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Abstract: The IEEE 802.11ah standard is intended to adapt the specifications of IEEE 802.11 to the
Internet of Things (IoT) scenario. One of the main features of IEEE 802.11ah consists of the Restricted
Access Window (RAW) mechanism, designed for scheduling transmissions of groups of stations
within certain periods of time or windows. With an appropriate configuration, the RAW feature
reduces contention and improves energy efficiency. However, the standard specification does not
provide mechanisms for the optimal setting of RAW parameters. In this way, this paper presents a
grouping strategy based on a genetic algorithm (GA) for IEEE 802.11ah networks operating under the
RAW mechanism and considering heterogeneous stations, that is, stations using different modulation
and coding schemes (MCS). We define a fitness function from the combination of the predicted
system throughput and fairness, and provide the tuning of the GA parameters to obtain the best
result in a short time. The paper also includes a comparison of different alternatives with regard to
the stages of the GA, i.e., parent selection, crossover, and mutation methods. As a proof of concept,
the proposed GA-based RAW grouping is tested on a more constrained device, a Raspberry Pi 3B+,
where the grouping method converges in around 5 s. The evaluation concludes with a comparison of
the GA-based grouping strategy with other grouping approaches, thus showing that the proposed
mechanism provides a good trade-off between throughput and fairness performance.

Keywords: genetic algorithm; IEEE 802.11ah; RAW; Wi-Fi HaLow

1. Introduction

Wi-Fi HaLow is the certification for products supporting the IEEE 802.11ah stan-
dard [1]. This technology represents the response of the IEEE 802.11 Working Group to the
increasing connectivity demands of the Internet of Things (IoT). Although the standard was
published in 2017, it was not until November 2021 that the Wi-Fi Alliance introduced the
Wi-Fi HaLow certification program. Those delays along with the fact that other competing
technologies are already well-established on the IoT arena (e.g., LoRaWAN, NB-IoT, Sigfox,
etc.), have hampered a wide adoption of the IEEE 802.11ah. Nevertheless, the first certified
devices are starting to reach the market, and some studies forecast an increasing interest in
this technology [2].

Similarly to other IEEE 802.11 technologies, IEEE 802.11ah uses an orthogonal frequency-
division multiplexing (OFDM)-based physical layer (PHY), and a carrier-sense multiple
access with collision avoidance (CSMA/CA) medium access control (MAC). However,
IEEE 802.11ah introduces new features that allow this technology to reach longer ranges
than a typical wireless local area network (WLAN), to support thousands of connected
devices per access point (AP), and to improve energy efficiency [3].

A longer range is achieved by the use of a lower frequency band below 1 GHz,
which introduces lower propagation losses than the 2.4 and 5 GHz bands used in WLANs.
Moreover, the support of narrower transmissions (from 1 to 16 MHz, in contrast to the
range between 20 and 160 MHz of mainstream IEEE 802.11ax), along with a new and
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more reliable modulation and coding scheme (MCS) extend the range of a Wi-Fi HaLow
network beyond 1500 m while offering a capacity above 100 kbps [3]. Note that other
IoT technologies, such as LoRaWAN or Sigfox, cover several kilometers at the cost of a
limited capacity (in the scale of 1 kbps), while IEEE 802.11ah’s PHY supports data rates
from 150 kbps to 346 Mbps (using multiple antennas-MIMO).

Another focus of the IoT communication is on low power consumption. Further
energy savings are, indeed, the target of several new features of the IEEE 802.11ah. For
example, the new standard allows longer sleeping periods, helping devices to save more
energy while inactive (from several hours of sleep in legacy Wi-Fi, to the year scale in IEEE
802.11ah). IEEE 802.11ah also introduces more efficient frame exchanges and a reduced
overhead, which make transmissions more energy-efficient.

IoT-enabling technologies are also expected to provide connectivity to a large number
of devices. Legacy IEEE 802.11 supports up to 2007 associated stations (STA) per AP.
Having a longer range and, therefore, covering a larger area, an IEEE 802.11ah AP serves a
larger number of STAs. IEEE 802.11ah redefines the Association Identifier (AID), a unique
number assigned to each associated STA, to allow up to 8191 STAs per AP. However,
note that increasing the number of STAs in a CSMA-based network implies an increased
collision probability, which can dramatically degrade the performance with only a few tens
of STAs [4]. For example, 250 IoT devices, all transmitting data to a Wi-Fi HaLow AP (all
devices use 2 MHz, MCS 5, and one spatial stream) could obtain an aggregate throughput
of around 1.5 Mbps; with 500 connected devices, throughput drops to 1.1 Mbps; with
1000 devices, only 0.6 Mbps are achieved, due to the increased number of collisions and
resulting retransmissions. In order to reduce the harmful effects of an excessive contention,
the IEEE 802.11ah introduces the Restricted Access Window (RAW) mechanism.

With RAW, the AP coordinates the uplink channel access of STAs by defining time
intervals in which specific groups of devices are given exclusive access of the shared
medium. In this way, the channel access becomes a hybrid between TDMA and CSMA. The
benefits of RAW are twofold: (i) collision probability is reduced since only a limited number
of STAs contend for the channel during their assigned time window; and (ii) STAs can
safely remain in power saving states for longer while they wait for the assigned time slot.
On the other hand, RAW poses an important challenge that is left open in the IEEE 802.11ah
specification: efficient grouping of STAs. This challenge deals with choosing a number of
RAW groups, and selecting the STAs that will be grouped together. Following the numerical
example of the previous paragraph, just by defining four equally-sized groups in the case
of 1000 active devices, throughput is increased from 0.6 to 1.5 Mbps. In practice, however,
devices are not homogeneous and, therefore, more sophisticated grouping strategies are
required. For a small amount of STAs, the optimal grouping can be obtained following a
simple exhaustive search, in which all the possible grouping configurations are evaluated in
a reasonable amount of time. The grouping that maximizes a pre-defined objective function
(i.e., fitness function for a genetic algorithm) is then chosen as the optimal RAW setting.
However, note that with hundreds or even thousands of STAs, the number of possible
groupings is unwieldy (intractable, in practice) and, therefore, an intelligent algorithm,
capable of providing (near) optimal grouping decisions within a reasonable time is needed
to make the most of the RAW mechanism.

In this paper, we propose a genetic algorithm (GA) specially adapted for tackling the
STA grouping problem in IEEE 802.11ah networks with heterogeneous STAs. GAs [5] show,
in general, a wide applicability and, in this particular case, provide an intuitive approach
to the problem (because of the natural relationship built between groups of STAs and the
conceptually simple mechanism of an evolving population), are capable of dealing with
very large search spaces (e.g., assuming G STAs and a maximum of R groups, the number
of possible groupings is RG/R!), and are easily parallelizable, which could be used to take
advantage of the multi-cored CPUs present in many modern embedded devices (e.g., Wi-Fi
APs). Moreover, GAs are robust to noise and uncertainty because they search for solutions
in a probabilistic manner. This means that they can find good solutions even if the problem
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is noisy or even uncertain; note that the Wi-Fi environment is inherently noisy due to the
effects of propagation, interference and mobility of devices.

After detailing the RAW mechanism and discussing the related works in Section 2,
our proposed algorithm is described in Section 3, where the implementation details of
all the stages of a GA are discussed. As a second contribution, in Section 4 the GA’s
hyper parameter tuning is provided; that is, all the design choices are tested to obtain the
best performance of the GA. Once the algorithm is optimized at the end of Section 4, the
performance of our GA’s decisions is compared with other grouping strategies. Finally,
conclusions are provided and possible future works are discussed in Section 5.

The contributions of this paper are as follows:

1. To propose a genetic algorithm adapted for managing the grouping in IEEE 802.11ah
networks operating under the RAW mechanism;

2. To provide the tuning and validation of GA parameters (including all the GA phases)
to obtain the best performance of the algorithm;

3. To propose a fitness function that reduces the computational time of the algorithm;
4. To evaluate the GA-based grouping proposal using a more constrained device, a

Raspberry Pi 3B+;
5. To provide a comparison of the proposed GA-based grouping strategy with other

grouping methods.

2. Related Work on RAW Station Grouping

This section first reviews the RAW mechanism and different seminal works that
provide a general perspective on its operation and performance. Then, the study focuses
on the literature related to the specific challenge of RAW grouping and, more precisely,
on those approaches seeking throughput and fairness improvements. We discuss their
limitations and how our solution addresses these shortcomings. We also highlight the
aspects of our proposed solution that are adopted from previous works.

The RAW mechanism is one of the most relevant new features included in the IEEE
802.11ah specification, and it is known to improve throughput, latency and energy efficiency
in dense networks [6]. With RAW, an IEEE 802.11ah AP limits the number of stations that
contend for the channel during a given time slot by splitting the airtime into different
intervals. Some of those intervals are assigned exclusively to a specific group of STAs (RAW
groups), while others can be used without restrictions, following IEEE 802.11’s traditional
CSMA/CA. Although, in a way, it preserves the original contention-based random access,
the RAW signifies a paradigm shift in the IEEE 802.11’s MAC, which moves towards a
more centralized access where the AP distributes airtime resources.

The AP decides how the airtime is shared among the associated STAs and announces
its distribution in the RAW parameter set (RPS) information element of Beacon frames. The
RPS specifies which STAs belong to which group (using STAs’ AID), the start time and the
duration of each RAW. Note that a RAW is further divided into one or more fixed-length
slots, and that STAs assigned to a given RAW group are evenly distributed over those slots.
The RPS also includes the number of slots and the slot duration of each RAW. Consequently,
STAs use contention outside RAWs, and also to access through their assigned RAW slot,
which is shared with a reduced number of STAs (if any). Those two types of access follow
independent backoff rules (i.e., a backoff function used inside the assigned RAW slot, and
another backoff function used outside the slot). During other groups’ RAWs, STAs can
remain in a power saving state. Figure 1 depicts a possible distribution of the airtime
between two consecutive Beacon frames containing R RAW groups, and wherein each
RAW r is divided into kr equally-sized slots.
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The tuning of the RAW configuration, and more precisely, the STA grouping problem,
has received the attention of several research works. In [7], authors thoroughly survey
the published works on STA grouping, categorizing the different proposals based on their
optimization goals. Although the algorithm proposed in this paper would fall within
the categories of throughput-oriented and fairness-oriented algorithms, it is worth noting
that a GA can be easily adapted to optimize any other metric, provided that the fitness
function (cf. Section 3.1) reliably reflects the impact of the decided RAW configuration on
the targeted metric.

With the goal of improving channel utilization (and thus, capacity), the work in [8]
proposes a STA grouping scheme seeking load balancing among RAW groups. This
approach is based on integer programming and works under the assumption that the
number of RAW groups is fixed and that the AP knows the STAs’ offered traffic behavior.
In [9], the same authors refine their proposal and further derive a regression-based model to
estimate the contention success probability. Knowing STAs’ traffic in advance is not trivial,
but there are different mechanisms that would allow the AP to obtain a good estimation.
For example, STAs could describe their traffic needs using IEEE 802.11’s Traffic Specification
(TSPEC) element. In [10], authors propose the Traffic-Aware RAW Optimization Algorithm
(TAROA), which tries to predict the inter-packet time of STAs by analyzing that STA’s
past transmissions. In [11], they proposed a more accurate traffic estimation method by
exploiting the “More Data” flag of the IEEE 802.11’s header for the Enhanced-TAROA
(E-TAROA). The authors in [12] also predict packet transmissions, in this case by averaging
the observed inter-packet times of active STAs and assuming a periodic behavior. They
also define a contention phase (for any STA’s first transmission) and a reservation phase,
where STAs expected to have pending frames transmit without contention. These works
support our assumption that the AP could know the set of STAs with pending traffic for
the following Beacon interval.

In [13], authors argue that in order to improve throughput, the duration of RAW slots
should be set as a function of the number of STAs in the group. Although their idea to set
different durations for the time slots in a RAW is not compatible with the IEEE 802.11ah
specification (slots within a RAW must have the same duration), a similar approach is
followed by configuring one-slot RAWs, the duration of which is proportional to the
number of assigned STAs.

Note that most of the prior work is limited to homogeneous STAs, that is, all STAs use
the same MCS, same transmitted power, and even the same packet size. In practice, STAs
are located at different distances from the AP and, hence, they will use different MCS (i.e.,
different PHY rate). The coexistence of STAs using different MCS impacts fairness and the
available throughput [14] and should therefore be considered when configuring the RAW.
In [15,16], authors deal with those heterogeneous scenarios by grouping STAs with the
same PHY rate. However, as discussed in Section 4.1, mixing STAs with different PHY rates
in a particular way can result in a better fairness and throughput. With a focus on fairness,
authors in [17] group STAs according to their traffic profile (inter-packet interval and packet
size) and propose a dynamic configuration of STAs’ contention window, which would
require changes to the standard backoff mechanism. Another work seeking to maximize
throughput and fairness, but also considering hidden nodes is presented in [18], wherein
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the authors propose an Ant Colony algorithm to solve a Max-Min fairness optimization.
As with [8], the main drawback of this approach is that the number of groups R is fixed; we
argue that R is one of the key parameters of the RAW configuration (cf. Section 4.1).

All in all, compared to other capacity and/or fairness driven approaches found in
the literature, we argue that the GA-based solution proposed in this paper has several key
advantages. It avoids the limiting assumption of a fixed number of groups, and supports
the presence of heterogeneous (in terms of PHY rate and packet size) STAs, while staying
fully IEEE 802.11ah compliant. On the other hand, our solution assumes that the scheduler
knows which STAs will require uplink resources in the next interval, an assumption that
has been supported by previous research in this field.

3. Problem Definition and Methodology: A Grouping Strategy for IEEE 802.11ah
Based on a Genetic Algorithm

In this section, our proposal of a grouping strategy based on a genetic algorithm is pre-
sented. We introduce the basics of the genetic algorithm used in this research work, describe
the different phases involved in the algorithm, and discuss the alternatives considered in
this evaluation.

Based on Charles Darwin’s theory of natural evolution, genetic algorithms are heuristic
search algorithms that try to reflect the process of the natural evolution, where the fittest
individuals are selected out of the population for reproduction, and produce the offspring
of the next generation.

The process starts with the selection of the fittest individuals from an initial population.
These individuals will produce offspring, and the characteristics of the parents will be
inherited by the next generation. This essence can be applied in a station grouping strategy,
where a set of initial individuals (a set of groups of stations) will be genetically evolved in
order to select the best set according to given criteria. A genetic algorithm includes five
phases, i.e., initial population, fitness function, selection of parents, crossover function, and
mutation phase, which are detailed in the following.

The GA must start with an initial set of P individuals called initial population. Each
individual represents a valid solution to the problem to be solved, and is characterized by
a set of G parameters, known as genes. In similitude with Darwin’s theory, an individual
is also named chromosome. In our case, each of the P chromosomes (Ci) of a population
consists of a set of G IEEE 802.11ah STAs, and each STA is assigned to one of R possible
groups. The group assigned to each STA represents a gene, as depicted in Figure 2.
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Next, the fitness function (Phase 2) is applied to each chromosome Ci of the population,
which is in charge of evaluating how fit an individual is, i.e., its ability to compete with
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other individuals. The output of this method is a fitness score for each individual, and
determines the chances of an individual to be selected for reproduction. The larger the
value, the fitter the individual and, thus, the higher the probability of the individual to be
chosen for offspring production. The fitness function defined for our grouping strategy is
presented in Section 3.1 as a function of the expected system throughput and fairness.

Another function will choose the fittest individuals and use their genes to produce
a new population (Phase 3). Two or more pairs of individuals (known as parents) are
selected based on their fitness scores to breed the new individuals that will populate the
next generation. There are different methods available for parent selection. Section 3.2
discusses the different methods considered in the evaluation.

The crossover function (Phase 4) defines the method for parent reproduction, i.e., the
form in which the genes of each parent are selected for producing the next generation
of individuals. Again, there are different crossover functions. The methods used in the
present evaluation are discussed in Section 3.3.

Finally, in the mutation phase (Phase 5), some of the genes of the newly created
offspring may be altered. Mutation is needed to keep a healthy diversity in the population,
and to prevent a premature convergence of the algorithm due to a local optimum. As in the
case of parent selection and crossover function, there are different alternative mechanisms
for applying mutation; they are discussed in Section 3.4.

When run, the GA loops between Phases 2 and 5. The algorithm terminates when the
population has converged, i.e., the generated offspring is not significantly different from
the previous generation. Alternatively, a stop condition may be set to stop the algorithm at
a specific time or event. Algorithm 1 summarizes the GA working procedure.

Algorithm 1. GA working procedure.

Initialize population;
Apply fitness function for population evaluation;
Generation = 0;

while termination criterion is not satisfied {
Select good individuals through parent selection function;
Parent reproduction through crossover function;
Apply mutation function;
Apply fitness function for population evaluation;
Generation = Generation + 1;
}

return the best individual shown during the evolution;

3.1. Fitness Value Computation

Targeting an efficient use of the spectrum, the fitness value used in the proposed GA
considers the system’s potential throughput. As a starting point, the throughput compu-
tation given by the Bianchi model for multi-rate and heterogeneous environments [19]
adapted to IEEE 802.11ah PHY and MAC [20] is used. This model concludes with the
following expression for total system throughput, S:

S =
R

∑
r=1

dr ∗ ∑kr
k=1

Sslot_k
kr

dtotal
(1)

where R is the number of RAW groups, each of them having kr slots, dr corresponds to the
duration of the rth RAW group, and dtotal represents the total duration of all R RAW groups
together. Sslot_k stands for the throughput corresponding to the kth slot; its computation
is taken from the Bianchi model for multi-rate environments [19]. The reader is referred
to [20] for further detail on the computation of S.
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However, a fitness function focused solely on maximizing throughput would end
up marginalizing slow STAs, which will have less opportunities to transmit their data
(e.g., STAs receiving a poor signal from the AP and, hence, using a more reliable, but
slower MCS). To prevent the possible starvation of slow STAs, a measure of fairness is also
considered within the proposed fitness function. The fairness metric determines whether
STAs are receiving a fair share of system resources. In our fitness function, the well-known
Jain Fairness index [21] is used for fairness calculation.

In this way, the fitness value (V) is obtained as the combination of the total system
throughput (S) and the fairness (F), i.e., V = S ∗ F.

3.2. Parent Selection

There are different functions in the literature for the selection of parents. In the follow-
ing, the most relevant ones are presented, which have been considered for our evaluation.
The Fitness Proportionate Selection (FPS) method, also known as roulette wheel selection [22],
consists in choosing two parents among all the individuals based on a probability, pro-
portional to their fitness value. Each possible individual is assigned a slice of the wheel
of a size based on its corresponding fitness value. Then, a random selection is done for
choosing each of the two parents (i.e., the roulette wheel spins twice). This method includes
a variation called Stochastic Universal Sampling (SUS) [23], which chooses the two parents
with a single spin of the wheel; one parent is randomly chosen following the aforemen-
tioned FPS approach, and the other is the diametrically opposite element of the wheel. The
advantage of SUS is the lower computational cost with respect to FPS. On the other hand,
there is the Rank Based Selection (RBS) method [24], which consists in performing a ranking
with all the individuals based on their corresponding fitness value. Then, a probability
value is given to each individual considering its location in the ranking, i.e., the higher the
ranking position, the larger the probability value assigned. Afterwards, a random selection
is performed for choosing each of the parents. Typically, two parents are considered for
producing the next generation of individuals, following any of the methods mentioned
above. However, more than two parents can be selected. As discussed in reference [25],
using more than two parents does not clearly improve the results, while it leads to larger
computational costs. Finally, we consider a method by which all P individuals participate
in the breeding, thus providing each individual a number of genes to the new offspring,
proportional to its fitness value.

3.3. Crossover Function

With regards to crossover functions, several alternatives can be found in the literature,
describing different ways of mixing the parents’ genes to create new offspring. In the
following, the methods considered in our evaluation are described. The one-point crossover
or single-point crossover [26] consists in choosing randomly a crossover point on both parents.
This can be implemented by randomly selecting a gene number as the crossover point;
the genes to the left of the crossover point (i.e., smaller gene number) on one parent are
combined with the genes to the right of the point on the other parent. The multi-point
crossover [26] extends the previous approach by using two crossover points randomly
chosen over both parents. The genes in between the two crossover points are swapped
between the parents in order to create the offspring. This method can be extended to
more than two crossover points. With the ring crossover [27], the genes of both parents
are concatenated one after the other, and then organized in the form of a ring or circular
buffer (i.e., the last gene of the second parent is followed by the first gene of the first
parent). Next, the ring is cut in half at a random point (cutting point). Each half shows a
different combination of its parents’ genes and constitutes a new offspring. In the uniform
crossover [26], each gene is chosen from either parent with equal probability, i.e., 50%.
Moreover, it is also common to preserve the best individuals of one generation and pass
them on to the next. The number of individuals that preserve their genes after a new
generation is born is managed by another configurable parameter called pressure.
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3.4. Mutation Function

The mutation step is applied over the new generation of individuals that are not
under the pressure parameter. As with previous phases, there are several options in the
literature for implementing the mutation phase. In this section, the most relevant ones
are exposed, which have been considered in this evaluation. The Partial Shuffle Mutation
(PSM) [28] mutates or preserves each gene of an individual based on a predefined mutation
probability. A variation of this method limits the mutation to only one randomly selected
gene. Following the Reverse Sequence Mutation (RSM) [28], two points are randomly chosen
on the individual. The segment of genes between the two points is swapped based on a
predefined mutation probability. Finally, the Swap Mutation (SM) [29] consists in swapping
two genes of the individual, chosen at random. Again, the swapping action is performed
under a predefined mutation probability.

4. Evaluation

For our evaluation, we have developed the proposed GA-based grouping strategy
algorithm for IEEE 802.11ah using Python. In this section, we present the tuning of the
GA parameters to get the best fitness result in a reduced amount of time. We use a PC
with Intel Core i9 at 3.30 GHz and 62 GB of RAM. After completing the validation of the
algorithm, we provide results using a more constrained device, a Raspberry Pi 3B+, that
can act as AP, and run the grouping mechanism proposed in this paper.

4.1. Initial GA Parameter Setting

First, the initial tuning and validation of the GA is performed, considering a sample
scenario with 33 STAs and wherein all 11 MCS are in use (MCS 0 to MCS 10 for the 1 MHz
PHY IEEE 802.11ah), that is, three STAs per MCS. The maximum possible number of RAW
groups R is set to eight. All the individuals are considered as parents, and each individual
provides a number of genes to the new offspring proportional to its fitness value. In
Section 4.3.1, a detailed evaluation on parent selection methods is shown. Moreover, in this
initial parameter setting, a mutation method is considered, in which mutation is performed
only on one randomly selected gene of an individual (i.e., PSM mutation applied to one
gene), with a mutation probability of 0.2. Later, in Section 4.3.3, the study on mutation
methods is presented in depth. The GA is stopped if all the individuals of the population
have the same genes, or after 200 loops, if the first condition is not met.

The first parameter to evaluate is P, the number of individuals that form the population.
Populations built of 5, 10, 15, 20, 25, 30 and 50 random individuals are considered. The
average fitness value of the best individual in the final population over 10 simulations,
and the average computational time, can be observed in Figures 3 and 4, respectively, vs.
different pressure values. The results show that an increase in the number of individuals
leads to a higher fitness value, but from 20 individuals on, the improvement is slowed down,
while the computational time experiences an important rise. In this way, the configuration
with P = 20 individuals is identified as the most convenient, since computational time is
not severely compromised, and the fitness value does not show an important reduction in
comparison with the results observed for a larger P.
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With the number of individuals set to 20, the next parameter considered is the pressure,
with values comprised between 2 and 18. Note that the pressure parameter determines
the number of individuals that survive to the next generation preserving their genes
intact. Figure 5a,b presents the average fitness value of the best individual and the average
computational time, respectively. Note that both the largest and smallest pressure values
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show high computational time. With large pressure values, a high portion of the new
population is kept from the previous one, and thus the algorithm needs more iterations to
evolve the population, and concludes with a worse fitness value. On the other hand, a small
pressure is helpful to achieve a better fitness but at the cost of longer computational times.
A pressure value of 8 is chosen, since it shows a good balance between the two metrics.
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Next, the adjustment of the stop condition is carried out, with the objective of reducing
the computational time of the GA. Unless explicitly mentioned otherwise, in the following,
the aforementioned configuration parameters are always considered. Figure 6 shows the
evolution of the fitness value when the average over the best individual is considered
(Figure 6a), and when the average over all the individuals is taken into account (Figure 6b).
After around 80 iterations, the curve starts to flatten, and the improvement is very residual.
In consequence, a new stop condition is set up with the GA running for, at least, 80 iterations,
after which, the level of improvement between one generation and the next is compared: if
for ten non-consecutive iterations the fitness value does not improve 0.05% or more, the
GA is terminated. Figure 7 shows the performance for the new stop condition, where it
can be observed that GA stops after 120 iterations, with the corresponding reduction in the
computational time.
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Following, the evaluation is focused on the number of RAW groups. With this objective,
scenarios with 2, 4, 8, 12, 16, 20 and 30 RAW groups are considered. From Figure 8a,b, it
is observed that using a large number of RAW groups, between 20 and 30, better fitness
values with reduced computational time are obtained. However, a large number of groups
increased the Beacon overhead. Moreover, following the conclusions from reference [6],
it also leads to stations experiencing larger latencies between transmissions. Because of
the aforementioned reasons, a large number of RAW groups is avoided, and the use of
12 groups is chosen as the most suitable option, i.e., it offers a good tradeoff between fitness
value and Beacon overhead and latency.
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Finally, the initial population is studied with the objective of finding an initial configu-
ration that maximizes the final fitness value. So far, all the individuals building the initial
population have been generated randomly. Thus, the usage of a fixed initial individual is
evaluated. In order to identify this individual, the result of 20 independent runs of the ge-
netic algorithm using an initial random population is represented through the heat map of
Figure 9. The horizontal axis represents the 33 stations of the scenario, ranked in increased
PHY rate order (i.e., STAs 1 to 3 use the slowest MCS, and STAs 31 to 33 the fastest). The
vertical axis shows the RAW group identifier, where R = 12. The heat map represents the
frequency (out of 20 runs) with which each station has been assigned to a given RAW group.
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It can be observed, that the algorithm groups the stations differently depending on their
rate. It is especially notorious how the GA tends to isolate the slowest stations, which are
concentrated in the first three groups. Stations with a faster rate are spread over different
RAW groups. In other words, according to the GA, the most suitable grouping to maximize
throughput and fairness requires that some groups concentrate a few very slow STAs, while
other groups contain a larger number of mixed faster stations. Following these conclusions,
the genes composing the fixed initial individual are chosen, that is, genes are initially set
according to the group assignments most frequently observed, as represented in Figure 9.
In order to evaluate the performance of the GA using a fixed initial individual, populations
of P = 10, 15 and 20 individuals are considered, in scenarios with G = 33 and 55 stations
(or genes per individual), and with 3 and 5 operating STA per MCS, respectively, and a
scenario where the MCS is set at random. The average fitness value of the best individual,
and the average computational time, are presented in Figure 10a,b, respectively, for the
cases of Table 1. When an initial fixed individual is used, the average fitness value of the
best individual and of all the individuals in the final population improves for populations
of 15 and 20 individuals. In the case of P = 20, however, the increase in computational time
is notorious.
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Table 1. Alternatives for initial population.

Cases Description

X RNDSTA FIX Y IND X STAs with random MCS. Population of Y individuals, one
is fixed.

X RNDSTA RND X STAs with random MCS. Random population of
20 individuals.

X STA FIX Y IND X STAs with X/11 STAs per MCS (MCS 0 to 11). Population
of Y individuals, one is fixed.

X STA RND X STAs with X/11 STAs per MCS (MCS 0 to 11). Random
population of 20 individuals.

Based on the analysis presented in this section, hereafter, an initial population com-
posed of 15 individuals is considered, one of them fixed according to the frequencies
observed in Figure 9. Moreover, unless mentioned otherwise, scenarios contain 33 STAs
configured with a random MCS, a maximum of 12 RAW groups, a pressure value of 8, and
a PSM mutation applied to one gene with mutation probability of 0.2.

4.2. New method for Fitness Computation

Through the evaluation performed in previous Section 4.1, high computational time
(some thousands of seconds) is observed for the convergence of the GA. The method
employed for throughput calculation, which is required for obtaining the fitness value (cf.
Section 3.1), accounts for most of the computational time (around 98% of the execution
time is used by the fitness function). In this section, an alternative method for throughput
calculation is proposed, with the objective of reducing the complexity of the fitness function
and, thus, the complexity and computational time of the algorithm.

As discussed in Section 3.1, the Bianchi model for multi-rate environments [19] adapted
to IEEE 802.11ah PHY and MAC [20] is employed for throughput estimation. The adapted
Bianchi’s model provides an equation system to obtain a STA’s transmission probability
(from which the collision probability Pc is obtained as a function of the number of stations
N per RAW slot, Pc (N)), which is solved by means of numerical methods thus entailing
high complexity. The new proposal for throughput computation simplifies that process
by pre-computing the values of the collision probability, and hard-code them within the
algorithm. The average number of transmissions of a frame (Rtx in Equation (2)) is obtained
directly applying pre-computed Pc (N), being Rtx then employed for computing the average
time spent in backoff TBORtx during busy periods within a RAW slot (Tcycle in Equation (3)).
TBORtx computation is detailed in [30]. Finally, the corresponding throughput Sslot_k for
the slot k follows Equation (4), the output of which is used in Equation (1) for total system
throughput S computation:

Rtx =
1

1 − Pc(N)
(2)

Tcycle =TBORtx + N ∗ (DIFS + SIFS) + ∑N
j=1 Tdata_j + ∑N

j=1 Tack_j (3)

Sslot_k =

(
1 − Pc(N)

)
∑N

j=1 Lj ∗ 8

Tcycle
(4)

where DIFS and SIFS correspond to standard values included in the IEEE 802.11ah spec-
ification [1], Tdata_j stands for the time involved in the transmission of a data frame sent
by station j, Tack_j for the duration of an ACK frame transmitted by station j, and Lj for the
payload size in bytes of data frames generated by station j.

The fitness with the new computation of throughput is included in the GA, and the
algorithm performance is evaluated in terms of convergence time and fitness, with respect
to the results observed employing the original fitness calculation. The same scenarios
have been used with the original and the new function, and the final population has
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been obtained after convergence of the GA. Then, the final population in both cases has
been evaluated using the original fitness function. The difference of the fitness (per best
individual, and per final population) achieved using the new function, compared to the
original function is shown in Table 2 for different scenarios. The reduction observed is
between 2% and 3%, in the worst case, which results in an acceptable magnitude. On the
other hand, Table 3 presents performance with regard to the computational time, which
certifies the reduced complexity of the algorithm using the new fitness function proposed.
In this case, a reduction of around 10,000 times is observed for the computational time,
when using the new fitness function, which more than compensates for the small decrease
in final fitness metrics. Accordingly, hereafter, the new fitness computation method is
adopted in the proposed GA-based grouping strategy.

Table 2. Reduction of accuracy for the average fitness value of the best individual, and of all the
individuals, using the new fitness function.

Cases Diff. Best Individual (%) Diff. All Individuals (%)

33 STA RND 20 IND 1.76 2.11
33 STA FIX 15 IND 1.17 1.20

33 RNDSTA RND 20 IND 2.15 2.33
33 RNDSTA FIX 15 IND 2.44 2.50

55 STA RND 20 IND 0.83 0.57
55 STA FIX 15 IND 0.32 0.39

55 RNDSTA FIX 15 IND 0.95 0.94

Table 3. Comparison for the computational time (s) between the original and the new fitness function.

Cases Original (s) New (s)

33 STA RND 20 IND 4050.445 0.684
33 STA FIX 15 IND 4666.563 0.409

33 RNDSTA RND 20 IND 4186.109 0.682
33 RNDSTA FIX 15 IND 2898.486 0.400

55 STA RND 20 IND 6288.776 1.009
55 STA FIX 15 IND 4666.563 0.616

55 RNDSTA FIX 15 IND 4353.809 0.640

4.3. Tuning of Parent Selection, Crossover and Mutation Methods

In this section, a comparison of different alternatives is provided with regard to parent
selection, crossover and mutation methods.

4.3.1. Parent Selection

First, the evaluation for different parent selection mechanisms is shown (cf. Section 3.2).
Results for the average fitness value of the best individual, the average fitness value of all
the individuals in the final population, and the average computational time, are presented
in Figure 11a,b and Figure 12, respectively. Although a slight decrease in the fitness
value can be observed (around 0.4%) for FPS, SUS and RBS methods with respect to
the one used originally (all the individuals are considered parents, thus providing each
individual a number of genes to the new offspring proportional to its fitness value), there
is a significant decrease in the computational time (around 20%). Among FPS, SUS and
RBS, the latter shows the lowest computational time, thus it has been chosen as the parent
selection method.
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4.3.2. Crossover Evaluation

Next, the analysis of crossover alternatives is performed (cf. Section 3.3). Again,
evaluation results are shown for the average fitness value of the best individual, of all the
individuals in the final population, and the average computational time (Figure 13a,b and
Figure 14, respectively). The different methods are compared with the original mechanism
used, in which all the individuals provide certain number of genes to the new offspring
proportional to their corresponding fitness value. The ring crossover method shows the
worst performance for both fitness and computational time performance. On the other hand,
the single-point, multi-point and uniform crossover functions only present a slight decrease in
the fitness value (around 0.5%) with respect to the original method, whereas the reduction
in the computational time is remarkable (around 23%). Among the three alternatives, the
single-point method is chosen, which obtains the lowest computational time.
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4.3.3. Mutation Evaluation

Finally, the evaluation of different mutation functions is provided (cf. Section 3.4),
which are compared with the method originally employed, where mutation is performed
only on one gene randomly selected per individual. Each mutation alternative is evaluated,
i.e., PSM, SM and RSM methods, for different mutation probability values, and evaluation
results are presented for the average fitness value of the best individual and the average
computational time. The PSM evaluation is shown in Figures 15 and 16. Employing a
mutation probability of 0.3, the fitness value improves around 3% over the result obtained
with the original method. However, computational time experiences a high increase.
Thus, PSM is discarded as mutation alternative. Secondly, results are provided for SM in
Figures 17 and 18. Various lengths are considered for the segment of genes; recall that,
employing SM, two genes of the individual inside the segment are randomly chosen and
swapped. The configuration showing the best performance corresponds to a segment length
of 5 and a mutation probability of 0.25. In this case, the fitness value is slightly reduced
with respect to the original method, but the computational time obtains a non-negligible
reduction of around 6%.

Lastly, results are presented for RSM in Figures 19 and 20. Again, different lengths
for the segment of genes to be swapped have been considered; remind that RSM consists
of randomly choosing two points on the individual, and swapping the segment of genes
between these two points. It can be observed that the configuration with a segment length
of 5 and mutation probability of 0.21 leads to a better fitness and computational time
performance, thus improving previous SM results. In this way, the RSM method is selected
among the three alternatives.
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4.4. Test over Raspberry Pi

After completing the validation of the genetic algorithm, results are provided using
a more constrained device, a Raspberry Pi 3B+ (1.4 GHz processor and 1 GB of RAM),
running the grouping mechanism proposed in this paper. Performance results with regard
to computational time are summarized in Table 4. The important improvement achieved
in complexity by the introduction of the new method for fitness computation discussed
in Section 4.2 is confirmed. With the new method, computational time is reduced from
around 9.5 h to 7.7 s. Secondly, the selection of the new crossover function (single-point
method) provides a non-negligible reduction from 7.5 s to 5.6 s. Finally, with the mutation
method selected (RSM), computational time is reduced even further to 5.1 s. This time
value allows the usage of the GA and grouping mechanism proposed in a real and dynamic
environment, where the algorithm needs to be run in an AP regularly, without disturbing
the current functions of the AP.

Table 4. Computational time results using a Raspberry Pi 3B+.

Fitness Crossover Mutation Time (s)

Original Original Original 70,261.848
New (Section 4.2) Original Original 7.737
New (Section 4.2) Original RSM 7.486
New (Section 4.2) Single-Point Original 5.621
New (Section 4.2) Single-Point RSM 5.145

4.5. Grouping Strategy Comparison

To complete the evaluation section, a comparison of the GA-based grouping strategy
with other grouping methods is provided. A large scenario composed of 1800 STAs is
considered, each one operating under a duty cycle of 2.8% [31]. The Beacon interval is of
4096 ms [32], and a total simulation time of 2 min is considered. The GA-based strategy is
compared against three strategies commonly used as benchmark in the related literature [7]:
(i) STAs are randomly distributed among groups; (ii) STAs are grouped based on respective
MCS similitude (similar to [15,16]); and (iii) pure CSMA/CA-based contention (i.e., without
RAW). Figures 21 and 22 show throughput and fairness performance, respectively, for three
different MCS random distribution approaches among the STAs composing the scenario:
(i) MCSs are uniformly distributed, (ii) MCSs are distributed with 50% probability of being
the slowest MCS (i.e., MCS 10), and the remaining 50% is assigned any MCS from MCS 0 to
MCS 9 at random, following a uniform distribution, and (iii) MCSs are distributed with
50% probability of being the fastest MCS (i.e., MCS 9), and 50% probability of being any of
the remaining MCSs (uniformly distributed).

Results show that the GA-based grouping strategy provides a good trade-off between
throughput and fairness performance in front of the other approaches. Obviously, when
no grouping strategy is applied, fairness is maximized (15.98% above GA-based strategy,
on average), but at the cost of minimizing overall throughput (41.04% below GA-based
strategy, on average). The approach in which STAs are randomly distributed among
groups does not show a good balance between throughput and fairness performances
either (on average, fairness is 7.30% above GA-based strategy, throughput is 13.94% below
GA-based strategy). On the other hand, the solution with STAs grouped based on their
MCS similitude, results in unfair behavior for scenarios including a large amount of slow
STAs (cf. Figure 22b) (on average, fairness is 8.54% below GA-based strategy).
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Figure 21. Throughput performance for scenario with STAs with (a) MCSs uniformly distributed, 
(b) MCSs distributed with 50% probability of being the slowest MCS (i.e., MCS 10), and 50% prob-
ability of being any of the remaining MCSs (MCS 0 to MCS 9), and (c) MCSs distributed with 50%
probability of being the fastest MCS (i.e., MCS 9), and 50% probability of being any of the remaining 
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Figure 21. Throughput performance for scenario with STAs with (a) MCSs uniformly distributed,
(b) MCSs distributed with 50% probability of being the slowest MCS (i.e., MCS 10), and 50% prob-
ability of being any of the remaining MCSs (MCS 0 to MCS 9), and (c) MCSs distributed with
50% probability of being the fastest MCS (i.e., MCS 9), and 50% probability of being any of the
remaining MCSs.
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With the new fitness calculation, we provide a comparison of different alternatives with 
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choose the RBS method, as it presents a significant decrease in the computational time 
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Figure 22. Fairness performance for scenario with STAs with (a) MCSs uniformly distributed,
(b) MCSs distributed with 50% probability of being the slowest MCS (i.e., MCS 10), and 50% prob-
ability of being any of the remaining MCSs (MCS 0 to MCS 9), and (c) MCSs distributed with
50% probability of being the fastest MCS (i.e., MCS 9), and 50% probability of being any of the
remaining MCSs.
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5. Conclusions and Future Work

In this paper, we have proposed a grouping strategy method for IEEE 802.11ah net-
works based on the usage of a genetic algorithm. In the first place, we validate the proposal
and tune the GA parameters to get the best fitness result in a reduced amount of time. We
choose an initial population composed of P = 15 individuals (14 randomly generated, one
preset according to previous experiences), and a maximum number of RAW groups of
R = 12. As the computational time required for the convergence of the GA was high, we
propose an alternative method for throughput calculation, thus, considerably reducing
the complexity and the computational time of the algorithm (a reduction of around 10,000
times), while only a decrease of around 2% is observed in the fitness value. With the
new fitness calculation, we provide a comparison of different alternatives with regard
to parent selection, crossover and mutation methods. For parent selection, we choose
the RBS method, as it presents a significant decrease in the computational time (around
20%). With respect to crossover, the single-point choice provides a further reduction of
around 23%. For mutation, the RSM method is selected, employing a segment length of
5 and a mutation probability of 0.21, as it offers better fitness and computational time
performance. We also use a more constrained device to run the GA, a Raspberry Pi 3B+,
where the grouping method converges in around 5 s. Finally, we conclude the evaluation
with a comparison of the GA-based grouping strategy with other grouping approaches,
thus showing that the proposed mechanism provides a good trade-off between throughput
and fairness performance.

As part of our future work, we plan to analyze additional mechanisms for reducing
the computational time of the algorithm. We also aim to study the usage of adaptive
mutation algorithms for the mutation phase, which we believe is an alternative to explore
for obtaining improved fitness and computational time performance.
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