
Citation: Boonsongsrikul, A.;

Eamsaard, J. Real-Time Human

Motion Tracking by Tello EDU Drone.

Sensors 2023, 23, 897. https://doi.org/

10.3390/s23020897

Academic Editors: Kaihua Zhang,

Wanli Xue, Bo Liu and Guangwei

Gao

Received: 9 October 2022

Revised: 8 December 2022

Accepted: 12 December 2022

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Real-Time Human Motion Tracking by Tello EDU Drone
Anuparp Boonsongsrikul * and Jirapon Eamsaard

Department of Electrical Engineering, Faculty of Engineering, Burapha University Chonburi Campus,
Chonburi 20131, Thailand
* Correspondence: anuparp@eng.buu.ac.th; Tel.: +66-38102222 (ext. 3310)

Abstract: Human movement tracking is useful in a variety of areas, such as search-and-rescue
activities. CCTV and IP cameras are popular as front-end sensors for tracking human motion;
however, they are stationary and have limited applicability in hard-to-reach places, such as those
where disasters have occurred. Using a drone to discover a person is challenging and requires an
innovative approach. In this paper, we aim to present the design and implementation of a human
motion tracking method using a Tello EDU drone. The design methodology is carried out in four
steps: (1) control panel design; (2) human motion tracking algorithm; (3) notification systems; and
(4) communication and distance extension. Intensive experimental results show that the drone
implemented by the proposed algorithm performs well in tracking a human at a distance of 2–10 m
moving at a speed of 2 m/s. In an experimental field of the size 95× 35 m2, the drone tracked human
motion throughout a whole day, with the best tracking results observed in the morning. The drone
was controlled from a laptop using a Wi-Fi router with a maximum horizontal tracking distance of
84.30 m and maximum vertical distance of 13.40 m. The experiment showed an accuracy rate for
human movement detection between 96.67 and 100%.

Keywords: motion tracking; drone; recognition

1. Introduction

Tracking human movements is a challenging task applicable to a variety of fields,
such as real-time exercise tracking [1–5], fall detection for the elderly [6–11], intrusion
detection-based surveillance [12,13] in restricted areas such as railroad tracks and railway
stations [14], etc. Wearable sensors [15–18] are popular for monitoring the health status in
certain patients; however, these sensors only track certain vital signs and are insufficient
for monitoring movement. Closed-Circuit Television (CCTV) and Internet Protocol (IP)
cameras, on the other hand, can fully track movement, but are stationary and can seldom
monitor remote areas, such as those where disasters have occurred.

Instead of CCTV and IP cameras, drones provide an alternative for tracking human
motion, as they are mobile and can access almost any location quickly. Semi-autonomous
unmanned aerial vehicles (UAVs) [19] are often used in emergency response scenarios
for fire surveillance and search-and-rescue operations, in order to find people who are in
distress or imminent danger. Nevertheless, automatic motion tracking remains a challenge.
Researchers [20] have introduced a drone-based system for 3D human motion capture, in
which the drone orbits a human subject, records a video, and reconstructs 3D full-body
poses. The system uses an autonomously flying drone (DJI Phantom 4 or DJI Mavic Pro)
with an on-board RGB camera. The DJI Mavic Pro comes with the active tracking feature
and provides a bounding box of the tracked subject. However, in this work, we do not
focus on a methodology for automatic human motion tracking; instead, we aim to recover
the 3D pose sequence of the subject.

In contrast, our paper aims to present the design and implementation of human
motion tracking by a Tello EDU drone, which does not come with an active tracking
feature. To add the active tracking feature, we propose a human motion tracking algorithm

Sensors 2023, 23, 897. https://doi.org/10.3390/s23020897 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020897
https://doi.org/10.3390/s23020897
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8754-6721
https://doi.org/10.3390/s23020897
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020897?type=check_update&version=1


Sensors 2023, 23, 897 2 of 33

implemented on a laptop, in order to exchange commands and responses to automatically
control directions of the Tello EDU drone as it tracks people’s movements. Real-time
streaming videos from the Tello EDU drone to the laptop controller are processed using
machine learning. Text commands from the laptop controller are sent to the Tello EDU
drone, in order to manage the flight plan. The communication frequency between the Tello
EDU drone and the personal computer is 2.4 GHz, which is an unlicensed spectrum, the
same as WiFi.

This research study is divided into four parts: First, a novel human motion tracking
system for the Tello EDU drone is proposed. Second, a human motion tracking algorithm
equipped with Google’s MediaPipe framework is presented. Third, a comprehensive
evaluation of the proposed algorithm’s performance in human motion detection is provided.
Finally, we compare our work with other current research and discuss future challenges and
opportunities. Our work makes two contributions to current research: first, the proposed
human motion tracking algorithm can enhance common drones, transforming them into
smart drones that can automatically track human motion. Second, the proposed system of
human motion tracking can be applied for search-and-rescue activities.

The remainder of this paper is organized as follows. Section 2 explains the hard-
ware and software relevant to the Tello EDU drone (Section 2.1), MediaPipe framework
(Section 2.2), and design and implementation of human motion tracking (Section 2.3). Section 3
describes the proper distances between a person and a Tello EDU drone (Section 3.1), the
target’s speed and direction for human motion tracking by a Tello EDU drone (Section 3.2),
the exploration of light intensity for human motion detection (Section 3.3), the notifica-
tion system for human motion tracking (Section 3.4), fault detection (Section 3.5), and the
comparison of flight-control distances between the Tello App and our design (Section 3.6).
Section 4 reviews and compares our work and related work, as well as discussing future
challenges and opportunities. Finally, Section 5 presents our conclusions.

2. Materials and Methods

This section explains the hardware and software relevant to human motion tracking
using the Tello EDU drone. In terms of hardware, the Tello EDU drone is the main vehicle,
controlled by a laptop computer using Wi-Fi. For software, the MediaPipe framework,
imported and implemented in the Python language, is a tool that can be used for human
gesture recognition. To design and implement our human motion tracking system, we first
calculated 3D forms in the X, Y, and Z dimensions, where X is a coordinate representing a
left or right target, compared to a screen center dot; Y is a coordinate representing an up
or down target compared to a screen center dot; and Z is a coordinate indicating a big or
small target size on the screen.

2.1. Tello EDU Drone

The Tello EDU drone is a small drone manufactured by Ryze Tech in cooperation with
Scratch and Swift, as illustrated in Figure 1. Its design and size are intended for students
or others interested in UAV technology. In addition, Ryze Tech has enabled Scratch and
Swift to develop the program through the Python SDK, making it relatively easy to build
functions and enhance the capabilities of the Tello EDU drone [21]. The drone can be
controlled by a smartphone or a laptop computer using 2.4 GHz communication.
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Figure 1. Tello EDUdrone.

2.2. MediaPipe Framework

Human pose estimation from streaming video plays a vital role in many applications,
such as quantifying physical exercises and sports. For example, it can evaluate the perfor-
mance of athletes by counting the number of push-ups or squats; that of boxers by counting
the number of jabs, hooks, or uppercuts; and so on. It can also enable the overlay of digital
content and information on top of the physical world in augmented reality. MediaPipe
Pose is a machine learning solution for body pose tracking, inferring all landmarks and a
background segmentation mask for the whole body from RGB video frames. In MediaPipe
Pose, the total number of human poses includes 33 landmarks [22,23], as illustrated in
Figure 2.

Figure 2. Pose landmarks.

The MediaPipe holistic framework [24] simultaneously tracks human pose, face land-
marks, and hands in real-time, and can be divided into four steps. First, MediaPipe Pose is
applied for estimation of the human pose and the subsequent landmark model. Second,
the inferred pose landmarks are selected in three regions of interest, by cropping each
hand (2×) and the face. Third, these three regions are employed in a re-crop model for
improvement, and then are cropped with the full-resolution input frame. Task-specific
face and hand models are applied to estimate their corresponding landmarks. Finally, all
landmarks, comprised of 33 pose landmarks, 468 face landmarks, and 21 hand landmarks
per hand, are merged, resulting in the full 540 landmarks being obtained.

2.3. Design and Implementation of Human Motion Tracking

In terms of the design and implementation of human motion tracking, the proposed
method can be divided into four steps: (1) computer-based flight control; (2) human-
tracking flight with the MediaPipe framework; (3) automatic photo capture and alarm
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systems; and (4) communication protocol and extended drone control ranges. An overview
of human motion tracking by the Tello EDU drone is illustrated in Figure 3. To control
the Tello EDU drone’s flight, a computer sends commands to a Tello EDU drone using a
Wi-Fi router, while the Tello EDU drone provides responses to the computer. Our proposed
algorithm performs human motion tracking. When the drone detects a person within its
visibility radius and its detection time is greater than a certain threshold, the computer
automatically captures pictures of the person.

Figure 3. Overview of human motion tracking using Tello EDU drone.

2.3.1. Computer-Based Flight Control

For the computer-based flight control, a graphic user interface (GUI) was designed us-
ing tkinter-python. This GUI is a control panel for controlling takeoffs, landings, directions,
and speeds, as illustrated in Figure 4. This GUI also provides manual and automatic modes
for the drone’s flight. No. 1 indicates the takeoff button. No. 2 indicates the button for
moving forward. No. 3 indicates the button for moving left. No. 4 indicates the button for
moving right. No. 5 indicates the button for moving backward. No. 6 indicates the button
for moving up. No. 7 indicates the button for turning left. No. 8 indicates the button for
turning right. No. 9 indicates the button for moving down. No. 10 indicates the landing
button. No. 11–13 are various speed buttons. No. 14 indicates manual control, requiring
that buttons No. 1–10 and 11–13 be used together. No. 15 denotes automatic control, re-
quiring the MediaPipe framework and our proposed algorithm for human motion tracking.
No. 16 terminates the GUI and system.

Figure 4. GUI design for direction, speed, manual, and automatic flight control.
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2.3.2. Human-Tracking Flight using the MediaPipe Framework

The principle of tracking flight involves the use of overlapping coordinate vectors. In
Figure 5, there are two circle points (red and green). The red circle point represents the
center coordinates of the screen, which is a benchmark for comparison. The green circle
point represents a target coordinate, located on an edge of a bounding box. When the two
circles are apart, this means that the drone and the detected target are not properly aligned.
To perform this alignment, the human body has to move to the center of the drone’s camera,
or the drone’s camera has to move to the center of the human target.

Figure 5. Image pre-processing, feature extraction, and output.

In our coordinate system, x and y values are compared to the frame width and height,
respectively. A magnitude of z represents the target depth, with the depth at the midpoint of
hips being the origin. The documentation of MediaPipe Pose [22] states that the magnitude
of z uses roughly the same scale as x. Therefore, our proposed algorithm adopted this
concept for MediaPipe Pose [22]. Note that the target depth and target size are highly
relevant; therefore, they can be considered as interchangeable in our explanation.

In our design and computation, the 3D target coordinate is written using a vector
[xi, yi, zi], where xi = xmin, yi = ymin + 150, zi = xmin. The number 150 is our design offset,
shifted from the lower left corner of the bounding box. In our design, through trial and error
by changing various offsets in vertical distances, the drone tended to crash into the ground
if the offset was less than 150 and the person moved down onto the ground. Therefore, an
offset of 150 was selected, in order to protect the drone from damage in all experiments.

Note that the xmin and ymin are values on the bounding box, which are updated every
frame. The index i denotes the video frame, where 1 < i < n and n is the last video frame of
human motion tracking. To maintain human motion tracking, a 3D benchmark is compared
to the target. The 3D benchmark coordinate determines the middle of a drone’s screen,
presented as a vector [x0, y0, z0], where x0 = w/2, y0 = h/2, and z0 = c. The variables w, h,
and c denote the width, height, and depth, respectively. In our design, w is 960, h is 720,
and c is 456; thus, the 2D resolution is 960 × 720 and the target size is 456. The target vector
and benchmark vector are designated by green and red dots, respectively, in Figure 6.
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Figure 6. Target vector and benchmark vector.

For a target size of z0, a certain value is selected to maintain a safe distance between
the target and the Tello EDU drone. This adopted number is taken from the set [1026, 684,
456, 304, 202, 136, 90], presented for the detection of face sizes by Jabrils [25].

In our design, through trial and error by changing various z0 values, if z0 is 1026 or
684, the target sizes were quite big and the measured distances were too close between the
person and the Tello EDU drone. These thresholds resulted in crashing into the person
when the person moved forward and abruptly stopped. On the other hand, with z0 values
between 90 and 304, the target sizes were small and measured distances were far. These
numbers can cause the Tello EDU drone to lose track of human movements. Therefore, z0
of 456 was selected, in order to stay safe enough to prevent the person from being injured
while maintaining the drone’s tracking in all experiments.

The distance between the benchmark vector [x0, y0, z0] and a target vector [xi, yi, zi]
is denoted as the distance vector [∆xi, ∆yi, ∆zi]. This distance vector is used to control the
movements of the Tello EDU drone, as summarized in Table 1. Due to the use of streaming
video frames, these vectors become data series and their relation in our algorithm can be
written using a matrix Equation (1), where B is a benchmark matrix (2), T is a target matrix
(3), and D is a distance matrix (4):

B−T = D, (1)

B =



x0 y0 z0
x0 y0 z0
...

...
...

x0 y0 z0
...

...
...

x0 y0 z0


, (2)
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T =



x1 y1 z1
x2 y2 z2
...

...
...

xi yi zi
...

...
...

xn yn zn


, (3)

D =



∆x1 ∆y1 ∆z1
∆x2 ∆y2 ∆z2

...
...

...
∆xi ∆yi ∆zi

...
...

...
∆xn ∆yn ∆zn


. (4)

Table 1. Drone movements and corresponding conditions implemented in our algorithm.

No. Distance Conditions (Pixels) Drone Movement

1 ∆xi > 100 Turn left
2 ∆xi < −100 Turn right
3 −100 < ∆xi < 100 No change
4 ∆yi < −55 Move up
5 ∆yi > 55 Move down
6 −55 < ∆yi < 55 No change
7 ∆zi > 0 Move backward
8 ∆zi < 0 Move forward

Table 1 describes the distance conditions and drone movements in three dimensions.
In the horizontal dimension, there are three conditions: when ∆xi is greater than 100 (No. 1),
∆xi is less than −100 (No. 2), and ∆xi is between −100 and 100 (No. 3), the drone will turn
left, turn right, and stay with no change (i.e., keeping the same movement as in the previous
state), respectively. In the vertical dimension, there are also three conditions: when ∆yi is
less than −55 (No. 4), greater than 55 (No. 5), and between −55 and 55 (No. 6), the drone
will move up, move down, and stay with no change, respectively. In the third dimension,
there are two conditions: when ∆zi is greater than zero (No. 7) and less than zero (No. 8),
the drone will move backward and move forward, respectively.

Algorithm 1 describes the performed computation. When pose landmarks and con-
secutive frames are streamed, target coordinates on the bounding box are computed to
find two minimum values, consisting of xj compared to xj+1 and yj compared to yj+1. In
each iteration, xi is assigned by xmin, yi is assigned by ymin + 150, and zi is assigned by
xmin. The target vector xi, yi, zi is compared to the benchmark vector x0, y0, z0, resulting
in the distance vector ∆xi, ∆yi, ∆zi. The values of the distance vector will determined the
movements performed, with respect to the conditions (1–8) described in Table 1. Scenarios
of movements are listed in the following.
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Algorithm 1 Human motion tracking algorithm.

Input: Stream of pose landmarks
Output: Distance vector = [∆xi, ∆yi, ∆zi]

initialize ∆xi = 0, ∆yi = 0, ∆zi = 0,
xi = 0, yi = 0, zi = 0, i = 1, j = 1,
xbj

=0, ybj
=0,

x0 = w
2 , y0 = h

2 , z0 = TSize
while there are pose landmarks do

update a target vector from two consecutive incoming frames by
xmin ← argminx(xbj

, xbj+1
); . xbj

= xi on a boundary box
ymin ← argminy(ybj

, ybj+1
); . ybj

= yi on a boundary box without a 150 offset
xi ← xmin;
yi ← (ymin + 150); . ymin = yi on a boundary box plus a 150 offset
zi ← xmin;
for each target vector frame i do

∆xi ← (x0 − xi);
∆yi ← (y0 − yi);
∆zi ← (z0 − zi);
if ∆xi > 100 then

the drone turns left
else if ∆xi < −100 then

the drone turns right
else

do the initialize action of ∆xi = 0
end if
if ∆yi < −55 then

the drone moves up
else if ∆yi > 55 then

the drone moves down
else

do the initialize action of ∆yi = 0
end if
if ∆zi > 0 then

the drone moves backward
else if ∆zi < 0 then

the drone moves forward
else

do the initialize action of ∆zi = 0
end if

end for
i← i + 1;
j← j + 1;

end while

1. Scenario of human motion tracking in horizontal direction

In our algorithm, the benchmark vector is fixed at [480, y0, z0]. Suppose a target vector
is [300, yi, zi], such that the target stays at the right-hand side. This results in a distance
vector of [180, ∆yi, ∆zi] at a certain time (T = t). As ∆xi is equal to 180, under condition
No. 1 in Table 1 (∆xi > 100), the drone will turn left at a later time (T > t). Suppose the
target vector is changed to be [390, yi, zi]. Then, the distance vector will be [90, ∆yi, ∆zi].
Then, there is no change, under condition No. 3 in Table 1, and the drone maintains the
previous state of turning left. This scenario is illustrated in Figure 7.



Sensors 2023, 23, 897 9 of 33

Figure 7. Human motion tracking when the drone turns left.

In our algorithm, the benchmark vector is fixed at [480, y0, z0]. Suppose a target vector
is [600, yi, zi], such that the target stays at the left-hand side. This results in a distance vector
of [−120, ∆yi, ∆zi] at a certain time (T = t). As ∆xi is equals to −120, under condition No. 2
in Table 1 (∆xi < −100), the drone will turn right at a later time (T > t). Suppose the
target vector is changed to [570, yi, zi]. Then, the distance vector will be [−90, ∆yi, ∆zi], and
there will be no change, according to condition No. 3 in Table 1, and the drone keeps the
previous state of turning right. This scenario is illustrated in Figure 8.

Figure 8. Human motion tracking when the drone turns right.

2. Scenario of human motion tracking in the vertical direction

In our algorithm, the benchmark vector is fixed at [x0, 360, z0]. Suppose a target vector
is [xi, 460, zi]. Note that the number of 460 has been integrated, with an offset of 150. This
results in a distance vector of [∆xi, 100, ∆zi] at a certain time (T = t). As ∆yi is equal to
−100, under condition No. 4 in Table 1 (∆yi < −55), the drone will move up at a later time
(T > t). Suppose the target vector is changed to be [xi, 320, zi]. Then, the distance vector
is [∆xi, 40, ∆zi]. There will be no change, according to condition No. 6 in Table 1, and the
drone will maintain the previous state of moving up. This scenario is illustrated in Figure 9.



Sensors 2023, 23, 897 10 of 33

Figure 9. Human motion tracking when the drone moves up.

In our algorithm, the benchmark vector is fixed at [x0, 360, z0]. Suppose a target vector
is [xi, 260, zi]. Note that the number of 260 has been integrated, with an offset of 150. This
results in a distance vector of [∆xi,−100, ∆zi] at a certain time (T = t). As ∆yi is equal to
100, under condition No. 5 in Table 1 (∆yi > 55), the drone will move down at a later time
(T > t). Suppose the target vector changes to [xi, 400, zi]. Then, the distance vector will be
[∆xi,−40, ∆zi], and there will be no change, under condition No. 6 in Table 1. Thus, the
drone keeps the previous state of moving down. This scenario is illustrated in Figure 10.

Figure 10. Human motion tracking when the drone moves down.

3. Scenario of human motion tracking in backward and forward directions

In our algorithm, the benchmark vector is fixed at [x0, y0, 456]. Suppose a target vector
is [xi, yi, 446]. This results in a distance of [∆xi, ∆yi, 10] at a certain time (T = t). As ∆zi is
equal to 10, under condition No. 7 in Table 1 (∆zi > 0), the drone will move backward
at a later time (T > t). Suppose the target vector is changed to be [xi, yi, 450]. Then, the
distance vector will be [∆xi, ∆yi, 6]. This is still under condition No. 7 in Table 1 and, so,
the drone still moves backward. This scenario is illustrated in Figure 11.
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Figure 11. Human motion tracking when the drone moves backward.

In our algorithm, the benchmark vector is fixed at [x0, y0, 456]. Suppose a target vector
is [xi, yi, 466]. This results in a distance of [∆xi, ∆yi,−10] at a certain time (T = t). As ∆zi is
equal to −10, under condition No. 8 in Table 1 (∆zi < 0), the drone will move forward at a
later time (T > t). Suppose the target vector is changed to be [xi, yi, 460], then a distance
vector will be [∆xi, ∆yi,−4]. This is under condition No. 8 in Table 1, such that the drone
still moves forward. This scenario is illustrated in Figure 12.

Figure 12. Human motion tracking when the drone moves forward.

2.3.3. Automatic Photo Capture and Alarm Systems

To verify that our algorithm is able to track human movement, when the Tello EDU
drone has detected human movements for more than 5 s, the program is designed to capture
10 human pictures, provide an alarm stating “please check this picture and close this page to
watch the real-time video,” and create a folder to store the series of 10 pictures. These actions
are performed using the python functions cv2.imwrite(), engine.say(), and os.mkdir(),
respectively. A time stamp is created using the function datetime.now().strftime(), in
order for each detection time to have a different recorded name in the folder, providing
convenience of verification.
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2.3.4. Communication Protocol and Extended Drone Control Ranges

In our design, the communication protocol between a computer and the Tello EDU
drone is UDP. For commands provided by the libraries of Tello EDU drones, such as taking
off, landing, streaming video on, streaming video off, moving up, moving down, turning
left, turning right, moving forward, moving backward, flipping, etc., these commands
are sent from a computer to the drone through UDP port No. 8889. On the other hand,
responses and streaming video are sent back from Tello EDU drone to the computer
through UDP port Nos. 11111 and 8890, respectively. Referring to Section 2.3.2 for details
of the human-tracking flight using the MediaPipe framework, exchanging commands and
responses is carried out during human motion tracking by the Tello EDU drone, according
to our proposed algorithm. In the extended drone control ranges of our design, a D-LINK
DIR-1251 Wi-Fi router plays an important role, as a repeater of 2.4 GHz signals. The aim of
extended drone control ranges is to provide a larger area of human motion tracking. An
overview of the communication protocol and extended drone control ranges is illustrated
in Figure 4.

3. Outputs and Experimental Results

For design outputs, indicators are presented for convenience of verification, as shown
in Figure 13. In the upper left-hand corner, the text “Detect” is a Boolean indicator of
human detection. Then, “Time detect” refers to the duration of human detection. The
coordinate [∆xi, ∆yi, ∆zi] shows a distance vector, such as [259,119,235], as the output part
of Equation (4). In the upper right-hand corner, the date and time stamp of human detection
are provided. Next, the battery usage is shown, in terms of percentage of remaining energy.
In the lower left-hand corner, this text indicates the (automatic or manual) piloting mode of
the Tello EDU drone.

Figure 13. Example outputs and indicators for convenience of verification.

All 33 pose landmarks are presented by connected lines and dots over the whole body,
including the nose, mouth, left and right cheekbones, left and right shoulders, left and right
arms, and so on. Both a bounding box (with four thicker corners) and target lock (without
4 thick corners) are presented in a red frame. At the left edge of the bounding box, the
green circle represents the target coordinate, while the red circle of target lock represents
the benchmark coordinate. Generally speaking, the closer the distance between the red and
green circles, the higher the accuracy in human motion tracking. To present the human
motion tracking performance in different aspects and environments, all experiments were
divided into six groups. The first experiment presents proper distances between a human
and the Tello EDU drone, with the experimental location being a drone sandbox. The sec-
ond experiment investigated the target speed for human motion tracking by the Tello EDU
drone, again using the drone sandbox. The third experiment explored the effect of light
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intensity on human motion tracking, with the experimental location being the outdoor park-
ing lots of the Nanachart Bangsaen Hotel. For all experiments, a determined frame rate was
25 frames per second [25], and the x, y dimensions were 960 × 720. Visibility is a value
from 0 to 1, indicating the likelihood of a landmark being visible in the image. A visibility
of 1 (100%) is the best and that of 0 (0%) is the worst for human detection. Visibility is a
real-time response that can be measured, as defined in Equation (5), where z0 is a target
benchmark of 456 and zi is the target size calculated by the MediaPipe framework.

Visibility = 1− | zi − z0

z0
|. (5)

The fourth experiment tested warning messages in our notification system, where the
experimental location was outdoors. The fifth experiment was conducted to explain the
distance extension for controlling the Tello EDU drone, carried out in the outdoor parking
lot of Nanachart Bangsaen Hotel. Finally, the sixth experiment examined the fault detection
performance, where the experimental location was outdoors, in an abandoned garden.
Note that the terms “human” and “target” are considered interchangeable, as the target in
this paper is a human.

3.1. Proper Distances between Person and Tello EDU Drone

In this experiment, we aimed to determine a range for human motion tracking based
on our design and algorithm, where the experimental area was indoors. The range of 11 m
was equally divided into 11 parts. The Tello EDU drone was kept at station No. 0, while a
person stepped forward from station No. 11 (furthest from station No. 0) to station No. 1
(closest to station No. 0). The period of visibility measurement was 1 min at each station.
For visibility measurements, traffic cones representing stations are illustrated in Figure 14a.
An example of acceptable distances in human motion tracking is shown in Figure 14b.

Figure 14. Experiments to discover proper distances between a drone and a person: (a) each traffic
cone is equally far away (1 m separation); and (b) example experimental results.

For this experiment, a person repeatedly walked forward toward the Tello EDU
drone, with 10 rounds. The experimental results in Figure 15 show that the benchmark
of 456 implemented in our algorithm provided visibility between 78–95% when a target
moved in the range between 2–10 m. In other words, the difference in size between the
benchmark and the target was merely 5–22%. As the range between 2–10 m presented
good visibility, this range was considered a good choice for determining other performance
indices relevant to human motion tracking.
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Figure 15. The relationship between visibility and distance (meters).

On the other hand, visibility was between 8–30% at 1 m. The main reason that relatively
low visibility was obtained was that the MediaPipe framework prefers to detect the whole
body, including the midpoint of the hips. Due to the short distance between the drone and
the target, it is possible that only the upper half of the target was detected, as illustrated
in Figure 11. At a distance of 11 m, the visibility was between 9–20%. In other words,
the difference in size between the benchmark and the target was between 80–91%. As
the distances of 1 m and 11 m presented poor visibility, they were not selected for the
determination of other performance indices relevant to human motion tracking. Note that
the dotted line represents a moving average graph from 1 to 11 m. We selected this moving
average graph as the variation of visibility was low at each distance.

3.2. Target Speed and Direction for Human Motion Tracking by Tello EDU Drone

This experiment investigated the relationship between movement speeds and human
motion tracking and visibility, where a person moves with different motion gestures. The
human motion directions consisted of moving left, moving right, moving forward, and
moving away from the Tello EDU drone. When moving forward and away from the Tello
EDU drone, the motion gestures consisted of straight walking, straight running, zigzag
walking, and zigzag running. When moving left and right through the Tello EDU drone’s
camera, motion gestures consisted of left walking, right walking, left running, and right
running. For this experiment, each motion gesture was repeatedly performed, for 10 rounds.
In general, the walking speed of people ranges from 0.97–1.34 m/s [26]. Therefore, these
target speeds and higher speeds were considered, in order to determine the maximum
speed for this experiment.

For the straight walking test, the average speed of straight walking toward and that of
straight walking away from the Tello EDU drone were 0.7776 and 0.7716 m/s, respectively.
For the straight running test, the average speed of straight running toward and away from
the Tello EDU drone were 1.6340 and 1.6234 m/s, respectively, as illustrated in Figure 16.
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(a)

(b)

Figure 16. Straight moving directions: (a) Run forward to the Tello EDU drone (b) Run away from
the Tello EDU drone.

For the zigzag walking test, the average speed of zigzag walking toward away from
the Tello EDU drone were 0.6536 and 0.6711 m/s, respectively. For the zigzag running test,
the average speed of zigzag running toward and away from the Tello EDU drone were
1.5974 and 1.6181 m/s, respectively, as illustrated in Figure 17.
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(a)

(b)

Figure 17. Zigzag moving directions: (a) Zigzag running forward to the Tello EDU drone (b) Zigzag
running away from the Tello EDU drone.

For straight walking through the Tello EDU drone’s camera, the average speed of
straight walking from left to right and that from right to left were 1.1834 and 1.2019 m/s,
respectively. For straight running through the Tello EDU drone’s camera, the average speed
of straight running from left to right and that from right to left were 2.0661 and 2.1231 m/s,
respectively, as illustrated in Figure 18.
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(a)

(b)

Figure 18. Moving through the Tello EDU drone’s camera: (a) Running from left to right to through
the Tello EDU drone’s camera (b) Running from right to left through the Tello EDU drone’s camera.

As shown in Figure 19, visibility significantly decreased as human speed increased.
The dotted line represents the polynomial trend-line of visibility, indicating the ability to
track human motion gestures at different distances. In the trend line, visibility decreases by
10%, from 100% to 90%, when human motion speed increased from 0.67 to 1.38 m/s; mean-
while, visibility decreased 30%, from 90% to 60%, when human motion speed increased
from 1.38 to 2.12 m/s. In each movement gesture speed, zigzag walking speed between
0.6536 and 0.6711 m/s provided visibility of 99% on average. At straight walking speed
between 0.7716 and 0.7776 m/s, the Tello EDU drone had visibility of 99% on average.
When going from left to right (and vice versa) through the Tello EDU drone’s camera at
straight walking speed between 1.1834 and 1.2019 m/s, the Tello EDU drone had visibility
of 97.5% on average.
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Figure 19. Relationship between visibility and target speed (m/s).

At zigzag running speed between 1.5974 and 1.6181 m/s, a majority of visibility results
were around 97%, but a few outliers were 0%. At straight running speed between 1.6234
and 1.634 m/s, the Tello EDU drone had a visibility of 96.5% on average. Running from left
to right (and vice versa) through the Tello EDU drone’s camera at straight running speed
between 2.0661 and 2.1231 m/s, the Tello EDU drone had uncertainty in human motion
tracking, providing visibility of 60% on average.

From the experimental results, when the maximum target speed was 1.635 m/s, human
motion tracking with a visibility of 96.5% was obtained. Comparing the experimental results
between straight forward and transverse directions, the Tello EDU drone preferred the
forward direction over the transverse direction for human motion tracking. Note that the
dotted line represents a polynomial graph. We selected this trend-line as visibility becomes
uncertain when increasing the target speed.

3.3. Exploration of Light Intensity for Human Motion Detection

The next experiment explored light intensity in an outdoor environment for human
motion detection throughout a whole day. The experiment was divided into four time peri-
ods, consisting of the morning (9.00–10.00), noontime (12.00–13.00), afternoon (17.00–18.00),
and evening (18.15–18.30). The Lux Light Meter Pro mobile application (version 2.2.1),
installed on an iPhone, was used as an instrument to examine the light intensity. Visibility
and light intensity are measured at each station, with a total of 10 stations. A total length of
10 m was equally divided 10 parts, and the Tello EDU drone stayed at the origin point at
0 m.

Figures 20 and 21 show the results of experiments conducted in the morning (during
9.00–10.00) and at noontime (during 12.00–13.00), respectively. Visibility and light intensity
were measured at every station, where a target stopped for a while and stepped forward
from 1 to 10 m, towards the Tello EDU drone. The morning period provided a light intensity
of 6773 lux on average, while the noon period provided a light intensity of 41,851 lux on
average. Note that there was a difference in the target’s shadows between the morning and
noontime periods. The target’s shadow in the morning stays at the back of the right hand,
while the target’s shadow at noon stays in front of the right hand. Sunshine directions and
target’s shadows have impacts on visibility; nevertheless, at a distance of 1 m, the Tello
EDU drone was able to detect human motion, even at the visibility of 21.10% at noon.
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Figure 20. Exploration of light intensity for human motion detection in the morning.

Figure 21. Exploration of light intensity for human motion detection at noontime.

Figures 22 and 23 show the experiments conducted in the afternoon (during 17.00–18.00)
and evening (during 18.00–18.15), respectively. The target stopped for measurement of light
intensity at every station and stepped toward the Tello EDU drone from 1 to 10 m. Note
that there were no shadows on the target in the afternoon. The afternoon period provided
a light intensity of 519 lux on average. At a distance of 1 m, the Tello EDU drone was able
to detect human motion, even at the visibility of 29% in the afternoon. The evening period
provided a light intensity of 50 lux on average. At a distance of 1 m, the Tello EDU drone
was unable to detect human motion, due to darkness, even with a visibility of 21.19% in
the evening.
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Figure 22. Exploration of light intensity for human motion detection in the afternoon.

Figure 23. Exploration of light intensity for human motion detection in the evening.

Figure 24 shows the experimental results over the whole day. By comparison of
polynomial trend-lines, the visibility results were best in the morning, followed by in the
afternoon, at noontime, and worst in the evening, respectively. The experimental results
for each period are described as follows.
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Figure 24. Relationship between visibility, light intensity, and distance.

In the morning (during 9.00–10.00), the light intensity was 6773 lux on average. Visi-
bility varied between 25–91% in the morning, providing the best result when compared
to other periods. A target standing far away to 5 m from the Tello EDU drone resulted in
better visibility (88% on average), compared to other distances, in the morning.

At noontime (during 12.00–13.00), the light intensity was 41,851 lux on average. Even
though the light intensity was highest, the visibility was between 20–62%, making it the
third best result among all periods. As the sunshine direction and target’s shadows have
certain impacts, the visibility at noon was not as good as expected. A target standing far
away to 4 m to the Tello EDU drone resulted in better visibility (60% on average), compared
to other distances, at noontime.

In the afternoon (during 17.00–18.00), the light intensity was 519 lux on average.
The visibility varied between 20–80% in the afternoon, providing the second-best result,
compared to the other periods. A target standing far away to 4 m from the Tello EDU drone
resulted in better visibility (75% in average), compared to other distances, in the afternoon.

In the evening (during 18.15–18.30), the light intensity was 50 lux on average. The
visibility varied between 0–22% in the evening, giving the worst result, compared to other
periods. Due to darkness in the evening, the Tello EDU drone was unable to detect human
motion, even though there was 20% visibility on average at a distance of 1 m in the evening.

With gradual changes in light intensity and shadow conditions, altering an offset of
150 in the vertical direction is a feasible solution for visibility improvement, as the positional
angle of the drone for human detection is changed with the offset. Adaptive changing the
offset for visibility improvement is a challenge that should be addressed in further research.

3.4. Notification System of Human Motion Tracking

The next experiment aimed to test the verification of our notification system, as
mentioned in Section 2.3.3. In the protocol, when the detection time of human motion
is greater than 5 s, the program automatically takes 10 pictures, creates a folder to store
them, and also states “please check this picture and close this page to watch the real time
video.” Figure 25 shows a whole display, including a control panel on the right-hand
side and the first picture saved in a created folder on the left-hand side. Figure 26 shows
the experimental results when the Tello EDU drone took a series of 10 pictures when the
detection period was higher than a threshold. The program also creates a folder to store the
series of 10 pictures. This created folder is, for instance, named Human 2021-12-07_15-32-58,
where 2021-12-07 is the date stamp and 15-32-58 is the time stamp. Note that the frame rate
is 25 frames per second; therefore, 10 pictures can be simply stored within 1 min.
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Figure 25. Display including control panel and first picture saved in a created folder.

Figure 26. A series of 10 pictures saved in a created folder Human2021-12-07_15-32-58.

Furthermore, the alert system features a 5 s delay prior to sending human motion
alerts, in order to avoid sending alerts under peripheral conditions where the background
behind the target shows something like a tree with two branches or a gable roof, leading
into the fault detection mentioned in Section 3.5. Based on our experiments, this fault
detection occurs within less than 5 s, which is the main reason for using the 5 s delay prior
to sending human motion alerts.

3.5. Fault Detection

Next, we examined fault detection in human motion tracking. The experimental field
was an abandoned garden consisting of grasses, trees, and house roofs located next to walls,
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as illustrated in Figure 27. This area is selected as its background is slightly sensitive to
human detection. For instance, it contains a tree with two branches which looks like a
person raising their arms, as well as a gable roof that looks like a person’s head. These may
lead to false positive and false negative results. In each experimental round, the distance
between the drone and person ranged from 2 m at the beginning to 10 m at the end, where
the person moved from left to right (and vice versa) through the Tello EDU drone’s camera.

Figure 27. Experimental field for fault detection test.

The experimental results can be classified into four cases. First, when a person appears
in front of the drone’s camera and the program correctly detects the person, this detection
is a true positive, as illustrated in Figure 28. Second, when nobody is in front of the drone’s
camera and it correctly detects nothing, this detection is a true negative, as illustrated in
Figure 29. Third, when nobody is in front of the drone’s camera, but it incorrectly diagnoses
that somebody (e.g., a tree having two branches) is in front of the drone’s camera, this fault
detection is a false positive, as illustrated in Figure 30. Finally, when a person appears in
front of the camera but it incorrectly diagnoses that something (e.g., gable roofs) is a target,
instead of a person, this fault detection is a false negative, as illustrated in Figure 31.

Figure 28. True positive detection.
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Figure 29. True negative detection.

Figure 30. False positive detection.

Figure 31. False negative detection.
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In this experiment, there were 10 rounds of drone takeoffs, where each round included
300 s (5 min) for human motion tracking. As the frame rate was 25 frames per second, a
total number of 7500 frames was considered in each round. The performance index used
in this experiment was sensitivity [27] (also called detection rate or true positive rate [9]),
which refers to ability to correctly track human motion, as defined in Equation (6).

Sensitivity =
No. of true positives

No. of true positives + No. of false negatives
. (6)

The experimental results indicated that false negatives occurred four times—two times
in the first round and one time in each of the second and eighth rounds. Each false negative
occurred for less than 5 s and, so, there is no alarm for human detection. After a moment,
the drone could return to human motion tracking. In the first round, the number of false
negatives and that of true positives were 250 frames and 7250 frames, respectively, giving a
sensitivity of 96.67%. In the second and eighth rounds, the number of false negatives and
true positives were 125 frames and 7370 frames, with a sensitivity of 98.33%. In the rest
of the experimental rounds, there were no false negatives, such that true positives were
obtained for 100% of the 7500 frames. This correctness of detection is shown, in terms of
sensitivity, in Figure 32.

Figure 32. Sensitivity in human motion detection.

For false positive detection, fault detection rarely occurred when nobody was in the
frame in this environment. The drone detected trees or pillars instead of human motion.
However, this false positive detection also lasted less than 5 s, quickly returning to true
negative detection. All experiments showed that our design program equipped with the
MediaPipe framework is efficient for human motion tracking, even in different areas.

3.6. Comparison of Flight-Control Distances between Tello App and Our Design

The next experiment aimed to compare the flight-control distances between the Tello
App and our designed program with the Tello App. The experimental field was a rectangu-
lar outdoor area of size 95 × 35 m2, in a parking lot of the Bangsaen International Hotel
next to Bangsaen beach in Chonburi province, Thailand. The Tello App functions strongly
support real-time image transmission interface and camera video recording, while our
design program provides similar functions to the Tello App, but also providing outstanding
human motion tracking. To evaluate our program, comparison of flight-control distances
between Tello App and our design was taken as a performance index assisting in the
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development of our design. In flight-control experiments, the drone-flight direction was
from the west to the east. These flight-control distances can be divided into two cases:
Normal and extended distance.

The first part of the experiment considered a normal flight-control distance without
a Wi-Fi router. The drone directly communicated with a laptop controller. For horizontal
distances, our program on a laptop and the Tello App on an iPhone provided the longest
distances of 33 m and 35 m, respectively. For vertical distances, our program and the
Tello App provided the highest distances of 7.3 m and 7.8 m, respectively. Second, we
investigated extending the flight-control distances. A D-LINK DIR-1251 Wi-Fi router played
an important role in serving as an intermediary communicator between the drone and the
laptop controller. For horizontal distances, our program and the Tello App provided the
longest distances of 84.3 m and 84.2 m, respectively; meanwhile, for vertical distances, our
program and the Tello App provided the highest distances of 13.40 m and 30 m, respectively.

The comparison of flight-control distances between the Tello App and our design
program is summarized in Table 2. In the majority of experimental results, Tello App
provided longer flight-control distances than our design program. In particular, the vertical
flight-control distance with a Wi-Fi router was more than two times greater. Our design
program still provided drone fight in a vertical distance of 13.40 m, which is sufficient to
obtain a wide view for detection of humans and, so, can be applied for human motion
tracking, surveillance, and so on. For the rest of the flight-control distances, the difference
between Tello App and our program was 2 m in the horizontal direction at maximum. Our
design program facilitates drone flight with a horizontal distance of 33 m. This distance
is sufficient for human motion tracking, surveillance, and so on. If a higher flight-control
distance is required, a Wi-Fi router with stronger RSSI signal strength can be selected
instead. Regarding the pros and cons, our design program is outstanding in human motion
tracking, but presents certain limitations in flight-control distance, when compared to the
Tello App.

Table 2. Comparison of flight-control distances between Tello App and our design program.

Control
Program

Vertical
Distance No

Wi-Fi

Horizontal
Distance No

Wi-Fi

Vertical
Distance by

Wi-Fi

Horizontal
Distance by

Wi-Fi

Tello APP on a
smart phone 7.8 m 35 m 30 m 84.20 m

Our program,
written in the

Python language
7.3 m 33 m 13.40 m 84.30 m

3.7. Automatic Tracking of Human Motion

This section aims to show that our proposed algorithm is able to track human motion;
in particular, we detail experiments of human motion tracking in two scenarios. First, the
drone follows a person in an indoor–outdoor scenario. Second, the drone tracks a person
moving in a multi-person scenario.

1. Drone following a person in an indoor–outdoor scenario

When following a person in an indoor–outdoor scenario, the drone must first take off
and move using manual control, then applied for tracking human motion using automatic
control. When the drone detects a person within its visibility radius, it keeps following the
person on a path. A video of the view of the drone was recorded while a person randomly
walked, as shown in Figure 33. The number 1 denotes the frame at the starting point, while
87 denotes the frame at the end point. The numbers 19, 47, 60, and 70 denote example
frames, where the person moves toward the drone. A hundred sampling frames were
selected from the recorded video of human motion tracking. To be concise, in this section,
pictures A1–A12 were selected from frame No. 1–30, as illustrated in Figure 34; pictures
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A13–A24 were selected from frame No. 31–60, as illustrated in Figure 35; and Pictures
A25–A36 were selected from frame No. 61–87, as illustrated in Figure 36. In Figure 36,
it is shown that the drone can track a human that is randomly walking on the path from
point No. 1 to point No. 87. In the hundred selected frames, different movement actions,
consisting of moving forward, moving backward, turning left, turning right, flying up,
and flying down, were separately counted. The total number of forward movements was
72, which was the highest number, thus corresponding to the most frequent movements
of the drone. The total number of backward movements was 25, which occurred when
a person moves forward or stops. The drone has to strike a balance between forwards
and backwards, in order to maintain a good distance between the drone and the person.
The total number of turning left motions was 27, while the total number of turning right
motions was 68, corresponding to the more frequent turning right of the drone, which was
following on a path from left to right, as illustrated in Figure 37.

Figure 33. Path of automatic human motion tracking in an indoor–outdoor location.

Figure 34. Sampling frames 1–30 of automatic tracking human motion.
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Figure 35. Sampling frames 31–60 of automatic tracking human motion.

Figure 36. Sampling frames 61–87 of automatic tracking human motion.
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Figure 37. Accumulative movement numbers at various sampling frames.

2. Drone following a person in a multi-person scenario

When tracking a person in a multi-person scenario, our proposed algorithm is designed
to detect the person closest to the drone. At first, in the experiment, a new person comes
closer to the drone, compared to a first person tracked by the drone, following which the
new person is tracked by the drone instead, as illustrated in B1–B12 of Figure 38.

Figure 38. Human detection in the case when a new person comes closer than the first person.
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For a second experiment, the distance between the new person and the drone is the
same as the distance of the first person tracked by the drone. In B13–B16 of Figure 39,
when a new person came to the first person and the first person moved away from the
newcomer, then the drone still tracked the first person. When the first person came to the
newcomer and quickly moved forward to stand behind the drone, the drone then tracked
the newcomer instead, as illustrated in B17–B20 of Figure 39. When the first person stood
and the newcomer walked past the first person being tracked by the drone, then the first
person was still tracked by the drone, as illustrated in B21–B24 of Figure 39.

Figure 39. Human detection where a new person moves at the same distance as the first person.

In both experiments, where a distance of the newcomer was closer to and the same as
that of the first person, the experimental results showed that our algorithm detected the
person closest to the drone, and kept tracking the first person if the newcomer stayed at the
same distance as the first person.

4. Discussion

A previous study [28] has proposed 3D tracking of human motion using visual skele-
tons and stereoscopic vision, monitored by two static cameras in a single room. Another
study [9] has proposed a fall detection scheme, monitored by a camera in a room. In [8],
Raspberry Pi 2 equipped with a Cortex 900 MHz ARM CortexTM -A7 processor was used,
tested in a laboratory and a house, requiring six webcams for six rooms. However, these
schemes [8,9,28] tested only indoor scenarios and did not provide details regarding lighting
conditions, target movement speeds, and target distances away from a camera.

In [19], the authors designed a User Interface (UI) using an Angular application to
support situational awareness in Cyber–physical Systems, in which humans and drones
work together to support an emergency response. They used YOLOv3 as a pre-trained real-
time object detection algorithm to support image recognition, and also provided visibility
for detecting victims. Another study [20] has proposed a system for human motion capture
using a drone, aiming to address the limitations of existing human motion-capture systems
which rely on markers and static objects. However, one of selected drones in this work was
a DJI Mavic Pro [29], which comes with the active tracking feature. However, the scheme
of [19] required GPS features, while the cost of the DJI Mavic Pro used in [29] is higher.
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In [30], the authors designed and implemented a complete fiducial marker based
human head pose estimation system. However, the current system could only detect the
rotation of an object’s head in a z-axis. In [31], the authors studied 2 methodologies in
tracking human body movements by using the Tello EDU drone. The first methodology
used the open pose library and gave very bad results in terms of response time by the
drone. The second methodology adopted the detection of colors through the OpenCV
library using 3 different color cards and positions. The biggest problem in this methodology
was that during the day, the light varies and at some time during the day, the colors were
not recognized. In [32], the authors presented a real time fall detection system with a back
propagation neural network that could trigger an alarm people once a fall event occurs.
However, the proposed scheme were stationary in monitoring.

In comparison with the previous schemes [8,9,19,20,28,30–32], our proposed scheme
shows comprehensive performance in various experiments, considering light conditions,
target movement speeds, and target distances, covering both indoor and outdoor scenarios.
Furthermore, our scheme does not require extra hardware (e.g., GPS) or a drone that comes
with the active tracking feature. Table 3 provides a comparison of human motion detection
systems in the literature.

Table 3. Comparison of human motion detection systems.

Index List Zago, 2020 [28] Yun, 2016 [9] Miguel,
2017 [8]

Agrawal,
2020 [19] Zhou, 2018 [20] Ours

Sensitivity (%) N/A 98.55–100 96 N/A N/A 96.67–100
Visibility (%) No No No Yes No Yes

Image sensors Webcam Webcam Webcam Multi Drones DJI Mavic Pro Tello EDU
Drone

Resolution (PX) 1920 × 1080 N/A 320 × 240 N/A N/A 960 × 720
Required GPS No No No Yes No No

Frame rate
(FPS) N/A 171 7–8 N/A 24 25

CPU N/A Intelr i7 CortexTM-A7 N/A Intelr i7 Intelr i7
Language MATLAB MATLAB C/C++ Angular App N/A Python

Alert system No No Yes Yes No Yes
Speed (m/s) N/A N/A N/A N/A N/A 0–2

Target distances
from a cam (m) 2–6 N/A N/A N/A 1–10 1–10

Experiment A room A room A house A river Variety Variety
Intensity (lux) N/A N/A N/A N/A N/A 519–41,851

Indoor Yes Yes Yes No Yes Yes
Outdoor No No No Yes Yes Yes

Propose Human Fall
Detection

Human Fall
Detection

Elderly Fall
Detection

Search and
Rescue

Human Motion
Capture

Human Motion
Tracking

Thermal noise when flying a drone can cause the drone to become unstable. This
thermal noise occurs when the drone has a continuous flight over a long time. In further
research, we intend to develop a new algorithm for human motion tracking that reduces
thermal noise while maintaining the visibility and sensitivity performance. In addition,
we plan to enhance the feature that the drone can keep following the same person in
multi-person scenarios, as well as studying different visibility angles of the drone in the
human detection task.

5. Conclusions

In this paper, we presented the design and implementation of a human motion track-
ing program using a Tello EDU drone. The design methodology consisted of a control
panel design, the human motion tracking algorithm, the notification system, and the com-
munication and distance extension. The comprehensive experimental results demonstrated
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that the proposed algorithm performs well when tracking a human at a distance of 2 to
10 m, with the human movement speed limited at 2 m/s, and provides a sensitivity of
human detection between 96.67 and 100%.
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