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Abstract: Cell-free (CF) networks are proposed to suppress the interference among collocated cells by
deploying several BSs without cell boundaries. Nevertheless, as installing several base stations (BSs)
may require high power consumption, cooperative CF networks integrated with a reconfigurable
intelligent surface (RIS)/metasurface can avoid this problem. In such cooperative RIS-aided MIMO
networks, efficient beamforming schemes are essential to boost their spectral and energy efficiency.
However, most of the existing available beamforming schemes to maximize spectral and energy
efficiency are complex and entail high complexity due to the matrix inversions. To this end, in
this work we present a computationally efficient stochastic optimization-based particle swarm
optimization (PSO) algorithm to amplify the spectral efficiency of the cooperative RIS-aided CF
MIMO system. In the proposed PSO algorithm, several swarms are generated, while the direction of
each swarm is tuned in each iteration based on the sum-rate performance to obtain the best solution.
Our simulation results show that our proposed scheme can approximate the performance of the
existing solutions for both the performance metrics, i.e., spectral and energy efficiency, at a very
low complexity.

Keywords: cell-free; reconfigurable intelligent surface; cooperative communication; low-complexity;
beamforming; particle swarm optimization; metasurface

1. Introduction

The existing wireless communication setup is based on cellular architecture, where
several base stations (BSs) are deployed to cover an area. The transmission coverage
of the BSs is usually limited to a hexagonal cell, and cannot be extended due to power
constraints applied at the BSs. However, such a cellular network architecture causes severe
inter-cell interference that results in serious performance loss in network capacity [1]. This
is mainly because the users located at the edge of the cell boundaries experience strong
interference, thus limiting the capacity of the cellular network [2]. To avoid this issue,
a coordinated/cooperative beamforming approach for the BSs approach was adopted
in [3]. In cooperative communication, several BSs jointly transmit signals in the downlink
direction to serve multiple users. The network densification at a large scale ensures a better
spectral efficiency compared to the single BS scenario. However, these BSs still operate
in their respective cells to serve multiple users and yield unavoidable interference in the
adjacent cells.

Recently, cell-free (CF) networks were proposed to circumvent the problem of inter-cell
interference [4]. In a CF network, a large number of BSs, employed with a single antenna
or multiple antennas, are deployed over an area to serve multiple users. These BSs jointly
transmit the signals coherently to serve the users without cell boundaries, thus significantly
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improving spectral efficiency [5]. To further improve the performance of CF networks,
various solutions such as beamforming [6], power allocation [7], and channel estimation [8]
have been proposed. Nevertheless, deploying a large number of BSs to cover a certain area
requires a significant cost and power consumption that restricts the cellular vendors to
deploy several BSs at a large scale.

Recently, a low-cost spectral- and energy-efficient reconfigurable intelligent surface
(RIS) technology was proposed [9–11]. Different from the existing wireless technologies
that work on adapting the radio channels as per the radio condition, RIS has the poten-
tial to control the radio environment through its phase-shifting elements [12]. The RIS
phase-shifting elements are composed of special metamaterial elements that have the in-
trinsic property to control the propagation environment. Benefiting from the low power
consumption of the RIS elements, this method is attracting attention from academia and
industry in various use cases, such as wireless power transfer (WPT) [13], physical layer
security (PLS) [14–16], and cognitive radio networks [17]. Additionally, at higher frequen-
cies (e.g. millimeter/terahertz wave bands), the higher path loss (PL) severely impacts
the performance of the users; thus, RIS can be deployed to improve the QoS of the users
that suffer from the unavoidable PL problem [18,19]. Moreover, RIS is also being used
with unmanned aerial vehicles (UAVs) in remote areas such as hill stations to maintain
long-distance communications [20]. To make wireless systems more energy efficient, RIS
can be combined with backscatter communication [21]. Usually, RIS does not comply with
the complex radio frequency (RF) chains; hence, no noise or thermal heat is generated at
the RIS. Thus, these phase-shifting elements only redirect the incident beam/s toward the
user(s) direction, realizing high beamforming gain with reconfigurable parameters. Taking
advantage of this working principle, we can selectively replace some BSs with the RISs to
maximize the spectral efficiency of the cooperative wireless network, while realizing the
objective of green communications.

1.1. Related Works

To date, several works have been reported that consider RIS as a substitute for the
amplifying and forward (AF) relay to achieve a high-performance gain in the spectral effi-
ciency of future wireless networks. Specifically, the authors in [22] proposed a semidefinite
relaxation (SDR) method to boost the spectral efficiency of the RIS-aided MIMO wireless
systems. The SDR approach is effective and ensures a considerable performance gain but at
the cost of high computational complexity. A fractional programming (FP) method was pro-
posed in [23] to maximize the weighted sum rate of the RIS-aided network. Moreover, the
authors of [24] proposed the sequential fractional programming (SFP) method to enhance
the spectral/energy efficiency of the RIS-aided MIMO scenario. To realize this objective,
they optimize the passive beamforming matrix at the RIS and the active beamforming
matrix at the BS to achieve the high spectral efficiency performance of the RIS-aided sys-
tem. Moreover, the authors of [25] proposed a block coordinate descent (BCD) method to
alternatively optimize the beamforming matrices to maximize the weighted sum rate of the
wireless system. In the continuation of the same objective, the authors of [26] presented a
penalty dual decomposition (PDD) method to optimize the passive beamforming of the
RIS-aided MIMO system. They proposed a two-time scale (TTS) beamforming method to
maximize the sum rate of the RIS-aided system under the Rician channel model. Although
all of the aforementioned solutions ensure a considerable spectral efficiency performance,
the complexity of these solutions is too high, which restricts them to be considered in
their practical hardware realization. Thus, an alternate computationally efficient algorithm
is required which could easily be realizable in the practical hardware in future 6G com-
munications. We have summarized the existing algorithms with their pros and cons in
Table 1.
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Table 1. A Summary of the existing solutions with pros and cons.

Reference Methods Framework Advantage Limitations

[22] Semidefinite relaxation (SDR) RIS-aided MIMO system
Significantly improves

spectral efficiency
performance

Extremely high
computational cost

[23] Fractional programming
(FP) method RIS-aided multi-user network Improves weighted

sum rate High computational cost

[24] Sequential programming
(SP) method RIS-aided wireless network Improves

energy/spectral efficiency High computational cost

[25] Block coordinate descent
(BCD) algorithm RIS-aided multiuser network Improves weighted

sum rate High computational cost

[26] Penalty dual decomposition
(PDD) method RIS-aided multiuser network Two-time scale joint

beamforming scheme High computational cost

1.2. Contribution

Motivated by the previous discussion, in this work we present the low-complexity
beamforming designs at the BSs and the RISs for a cooperative RIS-aided communication
system to maximize the network capacity. It is worth mentioning here that the same low-
complexity algorithm can be extended to another performance indicator (energy efficiency)
to realize the objective of green transmission.

• At first, we formulate the network capacity as well as energy efficiency maximization
problem for the cooperative RIS-aided CF MIMO framework under the limitations of
power as well as per element hardware constraints.

• We propose a computationally efficient iterative stochastic optimization-based particle
swarm optimization (PSO) method to solve the capacity maximization problem. We
adopt PSO to optimize the passive beamformer at the RISs and apply a nulling
algorithm at the BSs to realize the objective of the proposed problem. Specifically, the
PSO algorithm is based on the number of possible solutions, and these solutions are
then optimized to obtain a better solution among all possible solutions.

• In the end, the proposed solution is evaluated using several numerical computations,
and the results indicate that the performance of the proposed solution is almost the
same as that of the existing solution for both scenarios (spectral and energy efficiency)
but at significantly low complexity.

1.3. Organization and Notations

Organization: The rest of the paper is organized as follows. The system model of
the cooperative RIS-aided CF network followed by the problem formulation is discussed
in Section 2. Section 3 contains the joint beamforming solution to solve the network
optimization problem. To support the hypothesis, the simulation results are discussed in
Section 4. In the end, Section 5 contains the conclusion.

Notations : All the main notations of the paper are summarized in Table 2.

Table 2. Summary of main notations.

Symbols Meaning

v Vector
V Matrix

VT Transpose of V
VH Hermitian of V
V† Pseudo-inverse of V
E Expected operator

Tr. (·) Trace function
Vl1 l1 norm
Vl2 l2 norm

diag (·) Diagonal entries of the matrix
∠ Angle of the argument
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2. System Model and Problem Formulation

At first, we illustrate the system model for cooperative communications, and then we
formulate the network optimization problem for the RIS-aided CF MIMO network.

2.1. System Model

We consider a downlink transmission model, where a number of BSs along with
several RISs jointly transmit the radio signals to the K users. These BSs and RISs are
deployed using a cell-free (CF) approach, where BSs and RISs cooperate to serve multiple
users without cell boundaries, eliminating the problem of cell-edge users. This means that
each user will receive a good quality signal either from the BSs or RISs or even receives a
combined signal from both BSs and RISs, which improves the performance of the RIS-aided
wireless systems. It is worth mentioning here that whenever a user experiences a large-scale
fading problem due to the presence of high-rise buildings in the urban area or due to the
green belts that come between the BSs and the users, a good LoS link between the BSs and
users may be affected, which degrades the performance of the wireless system. Therefore,
we introduce an RIS, which is installed at high-rise buildings between the BS and a user to
construct an extra link between the BSs and the users. Thus, an indirect path will always
be available even if the direct link will be under a deep fade. Additionally, these BSs and
RISs are connected to the central processing unit (CPU) via wireless/fiber links. A CPU is
used to control the BSs and RISs operations remotely by instructing different commands.
Considering M number of antenna elements at the BSs and N phase-shifting elements at
the RISs, the overall system model is illustrated in Figure 1.

Figure 1. A RIS-aided cooperative CF network.

2.2. Transmitter

In the cooperative environment of the CF system model, all the BSs and RISs are
synchronized to produce a coherent transmission to serve K users. Hence, here we assume
the fact that all the BSs jointly transmit the symbol intended to the kth user. Let the bth
BS transmit the kth symbol, sk, with a normalized unit power gain to the kth user, where
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k ∈ 1, 2, . . . , K. Then, for all K users, the transmitted signal x ∈ CMx1 from the bth BS is
represented by

xb =
K

∑
k=1

gb,ksk, (1)

where gb,k ∈ CMx1 is the beamforming from the bth BS for the kth user. In general, the
transmitted power of the BS is limited; hence, the signal transmitted from the bth BS will
have a power limitation, which is defined as

E
(
‖ xb ‖2

2
)
= Tr

(
GH

b Gb
)
≤ Pb, (2)

where Gb ∈ CMxK denotes the active beamforming, ∀K, from the bth BS; Pb represents the
power budget for the bth BS. Since we exploit B BSs in our framework, we use the same
power budgets for all B BSs.

2.3. Receiver

The received signal yb,k from the bth BS at the kth user is given by

yb,k = h1,b,kxb +
√

αk

R

∑
r=1

h2,r,kΨrFb,rxb + nk,

=

(
h1,b,k +

√
αk

R

∑
r=1

h2,r,kΨrFb,r

) K

∑
j=1

gb,ksj + nk,

(3)

where h1,b,k ∈ C1xM denotes the direct channel link between the bth BS to the kth user, and
α denotes the channel attenuation coefficient. The h2,r,k ∈ C1xN is the second channel link,
which is between the rth RIS and the kth single antenna user. The collocated LoS channel
between a BS and an RIS is designated with Fb,r ∈ CNxM. This link ensures an extra degree
of freedom for the users to enjoy the services even if the direct link between the BSs and the
users is not available. We comprehensively discuss the channel models for both direct and
indirect links in the simulation section. Moreover, the beamforming matrix Ψr of the rth
RIS is a diagonal matrix and can be defined as Ψr = diagonal(Ψr,1, Ψr,2, . . . , Ψr,N), where
the nth RIS element Ψr,n satisfies the unit modulus constraint ∀n ∈ {1, 2, . . . , N}. The final
term nk denotes the additive white Gaussian noise (AWGN) at the k-th user.

Based on (3), considering all B BSs, the signal-to-interference-plus-noise ratio (SINR)
for the k-th user can be written as

SINRk =

B
∑

b=1

∣∣∣∣h1,b,k + (
√

αk
R
∑

r=1
h2,r,kΨrFb,r)gb,k

∣∣∣∣2
B
∑

b=1

K
∑

j=1,j 6=k

∣∣∣∣h1,b,k + (
√

αk
R
∑

r=1
h2,r,kΨrFb,r)gb,j

∣∣∣∣2 + σ2

. (4)

Finally, ∀ K users, the sum rate Rtot in the RIS-aided cooperative CF network can be
defined as

Rtot =
K

∑
k=1

log2(1 + SINRk). (5)

2.4. Problem Formulation

In this subsection, we formulate the network capacity maximization problem for the
cooperative RIS-aided communication network such that the power limit condition at
the bth BS and the per-element modulus constraint at the rth RIS could be fulfilled. To
achieve this goal, we jointly design the beamforming matrices Gb and Ψr at the bth BS and
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the rth RIS, respectively. Mathematically, the total sum-rate optimization problem of the
cooperative network is then formulated as

max
Ψr ,Gb

Rtot (6)

s.t. Ψ ∈ F ,

Tr
((

Gb
)(

Gb
)H
)
≤ Pb,

whereF denotes the codebook that contains all possible passive beamformers satisfying per
element modulus constraint. It is important to mention here that in this work, we consider
the scenario where the BS knows the channel state information (CSI) of both direct and
indirect channel links, and the CSI can be obtained from either technique discussed in [27].
Moreover, after acquiring the CSI, all the BSs implement ZF, also called a nulling algorithm,
to nullify the inter-user interference while transmitting the signals to the intended kth user.
Additionally, since we use less number of antennas at the B BSs; however, employing a
large number of phase-shifting elements over the RIS surface helps us in eliminating the
interference among the K users at the BSs.

For the sake of convenience, defining Ψ = diag(Ψ1, Ψ2, . . . , ΨR), H2,R =[√
α1hT

2,1,1,
√

α2hT
2,2,2, . . . ,

√
αKhT

2,R,K

]T
, Fb = [Fb,1, Fb,2, . . . , Fb,R]

T , and finally,

H1,b =
[
hT

1,b,1, hT
1,b,2, . . . , hT

1,b,K

]T
. Then, the equivalent channel Wb = H1,b +

√
α1H2,rΨFb.

Then, by applying pseudo inverse on the equivalent channel matrix Wb, we can obtain the
beamforming matrix of the bth BS Gb, i.e., Gb = W†

b . Replacing the Gb = W†
b into (6), we

obtain the following sum rate Rtot optimization problem

max
Ψ,β

Rtot (7)

s.t. Ψn = |1|,

Tr
((

W̄b
)†(W̄)†H

b

)
≤ βPT,

where β denotes the power scaling factor. Hence, with this, the optimal beamforming at the

BSs can be obtained as Ĝb =
√

1
β Gb. Nonetheless, the per unit modulus constraint for all

R RISs in the reformulated problem (7) is still making the problem a non-convex problem,
i.e., Ψn = |1|, where n = 1, 2, . . . , RN. Thus, to meet the hardware unit modulus constraint,
for all R RISs we propose a low-complexity iterative optimization scheme.

3. Passive Beamforming Design

In this section, we present an iterative low-complexity stochastic optimization particle
swarm optimization (PSO) algorithm, which is designed based on the social behavior of the
birds that fly in a cluster to find their best target to feed themselves [28]. Inspired by this
key idea, in our sum-rate optimization problem, we employ the PSO algorithm to optimize
the active and passive beamforming matrices of the BSs and RISs, respectively.

3.1. PSO-Based Passive (RIS) Beamformer

The PSO is a heuristic algorithm that works on predefined solutions. These solutions
are iteratively refined to yield a suboptimal solution. This technique became popular
due to its simple implementation and fast convergence toward the desired solution. The
PSO algorithm can trap a local-optimal solution in a large dimensional space and yield a
near-optimal solution in a reasonable time; thus, PSO can easily be realized in a practical
system. Due to its simple working principle, it is widely applied in various engineering
disciplines to solve engineering problems.
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Specifically, in the PSO algorithm, a number of swarms/populations called par-
ticles are initialized. Usually, these particles are initialized within the cardinality of
swarms/population size based on some initial velocities. At any instant in time, the
coordinate of a particle represents the position of a particle. These positions of the particles
are used to obtain the objective function value (OBV) of the problem. In each iteration,
whenever a new position is attained based on the updated velocity by the swarms, a new
OBV is attained. This velocity is refined based on the best position of the particles to obtain
a better result by the end of the iterations.

The entire PSO algorithm to solve problem (7) is summarized in Algorithm 1. Specifi-
cally, the PSO algorithm works on the following steps. To begin with, we generate S swarms
at random positions as Ψ̄1(0), Ψ̄2(0), . . . , Ψ̄S(0) in the first iteration. These swarms are called
passive beamformers in our problem. To ensure unity power, the S positions are normal-
ized. Then, the velocity of all S swarms is randomly generated as v1(0), v2(0), . . . , vS(0),
where we denote the velocity of the sth swarm with vs. For each sth passive beamformer
Ψ̄s we compute the active beamforming matrix Gb, which is obtained from the W̄b for the
bth BS. ∀S swarms, compute the OBV, i.e., sum rate Rtot (7) in our problem. We compare the
OBV ∀S, and find the s∗th position passive beaformer Ψ̄s∗ that maximizes the OBV in (7).
This highest OBV container passive beamformer Ψ̄s∗ is denoted with w̄best, and is known as
the best particle position (passive beamformer) in one iteration. In the subsequent iteration,
we refine the velocity of the sth swarm, and then upon this new velocity we refine the sth
swarm position (Ψ̄s passive beamformer in our case) as

vs(i + 1) = vs(i) + c1u1 �
(
Ψ̄sbest(i)− Ψ̄scurrent(i)

)
(8)

+c2u2 � (w̄best − Ψ̄scurrent(i)),

Ψ̄s(i + 1) = Ψ̄s(i) + vs(i + 1), (9)

where c1 and c2 are the positive acceleration coefficients that have the tendency to move
the sth swarm towards the best position. u1 and u2 are the uniformly distributed random
vectors, while Ψ̄sbest and Ψ̄scurrent are the local best and current best particle position, re-
spectively. Finally, � represents the element-wise multiplication of the vectors. In the
beginning, when i = 0, ∀SΨ̄sbest(0) = Ψ̄scurrent(0). While in the subsequent iterations, each
swarm maintains a record of its own best position, which depends on achieving the highest
OBV in (7). Whenever a sth passive beamformer updates its position based on updated
velocity, its OBV is updated accordingly. If the new OBV (which is based on the new pas-
sive beamformer position) is greater than the previous best OBV, then Ψ̄sbest(i) = Ψ̄scurrent(i).
Finally, ∀S we compare OBV values, and the passive beamformer that has the largest
OBV (7), i.e., the best beamformer Ψ̄s∗ , will take place the position of w̄best, i.e., w̄best =Ψ̄s∗ .
The algorithm continues until all the iterations I are satisfied. Then, finally, the obtained

beamformer is normalized as Ψ =
Ψ̄sbest√

Ψ̄H
sbest

Ψ̄sbest

. It is worth mentioning here that the obtained

passive beamformer Ψ might not follow the unit modulus constraint; therefore, to ensure
the per unit modulus constraint, we set the passive beamformer as Ψ = ej∠Ψ. We repeat
this process for all B BSs to acquire the passive beamformers for R RISs.
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Algorithm 1 Passive beamforming design based on PSO.

Input: Channel matrices H1,b, H2,r, Fb; Total no. of iterations I; Swarms/Particles size S;
Number of B BSs; Number of R RISs;

Output: Ψ
Phase 1:

1: Randomly initialize S swarms as Ψ̄1(0), Ψ̄2(0), . . . , Ψ̄S(0) at initial velocities
v1(0), v2(0), . . . , vS(0);

2: ∀ S, calculate active beamforming matrices Gb from equivalent channel matrix
Wb = H1,b+

√
αH2,rΨ̄Fb for the bth BS;

3: ∀ S, compute the objective function value (OBV), i.e., sum-rate Rtot to maximize (7);
4: Find w̄best from the sample space of S;

Phase 2 (Iterations):
5: for s = 1:S do
6: Update velocity of sth swarm using (8);
7: Based on updated velocity from Step 6, refine the sth swarm position via (9);
8: Refine OBV value based on this new position;
9: if (updated OBV > previous best OBV value);

Ψ̄sbest(i) = Ψ̄scurrent(i);
10: end for
11: Find w̄best;
12: i← i + 1

3.2. Computational Complexity

In this subsection, we present the computational complexity of the proposed PSO
algorithm and compare its complexity with the existing scheme [23]. It can be seen that
the major contribution to the complexity of the PSO algorithm is on the computations
of OBV of S passive beamformers (particles) for K users. Hence, the overall complex-
ity of the algorithm is O(SK log(RN)), whereas the complexity entailed by the existing
scheme in [23] is O(R3N3 + R2N2 + RN). This indicates that the complexity entailed by
the scheme proposed in [23] grows significantly when the N grows to a larger value for a
fixed R. On the other hand, the complexity of the PSO algorithm increases linearly with the
swarm numbers S for a fixed R. Thus, this gives a major benefit of using the algorithm to
realize it in future wireless communication systems.

4. Simulation Results and Channel Model

In this section, we present simulated results of the considered framework under differ-
ent simulation setups to validate the performance of the cooperative RIS-aided CF network.

To further give an insight into the considered framework, we simulate the 2D modeling
of the considered cooperative RIS-aided system, which is illustrated in Figure 2. The major
benefit of using 2D modeling is that it helps us conceptually visualize the considered
cooperative RIS-aided framework. The 2D model of the considered system model consists
of two BSs, three RISs, and four single-antenna users. Generally, the users are mobile, and
the channel link quality between the BSs and the users can be limited due to the presence
of high-rise buildings and green belts, thus creating a serious impact on the performance of
the wireless networks. To tackle this situation, we install three RISs onto the three separate
buildings to create a degree of freedom to construct an LoS link between RISs and users,
which means that users can communicate with the BSs via RISs. We consider that the
case where the bth BS is located at the distance of (45(b− 1) m, −20 m) and the rth RIS is
distanced at the location of (20 + 10r m, 3 m), where r ∈

(
1, 3, 5

)
. Moreover, the number

of users is randomly and uniformly distributed within a radius of 1 m, and this uniform
region is represented by a horizontal distance D. To give further insight into 2D modeling,
we draw a flow chart diagram to show the entire working process of user association with
the BSs and RISs in Figure 3.
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Figure 2. A 2D modeling of the cooperative RIS-aided communication framework.

Figure 3. Flow chart diagram of the working principal of the 2D framework.

4.1. Simulation Configurations

In our simulations, we set the antenna elements M for all B BSs as M = 4, while the
phase-shifting elements N of R RISs are set to 48. The number of users K is set to K = 4, and
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the cardinality of particle swarms S is set as 40. We set the number of iterations I = 100, the
attenuation coefficient α is set to α = 1, ∀K, and finally, the noise is set to −120 dBm.

4.2. Channel Model

To realize the PL in our simulations, we exploit the large-scale channel model which
is explicitly discussed in [23,24,29]. d̂BS,k represents the distance between the BS and the
kth user, while we denote the BS to RIS distance as d̂BS,RIS, and finally, we indicate the
distance between the rth RIS and the kth user with d̂RIS,k. With these parameters settings,
the distance-dependent PL can then be defined as

PL(d̄) = L0

(
d̄
d0

)x

, d̄ ∈
(

d̂BS,k, d̂BS,RIS, d̂RIS,k

)
(10)

where L0 is the PL at d0 =1 and its value depends on the wavelength, channel quality,
antenna gain, and effective aperture of the antenna [24]. x denotes the PL exponent, and the
PL exponent between the BS-user is 3, we set the same exponent between the BS-RIS and
RIS-user links as 2.0. Additionally, to incorporate small-scale fading, we exploit the Rician
fading channel model. Then, the collocated LoS channel between BS and RIS is modeled
as [23]

FBS,RIS =

√
γBS,RIS

1 + γBS,RIS
FLoS

BS,RIS +

√
1

1 + γBS,RIS
FNLoS

BS,RIS, (11)

where γBS,RIS denotes the Rician factor, while FLoS and FNLoS represent the LoS and NLoS
fading components, respectively. Using the same model, we can generate the small-scale
fading channels with corresponding Rician factors for the BS-user and RIS-user links. The
simulation parameters are summarized in Table 3.

Table 3. A summary of simulation parameters.

Symbols and Value Symbols and Value

M = 4 Noise = −120 dBm
N = 48 x = 3 for BS-user
K = 4 x = 2 for BS-RIS and RIS-user
S = 40 1st BS position = (0 m, −20 m)

2nd BS position = (45 m, −20 m) 1st RIS position = (30 m, −3 m)
2nd RIS position = (50 m, 3 m) 3rd RIS position = (70 m, 3 m)

4.3. Spectral Efficiency Performance of Cooperative Network

Figure 4 shows an interesting observation regarding the spectral efficiency perfor-
mance of the cooperative CF network, which is plotted on the different D ranges. We
observe from Figure 4 that deploying the RISs between the users and the BSs, such that a
cooperative enhancement of the transmission could be established, generates fine peaks in
spectral efficiency wherever the RISs are located. Thus, we observe three peaks at different
RIS locations, i.e., D = 30 m, 50 m, and 70 m. These peaks show the spectral efficiency
performance of the proposed low-complexity PSO algorithm and the existing solution [23]
tends to reach high spectral efficiency peaks whenever the users pass by the nearest RIS.
These RISs, in fact, create an extra link between the users and BSs to improve the spectral
efficiency of the RIS-aided CF MIMO network.

4.4. Impact of Spectral Efficiency Performance on Different Transmit Power Ranges

The spectral efficiency performance of the RIS-aided cooperative CF network is in-
dicated in Figure 5, where we plot the spectral efficiency on the different ranges of the
transmit power at the BSs. Here, we set the phase-shifting elements at the rth RIS is N = 32.
From Figure 5, we observe that both the schemes, the proposed and existing solution [23],
show the same trend over the entire ranges of the transmit power at the BSs. Moreover,
the performance gain achieved by the proposed low-complexity solution is around 94% of
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the existing scheme [23]. This shows that our proposed scheme tends to approximate the
same spectral efficiency performance as achieved by the [23] at a very low complexity. On
the other hand, the blue curve represents the case when there is no RIS in the CF network.
We can see that performance of the curve always remains low over the entire range of the
transmit power at the BS.
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Figure 4. Spectral efficiency vs. wide ranges of D.
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Figure 5. Spectral efficiency performance vs. transmit power (dBs) for N = 32.

Next, we plot the same spectral efficiency performance against the transmit power
ranges when the N = 48, in Figure 6. Again, we observe the same trend as indicated in
Figure 5. However, the spectral efficiency performance gain of around 2 dB is achieved
by increasing the number of phase-shifting elements at the R RISs. Thus, by increasing
the transmit power and the phase-sifting elements ∀R RISs, we achieve better spectral
efficiency and the performance of the proposed solution approximates the trends of the
existing solution at a very low computational cost, which shows the effectiveness of the
proposed solution over the existing scheme.
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Figure 6. Spectral efficiency performance vs. transmit power (dBs) for N = 48.

To realize the objective of cooperative communications by aiding RISs in conventional
cooperative BSs-based communications, we plot the spectral efficiency performance of
the RIS-aided CF MIMO network against the distance parameter. It is clear from Figure 7
that by deploying more RISs in the cooperative scenario we can achieve higher spectral
efficiency than just considering the BSs-based cooperative communications. It is observed
from Figure 7 that when we install only one RIS and one BS we achieve only a single
height of spectral efficiency where an RIS is installed (D = 30 m). However, the spectral
efficiency of the cooperative RIS-aided CF network is achieved by installing more BSs and
low-cost energy-efficient RISs. This not only maximizes the spectral efficiency but also
minimizes the power consumption of the entire wireless system due to the presence of
energy-efficient RISs.

10 20 30 40 50 60 70 80
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15

20

25

Proposed PSO algorithm (with B=1, R=1)

Proposed PSO algorithm (with B=2, R=2)

Proposed PSO algorithm (with B=3, R=3)

Figure 7. Impact of spectral efficiency on different RISs configurations.

4.5. Evaluation of Spectral Efficiency: Single-Antenna vs. Multi-Antenna Users

We next investigate the performance of the proposed PSO scheme for both single-
antenna users and multi-antenna users, as indicated in Figure 8. From Figure 8, we can see
that by increasing the antennas (from 1 to 2) of the users, a performance gain of around
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1.8 bits/sec/Hz is observed. This gives us an intuition that by increasing the number of
antennas of the users, we can further maximize the spectral efficiency of the cooperative
RIS-aided CF MIMO network.
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Figure 8. Spectral efficiency comparison between single-antenna and multi-antenna users.

4.6. Extension to the Energy Efficiency Case

We next evaluate the energy efficiency (EE) performance of the considered coopera-
tive RIS-aided MIMO framework. To this end, based on the power consumption model
discussed in [24], the overall power consumption model can be written as

Ptot = ζ‖BGb‖2 + BPBS + RPRIS + KPUE + Pbh (12)

where ζ = ρ−1; ρ−1 represents the BSs amplifier transmit power efficiency; PBS denotes the
power consumption for the BS; PRIS represents the power consumption at the rth RIS, and
finally, PUE and Pbh indicate the power dissipation of the kth user equipment and backhaul
network, respectively.

Based, on the power consumption model (12), the EE metric of the RIS-aided CF
network is given by

EE =
Rtot

Ptot
(13)

For the EE performance metric, we consider the simulation configurations discussed
in [24], the transmit power efficiency parameter ζ is set as ζ = 1.2, the PBS parameter for
the bth BS is considered as 9 dBW; the power consumed by the kth user equipment is set
to 10 dBm. Since the phase-shifting elements consume less power, as discussed in [24],
we set the same parameter as in [24], i.e., PRIS = 10 dBm. Then, we exploit the proposed
PSO algorithm to evaluate the performance of EE. This EE performance also gives us some
intuition regarding the effectiveness of the proposed low-complexity PSO algorithm.

Based on the EE model, we plot the EE performance against the transmit power. Since
the denominator of the EE is the Ptot, which has a constant power consumption value,
the major contribution of the EE will be involved in the maximization of the numerator
value, which is in fact Rtot. Thus, maximizing the Rtot will lead to maximizing the EE of the
RIS-aided cooperative CF network. From Figure 9, one can see that the transmit power of
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the RIS-aided CF network is directly proportional to the EE. Increasing the transmit power
maximizes the EE of both of the schemes, i.e., proposed and existing schemes.
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Figure 9. Energy efficiency performance over the wide ranges of transmit power.

5. Discussion

A CF network has been proposed to eliminate inter-cell interference (ICI). In the CF, a
large number of BSs are installed to ensure good quality service to uniformly distributed
users without cell boundaries, thus maximizing the spectral efficiency of the wireless system.
However, network densification with a large number of BSs results in high hardware costs
and power consumption. Nevertheless, BSs cooperative network integrated with the
recently proposed energy-efficient RISs may reduce this problem and offer high spectral
and energy efficiency. In this work, we aim at optimizing the beamforming solutions
to maximize the spectral and energy efficiency of the RIS-aided cooperative CF MIMO
network. To optimize the beamforming at the BS, we employ the ZF technique and exploit
an iterative PSO solution to realize passive beamforming at the RISs. The PSO is a low-
complexity suboptimal scheme, which is inspired by the social behavior of birds that fly in
clusters to find their best target to feed themselves. We also present a complexity analysis to
show the effectiveness of the proposed scheme over the existing scheme in the paper. The
simulation results indicate that our proposed scheme achieves 94% of the spectral efficiency
while approximating the same energy efficiency performance of the existing scheme.

6. Conclusions and Future Works

In this work, we consider a downlink RIS-aided cooperative CF network and sub-
sequently formulate the capacity maximization problem for the considered CF network
under the limitations of the constraints. Then, the proposed capacity maximization prob-
lem is solved by exploiting an iterative low-complexity PSO scheme to jointly optimize
the beamforming at the BSs and the RISs, respectively. We also present the complexity
analysis to indicate the strength of the proposed scheme over the existing scheme. Finally,
the simulation results are provided, which indicate that our proposed scheme approxi-
mates the spectral and energy efficiency performance of the existing solution but at a very
low complexity.

This paper gives us useful insight related to the low-complexity joint optimization
technique to maximize the spectral efficiency of the RIS-aided CF network. However, we
can extend this work to various other cases: (1) we have considered continuous phase-
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shifting-based beamforming at the RISs, and we can consider RISs with discrete phase-
shifting elements in future works; (2) investigating the channel estimation problem when
the number of RISs is included makes the problem challenging; (3) another future research
direction could be the investigation of the area of RISs and how much the size of an RIS
impacts the performance of the RIS-aided wireless systems. However, the larger the size
of the RIS, the larger the complexity overhead. Additionally, deploying more RISs can
increase the power consumption of the wireless system. Therefore, keeping these factors in
mind, an optimum size of an RIS can be determined to evaluate the tradeoff between the
systems’ performance and overhead complexity.
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