
Citation: Tsai, J.; Chang, C.-C.; Li, T.

Autonomous Driving Control Based

on the Technique of Semantic

Segmentation. Sensors 2023, 23, 895.

https://doi.org/10.3390/s23020895

Academic Editors: Angel Valera and

Francisco Valero

Received: 29 October 2022

Revised: 31 December 2022

Accepted: 10 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Autonomous Driving Control Based on the Technique of
Semantic Segmentation
Jichiang Tsai 1, Che-Cheng Chang 2,* and Tzu Li 3

1 Department of Electrical Engineering & Graduate Institute of Communication
Engineering, National Chung Hsing University, Taichung 402, Taiwan

2 Department of Information Engineering and Computer Science, Feng Chia University, Taichung 407, Taiwan
3 Department of Electrical Engineering, National Chung Hsing University, Taichung 402, Taiwan
* Correspondence: checchang@fcu.edu.tw; Tel.: +886-4-24517250 (ext. 3764)

Abstract: Advanced Driver Assistance Systems (ADAS) are only applied to relatively simple sce-
narios, such as highways. If there is an emergency while driving, the driver should take control
of the car to deal properly with the situation at any time. Obviously, this incurs the uncertainty
of safety. Recently, in the literature, several studies have been proposed for the above-mentioned
issue via Artificial Intelligence (AI). The achievement is exactly the aim that we look forward to,
i.e., the autonomous vehicle. In this paper, we realize the autonomous driving control via Deep
Reinforcement Learning (DRL) based on the CARLA (Car Learning to Act) simulator. Specifically, we
use the ordinary Red-Green-Blue (RGB) camera and semantic segmentation camera to observe the
view in front of the vehicle while driving. Then, the captured information is utilized as the input for
different DRL models so as to evaluate the performance, where the DRL models include DDPG (Deep
Deterministic Policy Gradient) and RDPG (Recurrent Deterministic Policy Gradient). Moreover, we
also design an appropriate reward mechanism for these DRL models to realize efficient autonomous
driving control. According to the results, only the RDPG strategies can finish the driving mission
with the scenario that does not appear/include in the training scenario, and with the help of the
semantic segmentation camera, the RDPG control strategy can further improve its efficiency.

Keywords: autonomous driving; deep deterministic policy gradient; recurrent deterministic policy
gradient; semantic segmentation

1. Introduction

The urban population is growing, and this increase has different outgrowths concern-
ing different topics. For example, the present and further increase in traffic flow is affecting
the operational and safety performance of roadways. In accordance with international
traffic statistics, the number of daily traveling vehicles amounts to one billion and will
reach four billion in 2050 [29]. Hence, automotive safety has become a very critical issue.
The automotive safety improvements in the past are all passive safety designs to minimize
injuries during accidents, e.g., airbags, shatter-resistant glass, and so on. Then Advanced
Driver Assistance Systems (ADAS) actively improve automotive safety by controlling both
accelerating/decelerating and steering to reduce the occurrence of accidents and injuries.
For instance, in [30,31], the authors propose a car-following model, which works in a
human-like way from speed, relative speed, and inter-vehicle spacing. However, ADAS can
only be applied to relatively simple scenarios such as highways. If there is an emergency
while driving, the driver should take control of the car to deal properly with the situation
at any time. Obviously, this incurs the uncertainty of safety. Notice that the main difference
between passive and active safety is the operating time [32]. That is to say, an active safety
system will operate before the accident and thus attempt to avoid such an accident.

Recently, in the literature, there have been several studies proposed for the above-
mentioned issue via Artificial Intelligence (AI). They utilize dynamic simulators with

Sensors 2023, 23, 895. https://doi.org/10.3390/s23020895 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020895
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7526-9990
https://doi.org/10.3390/s23020895
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020895?type=check_update&version=1

Sensors 2023, 23, 895 2 of 17

the capacity to accurately and efficiently simulate the behavior of vehicles to conduct
experiments and algorithms. The achievement is exactly the aim that we look forward
to, i.e., the autonomous vehicle [33–36]. More specifically, in [33], the authors utilize
the transformation in diverse color spaces to design their reward mechanism of Deep
Reinforcement Learning (DRL) algorithms. Since the Hue-Saturation-Value (HSV) model is
more closely aligned with the color-making attributes of human vision than the Red-Green-
Blue (RGB) model, the former is better for color gradations found in nature [37,38]. In [35],
the lidar and odometer data are used to obtain the distance and heading information for the
designs of their reward mechanism of DRL algorithms. Consequently, we can realize that
in the literature, all existing DRL algorithms are only frameworks; it is needed to design
and experiment elaborately to implement a viable model based on a certain concept for a
specific application.

Likewise, in this paper, we realize autonomous driving control via DRL as well. The
CARLA (Car Learning to Act) simulator [39] provides all the necessary components for
our experiments, e.g., the car module, the road scenes, the sensed information, and so
forth. Specifically, we use an ordinary RGB camera and a semantic segmentation camera to
observe the view in front of the vehicle while driving. Notice that since CARLA provides
the component of a semantic segmentation camera for the simulation, we do not need
to contemplate its implementation; it can be treated as a kind of independent sensor.
Then the captured information is utilized as the input for different DRL models so as to
evaluate the performance, where the DRL models include DDPG (Deep Deterministic
Policy Gradient) and RDPG (Recurrent Deterministic Policy Gradient). Moreover, we
also design an appropriate reward mechanism for these DRL models to realize efficient
autonomous driving control.

The rest of this paper is structured as follows. At the beginning, the introductory
knowledge with regard to this work is reviewed in Section 2, e.g., CARLA, DRL, DDPG,
RDPG, and so on. After that, our designs are detailed in Section 3, and the experiments and
results corresponding to various experimental settings are performed, analyzed, and dis-
cussed in Section 4. Specifically, by utilizing the real-time images of the road in front of the
vehicle captured by the ordinary RGB camera and semantic segmentation camera provided
by CARLA as the training data, we formulate a proper reward generation architecture with
the aim to improve the performance of the adopted models for the autonomous vehicle.
Lastly, in Section 5, this work is concluded, and some possible futures are proposed.

2. Preliminary
2.1. CARLA Simulator

CARLA is an autonomous driving simulator that is open-source and provides the
flexible Application Programming Interface (API) to address a wide range of driving tasks.
Thus it can help democratize the development of autonomous driving, e.g., driving policies,
perception algorithms, and so forth [39].

On the other hand, CARLA is based on Unreal Engine [40] and OpenDRIVE [41] to
realize the simulation and define the settings of roads and areas. Noteworthily, Unreal
Engine is a research and development tool for real-time technology, which gives creators
the freedom and control of virtual worlds. Similarly, OpenDRIVE is used to furnish the
road network description, which can be fed into the simulation to develop and validate
new techniques.

2.2. RGB Camera and Semantic Segmentation Camera

An RGB camera is a camera equipped with a standard sensor through which the
color images are acquired. It captures light in red, green, and blue wavelengths for color
representation. Since RGB channels roughly follow human vision, it is generally utilized in
computer displays.

On the other hand, a semantic segmentation camera is very promising and possesses
several advantages over conventional cameras [42]. Each object is classified and colored

Sensors 2023, 23, 895 3 of 17

according to its class. For instance, buildings appear in a different color than pedestri-
ans [39]. Moreover, it is a natural motion detector and can filter out redundant information
automatically [43]. It can be implemented via various techniques, e.g., Convolutional
Neural Network (CNN), Recurrent Neural Network (RNN), Generative Adversarial Net-
work (GAN), and so on. Note that since CARLA provides the component of a semantic
segmentation camera for the simulation, we do not need to contemplate its implementation;
it can be treated as a kind of independent sensor. Figure 1 shows an example of driving
vision obtained by the RGB camera and the semantic segmentation camera.

Figure 1. An example of driving vision: (a) RGB camera; (b) Semantic segmentation camera.

2.3. Constituents of Reinforcement Learning

The main concept of Reinforcement Learning (RL) is the interaction between the agent
and the environment. In the process of two-way effect, four primary components need
to be considered, i.e., the policy, the reward, the value function, and the environmental
model [44–46].

• The policy: It is a mapping of all perceived environmental states to actions that can be
taken during the procedure. It may involve some extended computations or may be a
simple lookup table.

• The reward: After each step, the agent will be rewarded with a single number, which
is called the reward. Maximizing the total reward during the procedure is the ultimate
object. Noteworthily, a step may simultaneously include more than one action for
some particular application.

• The value function: The reward only reveals what decision is better or worse instantly.
However, in the long term, the value function can reveal what sequence of decisions
is worthier or unworthier. That is to say, for a state, the value is the sum of the reward
that an agent may amass from now on.

• The environmental model: The environmental model is utilized to mimic the envi-
ronmental behavior. Via the environmental model, we can infer the possible future
before the experiment is actually performed. Namely, it is utilized for preplanning.
Noteworthily, a model-based method needs an environmental model to infer the
possible future, while a model-free method is simply trial-and-error.

2.4. Model-Based and Model-Free Methods

The model-based method has extreme effectiveness in some applications where the
environments are known previously from their rules or designs. Nevertheless, fully model-
based cases are rare or may only fit simple and useless scenarios. Namely, the pure tabular
solution will limit applicability. On the other hand, the model-free method makes decisions
by its knowledge that has been learned via the strategy of trial and error. Apparently,
its performance was poor initially due to limited knowledge. However, with continued

Sensors 2023, 23, 895 4 of 17

experiences, it will become more trustworthy. Hence, we can conclude that the model-based
method depends on planning while the model-free method depends on learning.

According to the above discussions, we have comprehended that since the environmen-
tal model for a model-based solution should be accurate enough to be useful, a model-free
solution will have more advantages in the practical and complex applications. That is to
say, we will not have the problem of creating a sufficiently accurate environmental model
because the model-free solution is used. Noteworthily, the model-free strategy depends
on stored values with regard to state-action pairs. They are estimations that the agent
can anticipate starting from every action taken at every state. These are acquired via a lot
of trials from start to finish. Finally, when the process becomes good enough, the agent
will only select the action with the largest action value at every state to make optimal
decisions [44].

There are several kinds of model-free branches proposed in the literature, e.g., value-
based DQN, policy-based DDPG, policy-based RDPG, and so on. More specifically, since
DQN estimates all values for every state-action pair, its performance falls while the consid-
ered action space is continuous/complex. Nevertheless, the issue is dealt with easily via
DDPG, which possesses the nature of meeting the high dimensional data inherited from
Deterministic Policy Gradient (DPG) [47,48]. RDPG is also an extended version of DPG. For
solving various physical control problems properly, the memory concept is introduced into
DPG. Namely, the short-term integration of information and the long-term integration of
memory are both considered in the RDPG approach [49]. In this paper, we will use DDPG
and RDPG, combined with different camera data, to implement the autonomous control
strategies in Section 3.

2.5. Experience Replay

Q-learning, including its successors, can be improved via a method called experience
replay [50,51]. It stores the experience at every step in a replay memory. After the emulator
executes an action at in a state st, the reward rt+1 and state st+1 will be returned. They form
the tuple (st, at, rt+1, st+1) and are stored in the replay memory. Here, we can accumulate
experiences via a lot of plays of the same experiment or game. Then, a mini-batch sampled
uniformly and randomly from the replay memory is performed for updates. That is to
say, instead of st+1 becoming the update of st, a new unconnected experience is drawn to
supply data for the next update.

With the concept of experience replay, Q-learning provides several advantages over its
usual form. It allows Q-learning, including its successors, to learn more efficiently. Namely,
experience replay reduces the variance of updates and eliminates one source of instability.

2.6. Target Network

The concept of the target network is with two opposite networks. One is a target
network, which should be relatively stable. The other is being updated continuously. The
target network copies the weight from the latter after some predefined steps to avoid the
irrelevance of target estimates. Obviously, the former is like offline, and the latter is like
online [52].

On the other hand, it can be implemented in another way, i.e., a shared deep learning
architecture. Particularly, in the neural network with shared architecture, some common
layers are placed on the upper part, and then some split layers are accordingly cascaded
onto the lower part for different dedicated purposes. Namely, one is for computing the
state value, and the other is for computing the advantage. After that, both are combined to
get the action-value approximation.

2.7. Policy Gradient

The policy gradient-based approach is very popular, which attempts to leverage the
property of differentiability of the policy function for optimization. Particularly, since the
policy term is parameterized, it is stochastic. Namely, for a given state, instead of the single

Sensors 2023, 23, 895 5 of 17

best action, the policy may have various probabilities of choosing distinct actions. Hence,
it draws stochastic samples to refine the estimate so as to optimize the policy, which may
enable the agent to accumulate the maximum cumulative reward [52].

2.8. OU Noise

The OU (Ornstein–Uhlenbeck) process is a stochastic process with applications in
physical sciences. Originally, it was a model for the velocity of a massive particle under the
influence of friction. Noteworthily, the OU process has the property of stationary Gauss–
Markov; it may be a Gaussian process, a Markov process, or a homogeneous one [53].

Since OU noise is with the property of time sequence, for the application of vehicle
inertia, which is the resistance to change the velocity or direction of a vehicle, either in
motion or at rest [54], OU noise is better than Gaussian noise.

2.9. DRL Architecture

According to the aforementioned descriptions, we can conduct the architecture shown
in Figure 2, which includes the experience replay buffer, the introduction of the target
network and OU noise, and so on. Owing to the design of the architecture, for various DRL
approaches, we only need to replace the source code in the network part with another one.

Figure 2. The DRL architecture.

3. The DRL Control Strategies

Our autonomous driving control strategies are elaborated on in this section. Further,
as the description in [33,35], all existing DRL notions proposed in the literature are just
frameworks, thus designing a reward mechanism and experimenting with such a mech-
anism to realize a particular application is still needed. This is the primary contribution
of our work. Here, the diagram illustrated in Figure 3 is to demonstrate the relationship
between the CARLA simulator and our autonomous driving control strategies. Owing
to the design of simulation architecture, for various DRL approaches, we only need to
replace the source code in the network part (right component) with another. The CARLA
simulator (left component) produces training data that are sent to the DRL approach for the
training process. After the training process is finished, the right component is changed to
continuously make immediate responses to the left component for controlling the vehicle
according to its real-time driving situation.

Sensors 2023, 23, 895 6 of 17

Figure 3. The relationship between CARLA and the control strategy.

3.1. Designs of Reward Mechanism

In this section, we start to introduce the six primary constituents of the reward mecha-
nism, i.e., Rarea, Rroadline, Rwaypoint, Rvelocity, Rsteer, and Rpunishment. Noteworthily, the design
of the reward mechanism plays an important role in the DRL approach, which affects the
performance of convergence as well as the accuracy and stability of the interaction between
the agent and the environment.

First, if a vehicle follows the road stably and accurately, the driving vision will include
a higher percentage of the road area. Oppositely, if the driving vision includes a lower
percentage of the road area, this means that the vehicle can not follow the road properly.
Namely, it may currently be out of control. Hence, according to the notion, the first
constituent of the reward mechanism is as follows:

Rarea = (Aroad − Troad)× wroad, (1)

where Aroad is the measure of road area, Troad is the threshold, and wroad is the weight.
Here, wroad is used for regulating the ratio of reward. Traditionally, we can use computer
vision skill to obtain Aroad. Particularly, since the HSV color model has better efficacy for
color gradations found in nature, the first step is to convert the RGB data into HSV color
space. After that, binarization replaces each pixel in the driving vision with a white/black
pixel [55,56] to obtain Aroad. Noteworthily, thanks to the characteristics of the semantic
segmentation camera, in this paper, we can receive Aroad without the transformation of
color space. Figure 4 shows an example of using driving vision to obtain Aroad.

Second, the constituent is Rroadline, which is used to ensure the keeping of the vehicle
inside the lane. If the vehicle stays in its lane, the higher Rroadline is rewarded, and vice versa.

Rroadline =

{
Cline × wline, (Tline,x1 < Iline,x < Tline,x2)&(Tline,y < Iline,y)
−Cline × wline, otherwise

, (2)

where Cline is a constant, Tline,x1 , Tline,x2 , and Tline,y are the thresholds of the driving vision,
Iline,x and Iline,y are the current coordinates of the lane lines in the side driving vision, and
wline is the weight. Figure 5 shows an example of using side driving vision to obtain lane
lines. Notice that the parameters of binarization are different from Figure 4.

Sensors 2023, 23, 895 7 of 17

Figure 4. An example of driving vision to obtain Aroad: (a) Original; (b) Binarization.

Figure 5. An example of side driving vision to obtain lane lines: (a) Original; (b) Binarization.

The next constituent is Rwaypoint, which is used to ensure correct lane keeping. Because
the scenario is right-hand traffic (RHT), the vehicle should keep to the right-hand side lane.
Here, the concept of navigation with waypoints is adopted to avoid driving on the wrong
side of the road. Particularly, before each trip, the sequence of waypoints will be generated
via navigation in advance. Therefore, the vehicle will chase these waypoints for correct
lane keeping as well as a higher reward.

Rwaypoint = (−|Pvehicle − Pwaypoint|2 + Twaypoint)× wwaypoint, (3)

where Pvehicle is the position of the vehicle, Pwaypoint is the position of the next waypoint,
Twaypoint is the threshold, and wwaypoint is the weight. Figure 6 shows an example of the
sequence of waypoints generated via navigation.

Sensors 2023, 23, 895 8 of 17

Figure 6. An example of the sequence of waypoints generated via navigation.

The next two constituents are regarding the stability of the vehicle, i.e., Rvelocity and
Rsteer. Particularly, if the vehicle speed is slower than a predefined value and the accelera-
tion is not enough, it will be rewarded a negative award. In addition, if the steering angle
is similar to that at the latest point in time, it will be rewarded a higher award. Therefore,
we can obtain the following two designs for reward constituents.

Rvelocity =

{
−Cvel × wvel , (Vvel < Tvel)&(Vthr < Tthr)
0, otherwise

, (4)

Rsteer = (|St − St−1| − Tsteer)× wsteer, (5)

where Cvel is a constant, wvel is the weight, Vvel is the current velocity of the vehicle, Tvel is
the predefined threshold of velocity, Vthr is the current throttle value of the vehicle, Tthr is
the predefined threshold of throttle value, St and St−1 are the steering angles at times t and
t− 1, and wsteer is the weight.

The last constituent is the punishment, Rpunishment. Specifically, violating a traffic
regulation causes a negative reward and then resets the experiment to the initial status. The
constituent is presented below:

Rpunishment =

{
−Cpunishment, experiment reset
0, otherwise

, (6)

where Cpunishment is a constant.
Eventually, the whole reward mechanism is constructed:

Rtotal = Rarea + Rroadline + Rwaypoint + Rvelocity + Rsteer + Rpunishment. (7)

3.2. Designs of Actor-Critic Network

The actor and critic networks of DDPG and RDPG are shown in Figures 7–10. First,
in Figure 7, the driving vision is taken as the input for the actor network of DDPG. After
executing the process of 2D convolution and batch normalization three times, it is concate-
nated to the driving speed. After that, the concatenated data, including throttle, steering,
and brake data, are reweighed as the output. In Figure 8, the critic network of DDPG is
presented, where the driving vision, driving speed, and actor action is taken as the inputs.
Afterward, they are concatenated and reweighed to obtain the Q value.

Sensors 2023, 23, 895 9 of 17

Similarly, Figure 9 shows the actor network of RDPG. Particularly, the historical data
are taken as the inputs, i.e., driving vision and driving speed. After that, the Long Short-
Term Memory (LSTM) layer is utilized to introduce the memory property. In Figure 10,
also with the LSTM layer, the historical driving vision, driving speed, and actor action are
taken as the inputs. Afterward, they are concatenated and reweighed to get the Q value.

Figure 7. Our actor network for DDPG.

Figure 8. Our critic network for DDPG.

Sensors 2023, 23, 895 10 of 17

Figure 9. Our actor network for RDPG.

Figure 10. Our critic network for RDPG.

4. Experimental Results

In this section, we start to address our experiments in detail. First, the path shown in
Figure 11 is used for the training procedure, where the orange point is the starting point
and the yellow the destination. In the same map, two other paths are used for the testing
procedures. Note that parts of the training and testing paths are mutually exclusive; this is
significant and critical for a fair assessment of the experiment. The simulation settings are
shown below.

Sensors 2023, 23, 895 11 of 17

• Two DRL algorithms are adopted for the experiments, i.e., DDPG and RDPG.
• Two kinds of cameras are used to capture the driving vision for the experiments, i.e.,

RGB and semantic segmentation cameras.
• Hyperparameters:

– Replay buffer of DDPG: 15,000.
– Threshold of replay buffer of DDPG: 500.
– Batch size of DDPG: 150.
– Replay buffer of RDPG: 6000.
– Threshold of replay buffer of RDPG: 500.
– Batch size of RDPG: 150.
– Learning rate: 0.0001 (actor) and 0.001 (critic).
– Learning rate decay: 0.9.
– ε from the start: 1.
– ε decay: 0.99.
– Minimum ε: 0.01.
– τ: 0.005.
– µ of OU noise: 0.2 (throttle) and 0 (other).
– θ of OU noise: 0.35.
– σ of OU noise: 0.1 (throttle) and 0.2 (other).

• The specification of the computer:

– CPU: Intel Core i7-11700KF.
– GPU: Nvidia GeForce RTX 3090 24GB.
– RAM: 48GB DDR4 3600MHz.
– HDD: 512GB SSD.
– OS: Windows 10.

Notice that since RDPG has a memory property, less RDPG data occupies the same
space as a larger number of DDPG data.

Figure 11. The map used for the training procedures.

Foremost, the first testing path is simpler and shorter, and the corresponding results are
presented in Figures 12–15, where the orange point is the starting point and the yellow the
destination. We can observe that the four autonomous vehicles based on different strategies
all finish the driving mission. After that, the second path is more complex and longer, and
the corresponding results are presented in Figures 16–19, where the orange point is the

Sensors 2023, 23, 895 12 of 17

starting point and the yellow the destination. Here, only two autonomous vehicles based
on the RDPG strategies finish the driving mission. Two autonomous vehicles based on
the DDPG strategies do not pass the scenario of an L-turn (both fail at the black point),
which does not appear/include in the training scenario. According to the aforementioned
results, we can conclude that since RDPG has the memory property of adopting inputs in
sequence, it has better adaptability for a scenario that the autonomous vehicle has never
seen in advance.

Figure 12. DDPG with an RGB camera for the first testing path.

Figure 13. DDPG with a semantic segmentation camera for the first testing path.

Figure 14. RDPG with an RGB camera for the first testing path.

Sensors 2023, 23, 895 13 of 17

Figure 15. RDPG with a semantic segmentation camera for the first testing path.

Figure 16. DDPG with an RGB camera for the second testing path.

Figure 17. DDPG with a semantic segmentation camera for the second testing path.

Sensors 2023, 23, 895 14 of 17

Figure 18. RDPG with an RGB camera for the second testing path.

Figure 19. RDPG with a semantic segmentation camera for the second testing path.

Next, we further discuss the training performance of two RDPG strategies that have
better adaptability in the above experiments. The results are presented in Figure 20, where
the actor loss and critic loss of RDPG during the training procedure are given. According
to the data of the actor loss and critic loss, we can observe that RDPG with a semantic
segmentation camera has better convergency performance. Even RDPG with a semantic
segmentation camera has a lower loss value at the end of the training procedure. Hence,
we can conclude that with the help of a semantic segmentation camera, RDPG can further
improve its efficiency.

Sensors 2023, 23, 895 15 of 17

Figure 20. (a) The actor loss of RDPG during the training procedure; (b) The critic loss of RDPG
during the training procedure.

5. Conclusions and Future Work

In this paper, we have used an ordinary RGB camera and a semantic segmentation
camera to observe the view in front of the vehicle while driving. The captured information
has also been utilized as the input for different DRL models so as to evaluate the perfor-
mance, where the DRL models include DDPG and RDPG. Moreover, we have designed
an appropriate reward mechanism for these DRL models to realize efficient autonomous
driving control. According to the results, only the RDPG strategies can finish the driving
mission with the scenario that does not appear/include in the training scenario. Next, we
have further compared the RDPG strategies with different cameras, and the results have
shown that with the help of a semantic segmentation camera, RDPG can further improve
its efficiency.

For future work, we plan to propose some new methods with asymmetric architecture
for achieving better performance. Namely, some data may be checked continuously, but
some may be periodic. According to this asymmetric architecture, we will have less
computational complexity and better convergence performance. On the other hand, for
different types of vehicles, the consideration of cameras with different angles will be another
critical topic for DRL control strategies.

Author Contributions: Conceptualization, J.T. and T.L.; methodology, J.T. and T.L.; software, T.L.;
validation, J.T., C.-C.C. and T.L.; formal analysis, J.T., C.-C.C. and T.L.; writing—original draft
preparation, J.T. and C.-C.C.; writing—review and editing, J.T. and C.-C.C.. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by National Science and Technology Council, Taiwan, R.O.C.
under grant 109-2221-E-035-067-MY3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 895 16 of 17

References
1. Cafiso, S.; Graziano, A.D.; Giuffrè, T.; Pappalardo, G.; Severino, A. Managed Lane as Strategy for Traffic Flow and Safety: A Case

Study of Catania Ring Road. Sustainability 2022, 14, 2915.
2. Zhu, M.; Wang, X.; Wang, Y. Human-Like Autonomous Car-Following Model with Deep Reinforcement Learning. arXiv 2019,

arXiv:1901.00569.
3. Zhu, M.; Wang, Y.; Pu, Z.; Hu, J.; Ke, X.W.R. Safe, Efficient, and Comfortable Velocity Control Based on Reinforcement Learning

for Autonomous Driving. Transp. Res. Part Emerg. Technol. 2020, 117, 102662 .
4. Chang, C.-C.; Chan, K.-L. Collision Avoidance Architecture Based on Computer Vision with Predictive Ability. In Proceedings

of the 2019 International Workshop of ICAROB—Intelligent Artificial Life and Robotics, Beppu, Japan, 10–13 January 2019.
[CrossRef]

5. Chang, C.-C.; Tsai, J.; Lin, J.-H.; Ooi, Y.-M. Autonomous Driving Control Using the DDPG and RDPG Algorithms. Appl. Sci. 2021,
11, 10659.

6. Home-AirSim [Online]. Available online: https://microsoft.github.io/AirSim/ (accessed on 20 October 2022). [CrossRef]
7. Tsai, J.; Chang, C.-C.; Ou, Y.-C.; Sieh, B.-H.; Ooi, Y.-M. Autonomous Driving Control Based on the Perception of a Lidar Sensor

and Odometer. Appl. Sci. 2022, 12, 7775.
8. Gazebo [Online]. Available online: http://gazebosim.org/ (accessed on 20 October 2022) . [CrossRef]
9. Agoston, M.K. Computer Graphics and Geometric Modeling: Implementation and Algorithms; Springer: London, UK, 2005.
10. Cheng, H.D.; Jiang, X.H.; Sun, Y.; Wang, J. Color Image Segmentation: Advances and Prospects. Pattern Recognit. 2001,

34, 2259–2281. [CrossRef]
11. CARLA Simulator [Online]. Available online: https://carla.org/ (accessed on 20 October 2022) .
12. The Most Powerful Real-Time 3D Creation Platform—Unreal Engine [Online]. Available online: https://www.unrealengine.

com/en-US/ (accessed on 20 October 2022) .
13. ASAM OpenDRIVE [Online]. Available online: https://www.asam.net/standards/detail/opendrive/ (accessed on 20 Octo-

ber 2022) . [CrossRef]
14. Alonso, I.; Murillo, A.C. EV-SegNet: Semantic Segmentation for Event-Based Cameras. In Proceedings of the 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019.
15. Maqueda, A.I.; Loquercio, A.; Gallego, G.; Garcia, N.; Scaramuzza, D. Event-Based Vision Meets Deep Learning on Steering

Prediction for Self-Driving Cars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–22 June 2018.

16. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; The MIT Press: Cambridge, UK, 2018.
17. Martin-Guerrero, J.D.; Lamata, L. Reinforcement Learning and Physics. Appl. Sci. 2021, 11, 8589.
18. Jembre, Y.Z.; Nugroho, Y.W.; Khan, M.T.R.; Attique, M.; Paul, R.; Shah, S.H.A.; Kim, B. Evaluation of Reinforcement and Deep

Learning Algorithms in Controlling Unmanned Aerial Vehicles. Appl. Sci. 2021, 11, 7240.
19. Deep Reinforcement Learning [Online]. Available online: https://julien-vitay.net/deeprl/ (accessed on 20 October 2022) .
20. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep

Reinforcement Learning. arXiv 2019, arXiv:1509.02971. [CrossRef]
21. Heess, N.; Hunt, J.J.; Lillicrap, T.P.; Silver, D. Memory-based Control with Recurrent Neural Networks. arXiv 2015,

arXiv:1512.04455. [CrossRef]
22. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 8503 .
23. Lin, L.-J. Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach. Learn. 1992, 8, 293–321.
24. Sewak, M. Deep Reinforcement Learning; Springer: Cham, Switzerland, 2019.
25. Bibbona, E.; Panfilo, G.; Tavella, P. The Ornstein-Uhlenbeck process as a model of a low pass filtered white noise. Metrologia 2008,

45, S117. [CrossRef]
26. Vehicle Dynamics [Online]. Available online: https://ritzel.siu.edu/courses/302s/vehicle/vehicledynamics.htm (accessed on 20

October 2022) . [CrossRef]
27. Chaki, N.; Shaikh, S.H.; Saeed, K. Exploring Image Binarization Techniques; Springer: Berlin/Heidelberg, Germany, 2014.
28. Stockman, G.; Shapiro, L.G. Computer Vision; Prentice Hall PTR: Hoboken, NJ, USA, 2001. [CrossRef]
29. Cafiso, S.; Graziano, A.D.; Giuffrè, T.; Pappalardo, G.; Severino, A. Managed Lane as Strategy for Traffic Flow and Safety: A Case

Study of Catania Ring Road. Sustainability 2022, 14, 2915.
30. Zhu, M.; Wang, X.; Wang, Y. Human-Like Autonomous Car-Following Model with Deep Reinforcement Learning. arXiv 2019,

arXiv:1901.00569.
31. Zhu, M.; Wang, Y.; Pu, Z.; Hu, J.; Ke, X.W.R. Safe, Efficient, and Comfortable Velocity Control Based on Reinforcement Learning

for Autonomous Driving. Transp. Res. Part Emerg. Technol. 2020, 117, 102662 .
32. Chang, C.-C.; Chan, K.-L. Collision Avoidance Architecture Based on Computer Vision with Predictive Ability. In Proceedings

of the 2019 International Workshop of ICAROB—Intelligent Artificial Life and Robotics, Beppu, Japan, 10–13 January 2019.
[CrossRef]

33. Chang, C.-C.; Tsai, J.; Lin, J.-H.; Ooi, Y.-M. Autonomous Driving Control Using the DDPG and RDPG Algorithms. Appl. Sci. 2021,
11, 10659.

http://doi.org/10.3390/su14052915
https://microsoft.github.io/AirSim/
http://dx.doi.org/10.1016/j.trc.2020.102662
http://gazebosim.org/
http://dx.doi.org/10.3390/app112210659
http://dx.doi.org/10.3390/app12157775
https://carla.org/
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://www.asam.net/standards/detail/opendrive/
http://dx.doi.org/10.1016/S0031-3203(00)00149-7
https://julien-vitay.net/deeprl/
http://dx.doi.org/10.3390/app11188589
http://dx.doi.org/10.3390/app11167240
http://dx.doi.org/10.1038/nature14236
https://ritzel.siu.edu/courses/302s/vehicle/vehicledynamics.htm
http://dx.doi.org/10.1007/BF00992699
http://dx.doi.org/10.1088/0026-1394/45/6/S17
http://doi.org/10.3390/su14052915

Sensors 2023, 23, 895 17 of 17

34. Home-AirSim [Online]. Available online: https://microsoft.github.io/AirSim/ (accessed on 20 October 2022). [CrossRef]
35. Tsai, J.; Chang, C.-C.; Ou, Y.-C.; Sieh, B.-H.; Ooi, Y.-M. Autonomous Driving Control Based on the Perception of a Lidar Sensor

and Odometer. Appl. Sci. 2022, 12, 7775.
36. Gazebo [Online]. Available online: http://gazebosim.org/ (accessed on 20 October 2022) . [CrossRef]
37. Agoston, M.K. Computer Graphics and Geometric Modeling: Implementation and Algorithms; Springer: London, UK, 2005.
38. Cheng, H.D.; Jiang, X.H.; Sun, Y.; Wang, J. Color Image Segmentation: Advances and Prospects. Pattern Recognit. 2001,

34, 2259–2281. [CrossRef]
39. CARLA Simulator [Online]. Available online: https://carla.org/ (accessed on 20 October 2022) .
40. The Most Powerful Real-Time 3D Creation Platform—Unreal Engine [Online]. Available online: https://www.unrealengine.

com/en-US/ (accessed on 20 October 2022) .
41. ASAM OpenDRIVE [Online]. Available online: https://www.asam.net/standards/detail/opendrive/ (accessed on 20 Octo-

ber 2022) . [CrossRef]
42. Alonso, I.; Murillo, A.C. EV-SegNet: Semantic Segmentation for Event-Based Cameras. In Proceedings of the 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019.
43. Maqueda, A.I.; Loquercio, A.; Gallego, G.; Garcia, N.; Scaramuzza, D. Event-Based Vision Meets Deep Learning on Steering

Prediction for Self-Driving Cars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–22 June 2018.

44. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; The MIT Press, Cambridge, UK, 2018.
45. Martin-Guerrero, J.D.; Lamata, L. Reinforcement Learning and Physics. Appl. Sci. 2021, 11, 8589.
46. Jembre, Y.Z.; Nugroho, Y.W.; Khan, M.T.R.; Attique, M.; Paul, R.; Shah, S.H.A.; Kim, B. Evaluation of Reinforcement and Deep

Learning Algorithms in Controlling Unmanned Aerial Vehicles. Appl. Sci. 2021, 11, 7240.
47. Deep Reinforcement Learning [Online]. Available online: https://julien-vitay.net/deeprl/ (accessed on 20 October 2022) .
48. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep

Reinforcement Learning. arXiv 2019, arXiv:1509.02971. [CrossRef]
49. Heess, N.; Hunt, J.J.; Lillicrap, T.P.; Silver, D. Memory-based Control with Recurrent Neural Networks. arXiv 2015,

arXiv:1512.04455. [CrossRef]
50. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 8503 .
51. Lin, L.-J. Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach. Learn. 1992, 8, 293–321.
52. Sewak, M. Deep Reinforcement Learning; Springer: Cham, Switzerland, 2019.
53. Bibbona, E.; Panfilo, G.; Tavella, P. The Ornstein-Uhlenbeck process as a model of a low pass filtered white noise. Metrologia 2008,

45, S117. [CrossRef]
54. Vehicle Dynamics [Online]. Available online: https://ritzel.siu.edu/courses/302s/vehicle/vehicledynamics.htm (accessed on 20

October 2022) . [CrossRef]
55. Chaki, N.; Shaikh, S.H.; Saeed, K. Exploring Image Binarization Techniques; Springer: Berlin/Heidelberg, Germany, 2014.
56. Stockman, G.; Shapiro, L.G. Computer Vision; Prentice Hall PTR: Hoboken, NJ, USA, 2001. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://microsoft.github.io/AirSim/
http://dx.doi.org/10.1016/j.trc.2020.102662
http://gazebosim.org/
http://dx.doi.org/10.3390/app112210659
http://dx.doi.org/10.3390/app12157775
https://carla.org/
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://www.asam.net/standards/detail/opendrive/
http://dx.doi.org/10.1016/S0031-3203(00)00149-7
https://julien-vitay.net/deeprl/
http://dx.doi.org/10.3390/app11188589
http://dx.doi.org/10.3390/app11167240
http://dx.doi.org/10.1038/nature14236
https://ritzel.siu.edu/courses/302s/vehicle/vehicledynamics.htm
http://dx.doi.org/10.1007/BF00992699
http://dx.doi.org/10.1088/0026-1394/45/6/S17

	Introduction
	Preliminary
	CARLA Simulator
	RGB Camera and Semantic Segmentation Camera
	Constituents of Reinforcement Learning
	Model-Based and Model-Free Methods
	Experience Replay
	Target Network
	Policy Gradient
	OU Noise
	DRL Architecture

	The DRL Control Strategies
	Designs of Reward Mechanism
	Designs of Actor-Critic Network

	Experimental Results
	Conclusions and Future Work
	References

