elements [34]. This centrality measure is largely based on
the assumption that any node lying between the shortest path connecting two nodes is
central. People who have a high degree of centrality are thought to act as “gamekeepers”
in the network.
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Shortest paths: The number of shortest paths between vertices passing through the
vertex can be used to calculate its betweenness centrality [3]. Equation (2) can be used
to work out the betweenness centrality, in which σst represents the number of shortest
paths between vertex s and vertex t, whilst σst(u)) represents the number of shortest paths
between vertex s and vertex t passing through u.

CB(u) = ∑
s,t∈G,s 6=t

σst(u)
σst

(2)

Closeness Centrality: Closeness refers to the length of the shortest path compared to
all other vertices. In other words, it assesses the proximity of a vertex to other vertices.
Equation (3) can be used to measure closeness centrality, in which (ui-, uj) represents the
distance between vertex ui and vertex uj.

cc(ui) =
1

∑n
j 6=i d

(
ui, uj

) (3)

Identifying the influential members in criminal networks by assigning weight to a
vertex: Here is an initial formula proposed by [36] that can be used to assign each vertex vk
with a weight that accurately represents its importance in the network compared to other
vertices. To calculate the weight of k, the following factors must be considered: (a) The
frequency of incoming and outgoing communications to vk (i.e., the number of times vertex
k appears in reports of criminal activity compared to other vertices). (b) The frequency of
incoming and outgoing edges to vk (i.e., the number of vertices with edges outgoing to k,
as well as the number of vertices with edges incoming from vk). The following equation
was employed by the researchers to calculate the relative weights.

w(vk) =
∑
|vE

k (in)|
i=1 |(vi, vk)|+ ∑

|vE
k (out)|

j=1

∣∣(vk, vj
)∣∣

∑
|vE

k (in)|
i=1 0.8|vi, vk|+ ∑

|vE
k (out)|

j=1 0.6
∣∣vk, vj

∣∣ (4)

6. Discussion

The study results show that various spatiotemporal and call features and charac-
teristics have been extracted from mobile phone data to depict human activity patterns.
These characteristics vary between studies based on their purposes and the aspects of
human behaviors that they aim to investigate (i.e., mobility patterns, social interaction,
communication, etc.). For example, to identify suspects, [48,50] extracted call features, such
as phone calls that suspects made or received at crime scenes, using them as evidence of
their involvement in the crimes. Similarly, [39] identified suspects based on call features
but with additional features such as “average call duration with suspects,” “maximum
call duration,” “average call duration,” “minimum duration of a call out,” “maximum
duration of an incoming call,” and “standard deviation duration of an incoming call.” In
other applications, [8,9] explored human activity patterns to infer urban land use based on
spatiotemporal calling volume patterns. Similarly, [23] inferred urban land use based on
spatiotemporal calling volume patterns and additional features, such as communication
habits, weekly patterns, and contact features. Here, we notice that multiple features have
been extracted to depict human behaviors, relying on either spatiotemporal or call features.
However, there is currently no standardized way in which specific features should be
extracted, as the literature demonstrates multiple approaches. There is also no scientific
evidence on which spatiotemporal and call features are better than others when it comes to
accurately and effectively reflecting on and depicting human behaviors.

In this section, we also discuss the availability of mobile phone datasets for public
use, the distribution of mobile phone data applications, machine learning methods, and
managerial implications.
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6.1. Public Datasets in Mobile Phone Data

As Table 6 states, in the literature, many studies have made their datasets privately
available, especially mobile phone data at the individual level (CDRs), due to privacy
concerns, while open-source public datasets are limited and mostly suitable for specific
applications related to human mobility patterns due to the absence of communication
information.

Table 6. List of publicly available datasets used in the literature.

Dataset Description Application Limitation/Link

Nodobo mobile
phone records dataset

Nodobo contains mobile
phone records of 27

graduating high school
students from September 2010

until February 2011. These
data were collected by a group

of researchers at the
University of Strathclyde,

United Kingdom

Used in applications regarding
detecting criminal networks [3,48]

and anomaly detection [92]

It contains only communication
data; hence, it is suited for

applications related to human
communication behaviors

(https://pureportal.strath.ac.uk/
en/datasets/nodobo-mobile-

phone-usage-data (accessed on 20
September 2022))

Smartsteps dataset

Anonymized and aggregated
human behavioral data
derived from Telefonica

Digital Company, Portugal.

Used in applications regarding
crime prediction in urban areas

[29,30,41]

It contains only spatiotemporal
data

(https:
//tis.smartsteps.telefonica.com
(accessed on 10 August 2022))

Telecom Italia dataset
This mobile phone data

published by Telecom Italia in
2014

Used in applications regarding
land use detection [22], urban

hotspot detection [93], anomaly
detection [94], and mapping

population density [95]

It Is only suitable for limited
applications

(http://www.telecomitalia.com/
tit/en/bigdatachallenge/contest.
html (accessed on 12 November

2022))

Orange’s ‘Data for
Development’ (D4D)

This dataset contains two
types of mobile data, mobile
phone data at the aggregated
level (aggregated CDRs) and

the cell tower level. These
data were generated from

Orange mobile phone
operator in Ivory Coast

Used in applications regarding
home/work detection [96], land

use detection [9], identifying user
habits [97], and unusual event

detection [21]

Only suitable for limited
applications

(http://www.d4d.orange.com
(accessed on 21 October 2022))

OpencellId database
This is the largest open

database of cell towers in the
world

Estimating ambient
population [98]

It contains only location data
(https://opencellid.org/

(accessed on 14 November 2022))

6.2. Distribution of Mobile Phone Data Applications

Research on mobile phone data has been widely used in various applications in
different domains because even the smallest bit of information is enough to trigger many
new applications [1]. Although some studies on mobile phone data are used to develop
their unique applications [99], most studies share a relatively broad classification. Figure 2
illustrates different applications of mobile phone data.

https://pureportal.strath.ac.uk/en/datasets/nodobo-mobile-phone-usage-data
https://pureportal.strath.ac.uk/en/datasets/nodobo-mobile-phone-usage-data
https://pureportal.strath.ac.uk/en/datasets/nodobo-mobile-phone-usage-data
https://tis.smartsteps.telefonica.com
https://tis.smartsteps.telefonica.com
http://www.telecomitalia.com/tit/en/bigdatachallenge/contest.html
http://www.telecomitalia.com/tit/en/bigdatachallenge/contest.html
http://www.telecomitalia.com/tit/en/bigdatachallenge/contest.html
http://www.d4d.orange.com
https://opencellid.org/
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Figure 2. Network visualization of applications in mobile phone data.

The data used in this study were collected from the Scopus database, and VOSviewer
software was used to obtain a visual representation of the data. In the network presented
in Figure 2, there are three clusters. The first cluster, the red cluster, contains nodes
that represent applications derived from human activities and mobility in urban sensing,
such as urban transportation, travel behaviors, urban dynamics, estimating population
densities, and estimating origin–destination matrices. The nodes in the second cluster,
the blue cluster, represent human communication behaviors, and social activities, such
as social networking, mobile networking, 5G mobile communication, crime networks,
churn prediction, and anomaly detection. The third cluster, the green cluster, contains
nodes related to epidemiology and public health, such as health risk assessment, estimating
physical distancing during pandemics, COVID-19, disease control and prevention of disease
transmission, estimating air pollution, and estimating individual exposure to air pollution.
We noticed some new and emerging applications in which mobile phone data have been
used to monitor physical distancing and model the spread of COVID-19 for disease control
and prevention.

6.3. Methods

Table 7 shows that various machine learning models and algorithms have employed
mobile phone data to classify, cluster, and predict human communication behaviors and
mobility patterns in various contexts. Most studies have used machine learning approaches
to solve classification and clustering problems. Machine learning (ML) is a subset of
artificial intelligence that can learn from data and make decisions with little or minimal
human intervention [100]. On the other hand, deep learning (DL) is a subset of machine
learning that can automatically learn useful features and representations from raw data
and output results without human intervention [101]. However, DL algorithms require
significantly more data than ML algorithms to function properly. Due to its complex multi-
layer structure, a DL system requires a large dataset to eliminate fluctuations and produce
high-quality interpretations.
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Table 7. Machine learning (ML) and deep learning (DL) models and algorithms used by previous
researchers in mobile phone data studies. The abbreviation of algorithms is shown in the back matter.

References Algorithm/Model Objective

[102] SVM, NB To classify user relationships

[8] FCM To classify urban land use in Singapore

[4] GCN To classify criminals from non-criminals

[39] BN To classify suspect users from non-suspect users

[103] GBDT To detect significant locations in users’ visiting patterns

[29,30] RF To classify geographical areas into two classes, high or low crime levels

[7] RF To predict population density in Portugal and France

[23] RF To classify urban areas in Tel Aviv

[104] DBSCAN, GMM The DBSCAN algorithm is used to cluster users’ trajectories into
meaningful places, while GMM is used to identify users’ habits

[11] SVM To classify urban land use in Beijing into six classes, (a) residential, (b)
business, (c) scenic, (d) open, (e) other, and (f) entertainment

[12] K-means To identify urban functional areas (UFAs) in Beijing

[105] GAN To create artificial maps of population density distributions

[106,107] K-means To classify city users based on their calling behaviors into different types of
city geographic areas, including residents, visitors, and commuters

[108] MLP To predict the real estate price in Budapest, Hungary

[109] RF, GBDT, SVM, Adaptive
boosting To reconstruct individual trajectories

[110] MLP, CNN, LSTM To predict crowd distributions of people in urban areas

[111] NB, LR, RF, DT, KNN To prompt or recommend the best mobile phone contract services based on
customer communication behaviors

[112] BP To estimate individual exposure to particulate matter (PM2.5) air pollution

[113] ADTree, FT, RF To detect subscriber identity module box (SIMbox) fraud

[114] LR, SVM-Linear, SVM-RBF, KNN,
RF To predict demographic features such as age and gender

[115] SVM-Linear, Logistic regression To predict demographic features such as age and gender

[116] NB, SVM, DS, RF, RNN To predict the next location of tourists

[117] HC To cluster human mobility patterns based on similar individual trajectories

[118] GAN To generate synthetic data of mobile phone data

[119] KNN, RF, SVM-Linear,
SVM-RBF+CNN, LSTM, SDAE

To construct a classifier that enables the recognition of fraudulent phone
calls

[120] RF, GBDT, SVM +CNN To classify churner customers from non-churner customers

[121] DT, RF, GBDT, XGBoost To predict customer churn in Syriatel telecom company

[122] MLP, SVM, Bayesian networks To detect prepaid customer churn in mobile telecommunications
companies

[123] RF, DT, MLP, GBDT
To build predictive models that can classify customers into different

categories of loyalty, such as very high value customers (greater loyalty),
medium value customers (average loyalty), and others

[124]
LDA, SVM-RBF, XGBoost), RF, LR,
NB, KNN, Bagged CART, CART,

GBDT, C5.0

To predict customer demographic variables such as age and gender in
Syriatel Telecom Company

[125] K-means, DBSCAN To detect fraudulent calls in telecommunications companies such as
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Table 7. Cont.

References Algorithm/Model Objective

[126] GMM, ANN
To build a clustering-based classification model to classify cellular network
traffic patterns into high-activity area, medium-activity area, low-activity

area, etc.

[92,94,127] K-means, GMM+CNN

To detect anomalous behavior through the identification of anomalous
activities of mobile phone subscribers [92], to detect anomalies in a cellular

network such as sleeping cells or
unusual high call volume in a given region (traffic activity) [94]

[128] FCM To classify mobile subscribers based on extracting their calling features
into three classes genuine, fraudulent, and suspicious

[129,130] HC, k-means, FCM, SVM To detect fraudulent behaviors in telecom companies such as detecting
fraudulent calls

[10] K-means, FCM, spectral
clustering, consensus clustering To cluster land use in Madrid

[131] FKNN, MLP, C4.5, SVM GBDT,
LR, RF, Adaptive boosting To classify mobile customers into two classes, churners or non-churners

[132] K-means To cluster users according to their weekly mobility patterns into six
different profiles

As the table illustrates, most problems in mobile data are regarded as classification
and clustering problems; for example, the churn prediction problem has been solved with
supervised classification algorithms such as SVM and RF, while the problem of detecting
anomalies in mobile phone data has been mostly solved with unsupervised clustering
approaches such as k-means clustering.

In addition, supervised algorithms such as RF and SVM are the most widely used in
the literature, and at 28 times, this is the highest share among all supervised algorithms.
Meanwhile, k-means was the most frequently used unsupervised algorithm, as shown
in Figure 3a. On the other hand, deep learning algorithms such as CNN and MLP are
the most frequently used for classification problems, including the prediction of customer
churn [131].

Figure 3. The distribution of machine learning algorithms (a) and deep learning algorithms (b).
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However, because mobile phone data are not labeled, the results above do not reflect
that the supervised methods are suitable for other problems, such as land use classification
and transport mode estimation, where semi-supervised learning techniques are used to
tackle the lack of ground-truth data by relying on small subsets of labeled data, such as
in [8,53,94,102].

Finally, some studies combine two or more algorithms to improve the classifier; in this
approach, one algorithm works as a preprocessing mechanism to create a user profile, and
the second algorithm is used to take these generated user profile clusters as input to the
SVM classifier, as in [128,130]. Another example is studies [122,124], which use multiple
algorithms, where unsupervised algorithms such as k-means and PCA are used for feature
dimensionality reduction and supervised algorithms such as SVM and RF are selected
according to which will achieve the best classification results.

6.4. Managerial Implications

This section presents some of the significant managerial implications of using mobile
phone data.

Legal and ethical implications: Mobile phone data have benefited our daily lives
in many ways, including preventing and controlling infectious diseases and assisting in
the fight against criminal activities. However, mobile phone data are subject to privacy
breaches because it contains sensitive information about individuals, such as the location
of their homes, their most commonly contacted numbers, and their most frequently visited
locations. This raises privacy concerns and ethical questions about using such data. Tay-
lor [133] discusses some theoretical and practical implications of using mobile phone data,
such as in situations involving a post-conflict state, where the ability to identify a group’s
location, leaders, and communication networks may give hostile states a way to jeopardize
the safety of the people whom they identify.

Future implications: The study’s implications revealed that spatiotemporal call volume
features have been widely used to investigate the correlations between land use and human
activities, to measure ambient population density, and to estimate population densities.
They also found that there is not a lot of crime research literature about mobile phone data
and that more crime applications, such as finding terrorist networks and credit card fraud,
need to be found and studied.

7. Research Opportunities

The current state of mobile phone data in the context of detecting criminal activities and
dynamics is still incomplete due to challenges with missing values and partial information
(incomplete mobility and calling information). For example, [3,34,35,37] detected criminal
behaviors by extracting criminals’ call features, such as outgoing and incoming calls, call
frequency, maximum and minimum numbers of incoming or outgoing calls and messages,
call timestamps, temporal changes in mobile phone call patterns, caller ID, and called
ID, to detect criminal communication behaviors. On the other hand, [5,32,42] detected
criminal mobility patterns by extracting spatiotemporal features such as variation over
time, frequency, and distance. These features allow for the depiction of the mobile phone
spatiotemporal patterns of criminals over a given period and allow for the measurement of
the distance between the locations where the criminals visited and their homes. However,
the results are still limited in providing a more comprehensive picture of all aspects of
criminal behavior in terms of mobility patterns, communication behaviors, and social
interactions. Consequently, there is a need to improve the detection of criminal behaviors
by examining and considering the correlation of these analytical perspectives, which may
ultimately provide different aspects of criminal activities.
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Anomaly detection in mobile phone data is used to identify anomalies and outliers
in the data by detecting anomalous activities (calling and mobility behaviors) or outliers’
calls in mobile cellular networks. The literature shows a number of anomaly detection
applications that vary based on the characteristics extracted from mobile phone data, such
as spatiotemporal features and call characteristics.

Phone fraud detection is one of the primary anomaly applications in mobile phone
data. Fraud detection is used to detect fraudulent activities in telecommunications compa-
nies. For example, [128] and [130] detected fraudulent calls in mobile telecommunication
networks based on extracting mobile subscribers’ calling behaviors. To depict subscribers’
calling behaviors, the authors extracted calling features from CDRs data, such as type of
calls, call duration, frequency of a call, and call timestamp, which were later used to help
classify mobile subscribers into three categories: genuine, fraudulent, and suspicious.

Another application of anomaly detection in mobile phone data is detecting emergency
events or situations where the data are analyzed to detect population anomalies (abnormal
population distribution), such as in [134,135], who estimated the crowd size (number of
people in a given location) based on mobile phone usage volume. Here, detecting popula-
tion anomalies is possible by detecting an abnormal increase in call volumes. Empirically,
mobile phone usage or activity that is recorded at given locations based on a base station
location where phone calls or SMS volume (high volume of incoming and outgoing phone
calls and SMS messages) is much higher than in normal situations could be a sign of a
disaster. Therefore, detecting population anomalies can help avoid situations, such as
crowd disasters [135].

Another way to detect population anomalies or to detect anomalies in human be-
haviors was reported by [136], who extracted population trajectories represented by their
spatiotemporal features (movement frequency) along with their call behaviors (total outgo-
ing and incoming call volumes, call frequency). These features help depict locations or areas
with a higher than normal movement frequency (abnormal movement frequency), which
could be a sign of joyous events, such as Christmas Eve or New Year’s Eve gatherings.
Unusually high call volume and movement frequency could also be a sign of a natural
disaster, such as earthquakes or floods.

Other anomaly detection applications have been discussed in the literature, such as
detecting anomalies in a cellular network by identifying sleeping cells and traffic over-
load [92,94,127]. Research on the current state of anomaly detection applications related to
mobile phone data is still lacking. Thus, a systematic review is needed to fill in the gaps and
investigate the current state of mobile phone data research on anomaly detection by dis-
cussing anomaly detection techniques and applications. Furthermore, many applications
that are still lacking in the literature, such as malicious activity, credit card fraud detection,
cyber intrusion, and terrorist activity, could be investigated.

Churn prediction is also an application that has been discussed widely in mobile
phone data. For example, studies [137–139] have applied social network analytics methods
(e.g., relational classifier (RC) and community detection algorithm) to predict customer
churn, while machine learning techniques have been used in other studies [120–122]. In
addition, multiple features have been extracted to depict customers’ calling behavior. For
example, [120] extracted the number of outgoing calls and SMS, the number of incoming
calls, the number of international calls and SMS, the total call duration, the number of
incoming/outgoing MMS, and the data uploaded or downloaded volume per subscription.
Similarly, [121] extracted the same features with additional features, including the use of
the Internet, the average upload/download Internet access, and Internet usage for each
customer per day. Therefore, it would also be beneficial to provide a survey that discusses
the different features, different applications (such as the prediction for prepaid customers or
postpaid subscribers in cellular telecommunication), and models used to predict customer
churn.

Many studies have made their dataset privately available (especially mobile phone
data at the individual level, known as CDRs data) due to privacy concerns, in which it
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contains sensitive details such as spatial–temporal trajectory and communication informa-
tion about the receiving side of the communication as opposed to mobile phone data at
the cell tower level, which does not reveal communication details, while publicly available
datasets are mobile phone data aggregated at the cell tower level; thus, we encourage the
need for a standard data collection framework in which it provides technical solutions
as well as transforming mobile phone data remotely access to third parties by using the
privacy-through-security approach, which will be available for interest researchers.

8. Privacy Concerns and Ethical Implications

This section discusses privacy concerns and ethical considerations about the fair use
of mobile phone data. Due to the sensitive information that mobile phone data contains, it
raises privacy and security concerns about its use for unethical purposes. The risk comes
from the breaches of individual significant locations and the leak of their social network
communications. Therefore, some technical, practical, and theoretical solutions have been
provided to mitigate privacy concerns and ethical challenges.

For example, to mitigate ethical concerns, [140] proposed an ethical framework that
defines ethical principles about using mobile phone data. These ethical principles are
beneficence, respect for persons, justice, respect for the law, and the public interest. De
Montjoye et al. [141] advised establishing an outside ethical committee to evaluate how
mobile phone data are used.

However, most researchers have been exploring privacy-preserving techniques and
tools that aim to mitigate privacy risks. For example, to maintain privacy and preserve
individual and group privacy, [142] suggested applying differential privacy (DP) techniques
to mobile phone data. DP protects privacy by injecting a desirable amount of noise into the
sensitive data while maintaining a healthy trade-off between privacy and accuracy [143,144].
Pratesi et al. [145] proposed a framework called PRIMULE that can recognize risky user
profiles in mobile phone data. The proposed framework aims firstly to mitigate the privacy
risk of any set of profiles to which they apply the k-anonymity algorithm, a clustering
algorithm that aims to ensure that each individual in a dataset cannot be distinguished
from at least k − 1 individuals whose information are also in the dataset. The second
aim of PRIMULE is to avoid the misrepresentation of data (data distortion) during the
analysis process in order to guarantee that the quality of the profiles is high in terms of
similarity with respect to the original ones. Gramaglia et al. [146] proposed anonymization
techniques to solve the privacy concerns regarding the disclosure of individual trajectories
by applying generalization and suppression methods, one of the anonymity techniques
that aim to achieve k-anonymity in the spatiotemporal trajectory of mobile phone data. The
generalization of spatiotemporal information is carried out by minimizing the precision of
trajectory samples in space and time, resulting in indistinguishability between the samples
of two or more users. At the same time, suppression eliminates samples that are too difficult
to anonymize from the trajectory information in mobile phone data.

Nonetheless, as those approaches are only providing anonymization solutions and
are not providing a complete solution to all privacy and security concerns [140] and other
issues related to ethics [141], there is still the possibility of re-identifying individuals [133].
Therefore, the privacy and security implications of mobile phone data still represent the
most challenging barrier to the growing research effort [147]. Furthermore, without efficient
techniques to resolve privacy issues and other ethical considerations, this is not going to
change anytime soon [148].

9. Conclusions and Limitations

It is not surprising that mobile phone data have been used as a real-time sensor of
human activities and dynamics. This is due to the characteristics of mobile phone data
that record users’ interactions or activities on a mobile network, such as call and mobility
activities, which can show how people move, socialize, and communicate. This in turn
explains the explosion of mobile phone data in various disciplines and applications.
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In this survey, we reviewed many applications driven by mobile phone data, such
as urban sensing applications, crime applications, land use classification, anomaly de-
tection, suspect classification, criminal networks, and social network applications. We
also discussed several spatiotemporal and mobility features extracted from mobile phone
data and differentiated them, explaining their functionality. We also shed light on open
opportunities and challenges in mobile phone data. In other words, this study focused on
three major subtopics: (1) the current state of mobile phone data applications; (2) techniques
and methods used to predict and model human behaviors and mobility patterns; and (3)
spatiotemporal and call features and characteristics extracted from mobile phone data to
depict human activities and mobility patterns.

The present study aimed to investigate the current state of mobile phone data and
its applications and to examine and explore human attributes and characteristics that
can be derived from such data. In addition, this survey aimed to shed light on related
studies or contributions made in mobile phone data research that the literature lacks, such as
anomaly detection, churn prediction, and privacy concerns across various disciplines. Eight
electronic databases are used for the retrieval of relevant papers. We filtered the results for
articles published between 2013 and 2021 according to our inclusion and exclusion criteria.
This allowed us to choose 148 articles for review before we synthesized them.

The results show that the spatiotemporal calling feature has been widely used to depict
human behaviors. This feature allows for the estimation and calculation of the number of
mobile phone devices or phone calls contacted or managed at a given cell tower at various
temporal scales (e.g., hourly, daily, and weekly). This allows for the estimation of hourly
dynamic population, the classification of land use, the estimation of ambient population,
the investigation of the relationship between human dynamics and crime spatial–temporal
patterns, defining the actual populations at risk, and others. The results also show that
classification and clustering approaches have been widely used where algorithms such as
SVM and k-means are used to classify or cluster human activities based on their calling or
mobility features.

Although this study intends to survey mobile phone data methods and techniques in
multiple domains, the results are not exhaustive, nor should they be considered a conclusive
synthesis of all relevant studies. First, it only surveys contributions made between 2013
and 2021, with a primary focus on the areas of crime and urban research. Second, the study
excludes academic content published in languages other than English.

To conclude, opportunities can also be found in mobile phone data, as newly devel-
oped methods may enable novel applications such as investigating relationships between
human mobility patterns and infectious diseases such as COVID-19. Mobile phone data
proved its effectiveness in estimating people’s travel and mobility patterns during the
spread of infectious diseases and in measuring people’s daily mobility exposure to air
pollution. Therefore, additional applications can be explored in the future.
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Abbreviations

Abbreviations Definition
COVID-19 Coronavirus disease 2019
CDRs Call detail records
COVID-19 Coronavirus disease 2019
SNA Social network analysis
LSOAs Lower super output areas
SVM Support vector machines
RF Random forest
KNN K-nearest neighbors
FCM Fuzzy c-means
GCN Graph convolutional network
GMM Gaussian mixture model
DBSCAN Density-based spatial clustering of applications with noise
GBDT Gradient boosting decision tree
GAN Generative adversarial network
MLP Multi-layer perceptron
DT Decision trees
BP Backward propagation
HC Hierarchical clustering
LR Logistic regression
LSTM Long short-term memory
PCA Principal component analysis
SDAE Stacked denoising autoencoder
XGBoost Extreme gradient boosting
LDA Linear discriminant analysis
SVM-Linear SVM with linear kernel
SVM-RBF SVM with radial basis function kernel
CART Classification and regression tree (CART)
Bagged CART Bagging classification and regression trees
FRNN Fuzzy-rough nearest neighbors
FKNN Fuzzy k-nearest neighbor
REDCAP Regionalization with dynamically constrained agglomerative Clustering and

partitioning
SLPA Speaker–listener label propagation algorithm
SMS Short message service
ML Machine learning
DL Deep learning
PAM Partitioning around medoids
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