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Abstract: Deep learning technology has developed rapidly in recent years and has been successfully
applied in many fields, including face recognition. Face recognition is used in many scenarios nowa-
days, including security control systems, access control management, health and safety management,
employee attendance monitoring, automatic border control, and face scan payment. However, deep
learning models are vulnerable to adversarial attacks conducted by perturbing probe images to
generate adversarial examples, or using adversarial patches to generate well-designed perturbations
in specific regions of the image. Most previous studies on adversarial attacks assume that the attacker
hacks into the system and knows the architecture and parameters behind the deep learning model. In
other words, the attacked model is a white box. However, this scenario is unrepresentative of most
real-world adversarial attacks. Consequently, the present study assumes the face recognition system
to be a black box, over which the attacker has no control. A Generative Adversarial Network method
is proposed for generating adversarial patches to carry out dodging and impersonation attacks on
the targeted face recognition system. The experimental results show that the proposed method yields
a higher attack success rate than previous works.

Keywords: deep learning; face recognition; adversarial attack; perturbation; adversarial examples;
adversarial patches; Generative Adversarial Network

1. Introduction

Face recognition technology has undergone significant advances in recent years
through the application of deep learning models. Meanwhile, the COVID-19 pandemic
has brought about many lifestyle changes, including a desire for non-contact business
opportunities wherever possible [1]. As a result, face recognition now plays a significant
role in improving security and convenience in all manner of fields and applications. For
example, face recognition is widely used throughout manufacturing and warehousing,
banking and financial insurance, smart offices, smart homes, retail, public transportation
and airports, medical scenes, schools and education institutions, hotels, and many other
service industries. MarketsandMarkets [2] estimated that the global output value of face
recognition would grow at an annual rate of 17.2% from 2020 onwards and would reach a
global market value of USD 13.87 billion in 2028. Thus, face recognition offers significant
business opportunities in the coming years and decades.

However, despite the many benefits of deep learning technology, it is not without
risk. For example, the authors in [3] showed that image classification systems built on deep
learning models can be easily attacked by adding a small perturbation to the original image
to form an adversarial example, which is subsequently misclassified. Similar misclassifi-
cation errors can be induced by applying adversarial patches [4] to the original image to
produce local perturbations. In such cases, the reliability of the image classification system
is significantly impaired. Consequently, the problem of improving the robustness of deep

Sensors 2023, 23, 853. https://doi.org/10.3390/s23020853 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020853
https://doi.org/10.3390/s23020853
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7996-4184
https://orcid.org/0000-0003-0222-2339
https://orcid.org/0000-0001-9751-2448
https://doi.org/10.3390/s23020853
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020853?type=check_update&version=2


Sensors 2023, 23, 853 2 of 29

learning models, and the applications which rely on these models (face recognition systems,
for example), is a crucial concern in real-world environments.

Based on the above issue, we propose a method that can make the face recognition
model misclassified, and the method can achieve attack effectiveness in the physical world
as well. Moreover, we also explore adding adversarial images to the face recognition model
as a training dataset to improve the model’s robustness.

Adversarial attacks against deep learning models can be divided into many types. For
example, depending on the adversarial capacity, they can be classified as either white-box
or black-box attacks, where in the former case, the attacker knows the parameters and
architecture of the deep learning model, whereas in the latter case, they do not. Black-box
attacks are thus generally more challenging than white box attacks. A second class of attack
is that of poisoning attacks, in which adversarial images are injected into the model during
the training stage in order to affect the learning performance; or input or evasion attacks, in
which the input images are deliberately perturbed in order to produce misclassification
errors. Depending on the space in which they are launched, adversarial attacks can also be
classified as either physical world attacks [5,6] or digital world attacks. Finally, depending
on whether or not the attack has a specific target, adversarial attacks can be categorized as
either targeted attacks or non-targeted attacks, where such attacks are generally referred
to as dodging attacks or impersonation attacks, respectively, in the face recognition field.
Dodging attacks aim to cause the input face image to be identified as any other individual
in the face database. By contrast, impersonation attacks aim to cause the individual to be
identified as a specific person (i.e., the attack target) in the database.

However, for the attack method, Bhambri et al. [7] surveyed the relevant literature, in
which Deb et al. [8] proposed a GAN-based [9] adversarial attack method that generates
perturbations for the human face to achieve an attack in a digital environment. That
perturbation cannot be examined with the human eye, nor can physical cameras. Therefore,
based on this method, we can conduct an attack on a face recognition system in the physical
world by generating perturbation for the glasses of a specific person. When an attacker
wears attack glasses to attack a face recognition system, it can cause misidentification.

As aforementioned, the majority of face recognition systems are built in the real world,
the present study focuses on the challenging problem of black-box input attacks using
GAN-based adversarial patches in the physical world. For the sake of robustness, the study
considers both dodging attacks and impersonation attacks. In short, our contributions are
summarized as follows.

• We propose the adversarial patches method for face recognition attacks applicable
to the physical world. It does not require knowledge of the parameters of the deep
learning model (black box) to achieve attack effectiveness.

• For the reliability of our approach, we performed a comprehensive attack test for all
one-to-one combinations. Based on testing quantities, the number of subjects and
the number of testing by each subject is higher than the previous literature, which
results show that the success rate of dodging attacks is 57.99%, and the impersonation
attack success rate is 46.78% in the digital world. The success rate of dodging attacks
is 81.77%, impersonation attack success rate reached 63.85% in the physical world.

• The proposed attack method utilizes the adversarial patch, which occupies only a small
area of the face, instead of the adversarial example, which occupies the whole face.
Therefore, the attacker can adjust the noise region according to the requirements. In our
case, we hide the adversarial perturbation in the glasses to achieve the effectiveness of
being judged as someone else. As a result, it is difficult for the layperson to know our
attack intent and, therefore, poses a significant threat to the face recognition system.

• Based on the method proposed in this study, we found that the number of people with
two face databases of different numbers of people, the number of people will further
affect the attack’s success rate. The attack success rate increases when the number of
people in the database increases. In short, the chances of being hacked increase.
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• We propose a novel defense mechanism to counter the GAN-based adversarial patch
method. The results show that the proposed mechanism can detect almost all dodging
attacks and more than half of the impersonation attacks with high defense effectiveness.

• We explored the relationship between thresholds and attack success and proved that
both are relative. In addition, we attack different models by the no-box attack, showing
that our attack method is transferable.

2. Background
2.1. Face Recognition

Various face recognition methods have been proposed in the past, such as SVM-based,
subspace learning-based, and deep-learning-based methods. We summarize and compare
the previous works in Table 1.

Table 1. Previous works of face recognition.

Previous Works Database Method Accuracy Year

[10] Tufts face MvRDTSVM 91.55% 2022
MvFRDTSVM 88.82 % 2022

[11] AT&T face
DWT + PCA + SVM 96% 2018
DWT + LDA + SVM 96% 2018
DWT + ICA + SVM 94.5% 2018

[12] PubFig83 CSV-DML 84.6% 2022

[13] LFW DeepFace-ensemble 97.35% 2014

[14] LFW Siamese Network
(ZFNet + Inception-v1) 99.63% 2015

[15] VGGFace2 ResNet-50 99.6% 2018

[16] LFW LightCNN-v29 98.98% 2020

[17] VGGFace2-FP PDA 95.32% 2020

[18] VGGFace2-FP HOG + Autoencoders 99.60% 2017

[19] CASIA
NIR-VIS2.0 CpGAN 96.63% 2020

[20] LFW FI-GAN 99.6% 2020

[21] IJB-A DAC 0.976 ± 0.01% 2020

[22] YTF ADRL 96.52 ± 0.54% 2017

In many classification issues, the samples of one class are usually surrounded by
the samples of the other classes. To address this issue, Ye et al. [10] proposed multiview
robust double-sided twin SVM(MvRDTSVM) and a fast version of MvRDTSVM (named
MvFRDTSVM). In the Tufts face database, MvRDTSVM and MvFRDTSVM achieved an
accuracy of 91.55% and 88.82%, respectively. The previous method used in the two classifi-
cation problems is not suited for face recognition that has many people. In general, face
recognition algorithms consist of three steps: pre-processing images, feature extraction,
and face classification. Lahaw et al. [11] proposed combining Two Dimensional Discrete
Wavelet Transform (2D-DWT), which can capture localized information of images, with
Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), or Independent
Component Analysis (ICA) to extract face feature. Finally, the SVM algorithm combined
with the 2D-DWT method has led to the increase of the performance of PCA + SVM,
LDA + SVM, and ICA + SVM from 90.24%, 93.9%, and 91% to 96%, 96%, and 94.5%, respec-
tively. Most of the existing distance metric-based(DML) methods are kNN DML methods.
The disadvantage of kNN DML method is that the classification result is affected by the
setting of the nearest neighbor number k. Ruan et al. [12] proposed a convex model for
support vector DML (CSV-DML), which increased the accuracy of the CSV-DML to 84.6%,
better than the existing kNN DML and support vector DML methods.
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Furthermore, many well-known face recognition studies are based on deep learning
approaches, including Deepface [13], FaceNet [14], VGG-Face [15], and ArcFace [23]. Deep-
face [13], proposed by Facebook in 2014, uses a nine-layer neural network with Softmax
in the loss function, and achieved a recognition accuracy of 97.35% when applied to the
LFW (Labeled Faces in the Wild) dataset. FaceNet [14] was proposed by Google in 2015
and uses ZFNet and Inception-v1 as the Siamese network [24] architecture and a triplet
loss in the loss function. The model achieved an accuracy of 99.63% on the LFW dataset in
the validation stage. The Visual Geometry Group (VGG) proposed VGG-Face [15] in 2017,
which is a neural network for large-scale image recognition based on a small number of
VGG [25] training samples and the Softmax loss function. It was shown that the accuracy of
the proposed network reached 99.6% when using the triplet loss proposed in FaceNet [14]
for inference purposes.

ArcFace [23], proposed in 2018, is based on the ResNet deep neural network architec-
ture [26], but employs a novel loss referred to as Additive Angular Margin Loss. The model
achieved an accuracy of 99.83% when applied to the LFW dataset.

In recent studies, Fuad et al. [27] surveyed many deep learning (DL) methods for
face recognition (FR). The authors explored them in several parts. For the CNN-based
method, Chen et al. [16] considered the angle discrepancy and magnitude gap between
high-resolution and corresponding low-resolution faces. It successfully identified faces
with fewer than 32 × 32 pixels, resulting in LightCNN-v29 achieving a 98.98% success rate.
Wang et al. [17] proposed a pyramid-diverse attention framework to avoid the model fo-
cusing on fixed blocks by extracting features in multiple layers so that the model can extract
facial features more comprehensively. For the Autoencoder-based method, Autoencoder
combines generated and learned properties, but it still learns irrelevant features. There-
fore, Pidhorskyi et al. [28] proposed an Adversarial Latent Autoencoder (ALAE) to solve
this issue and improve the training procedure of GAN. Additionally, Usman et al. [18]
used multiple levels of hidden layers for feature extraction and dimension reduction for
expression recognition. For GAN-based methods, Iranmanesh et al. [19] proposed the
CpGAN method, which processes visible and non-visible spectra separately through two
sub-networks of independent GANs. The CpGAN was then used for heterogeneous face
recognition. In addition, Rong et al. [20] used GAN to solve the issue of failing recognition
when the identified person has a large pose change. For the Reinforcement Learning-based
method, Liu et al. [21] and Rao et al. [22] applied reinforcement learning to find the
attention of videos in a heterogeneous collection of unordered images and videos, and both
achieve rich results.

To sum up the above methods, despite the many novel architectures proposed in
the recent literature, FaceNet has a unique architecture and employs a triplet loss to
process the data. FaceNet continues to be one of the most commonly used and accurate
models for face recognition purposes. Although the accuracy of ArcFace is slightly higher
than that of FaceNet, its performance advantage is obtained at the expense of a higher
computational cost. Consequently, the present study deliberately adopts FaceNet to build
the face recognition systems used for evaluation purposes.

2.2. Adversarial Attack
2.2.1. Adversarial Example

Adversarial examples are produced by adding small perturbations to the original input
sample. Many methods are available for generating adversarial examples, including the
Fast Gradient Sign Method (FGSM) [3], the Basic Iterative Method (BIM) [5], the Projected
Gradient Descent (PGD) [29], and the Carlini & Wagner attack [30]. All of these methods
have a high attack success rate and are widely used in digital attack scenarios. However,
FGSM is not suitable for black-box attacks since they require knowledge of the model
parameters when training. BIM and PGD are based on FGSM, albeit with a smaller step
size, and is thus equally inapplicable to black-box attacks.
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Consequently, among these methods, only the Carlini and Wagner attack model can
be applied to black-box attacks. Most attack methods are based on loss functions and add a
gradient value to the image pixels as noise. The target model is then queried repeatedly until
model convergence. However, face recognition systems are generally implemented in the
real world and, provided that the face recognition system is not hacked, the likelihood of an
attack succeeding simply by directly modifying the image pixels is rather low. Furthermore,
if the attack queries the model many times in an attempt to deceive the system, it is likely to
trigger a security mechanism and will thus similarly fail. In other words, adversarial attack
methods, which add noise to the entire image, have only a limited effectiveness against
face recognition applications.

2.2.2. Adversarial Patch

Adversarial patches [4] differ from adversarial examples in that they add noise only
to certain regions of the image, rather than the entire image. Adversarial patch attacks
can be easily applied in the real world and require no knowledge of the parameters or
architecture of the model. The authors in [31] demonstrated the feasibility for fooling
automated surveillance cameras by applying adversarial T-shirts to the subject. Similarly,
the authors in [32] generated adversarial patches for road signs using a GAN-based [9]
method and showed that the patches prevented the classifier from identifying the road
signs correctly.

2.3. Attention Area of Face Recognition

The accuracy of face recognition systems based on deep learning methods is signifi-
cantly higher than that of earlier image-processing-based or statistical methods. However,
besides the prediction accuracy of such methods, there is growing interest in the inter-
pretability of the prediction results. Castanon and Bryne [33] used a heat map to quantify
the relative importance of each feature in the classification model. The results indicated
that the prediction outcome was determined mainly by the features extracted from the eyes,
nose and mouth regions of the image. Deb et al. [8] also showed that the success rate of
adversarial patch attacks against face images was enhanced when applying noise mainly
to the eyes and nose regions of the face.

3. Related Works

The literature contains many studies on attack methods against deep-learning-based
face recognition systems. However, many of these studies assume that the attacker some-
how gains access to the face recognition system, or consider only attacks in the digital
world. By contrast, the present study aims to explore a more realistic attack scenario, in
which the attack occurs in the physical world and the attacker has no information of the
model parameters and architectures. Thus, in considering the previous work in the field,
the present study focuses mainly on the works shown in Table 2 where we distinguish
related works by attack method, attack situation, generate object and attack capacity.

Table 2. Related Works.

Related Works Attack Method Situation Generate
Object

Adversarial
Capacity

[34] L-BFGS Physical Patches White-Box

[35] LED Physical LED Infrared White-Box

[36] FGSM Physical Patches White-Box

[37] MI-FGSM Physical Patches White-Box

[38] VLA Physical Visible Light Black-Box

[39] Transformation-Invariant
Adversarial Pattern Physical Visible Light Black-Box
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Table 2. Cont.

Related Works Attack Method Situation Generate
Object

Adversarial
Capacity

[8] GAN-based Digital Digital Face
Image Black-Box

[40] GAN-based Physical Adv-Makeup Black-Box

[41] GAN-based Digital Digital Image Black-Box

[42] FACESEC Physical Eyeglass Black-box

[43] GAN-based Physical Sticker Black-box

As shown in Table 2, many of the adversarial attack methods reported in the literature
are white-box attacks and use adversarial patches. For example, the method in [34] uses the
L-BFGS method to print 2D or 3D images with adversarial glasses. The attack success rate
was found to be as much as 97.22% in dodging attacks and 75% in impersonation attacks.
However, the test dataset was limited to just three individuals. In [35], an LED is added
to the hat, an infrared light is projected onto the face which is adjusted according to the
attack target. It is noticed that the attack is unstable which indicates some limitation on
using infrared light attack. Moreover, the attack method is white-box attack. The studies
in [36,37] conduct white-box attacks using adversarial stickers attached to hats and the
nose, forehead and eyes regions of the face image, respectively. It was shown in [36], that
the adversarial patches effectively reduce the similarity between the input image and the
target image and therefore is able to attack the face recognition system. In [37], although the
similarity of the patch face image with the ground truth class was only just slightly lower
that that with the targeted class, the attack is successful as the neural network classifies the
patch face image as the targeted class.

Although the methods in [34–37] are capable of deceiving the face recognition model,
their success rate is relatively low. Moreover, the adversarial attacks are launched using
white-box attack methods. As described above, white-box attacks require a knowledge of
the parameters and architecture of the face recognition model. Thus, white-box attacks are
generally ineffective in real-world scenarios, where such information is carefully guarded.
Accordingly, the authors in [38,39] proposed black-box attacks, in which light produced
by a projector was used to generate attack noise. The study in [38] attacked the FaceNet
face recognition system and achieved an average dodging success rate of 85.7% for nine
test subjects and an average impersonation success rate of 32.4%. In [39], projected light
was generated as noise using an update gradient method and was used to conduct attacks
against a commercial face recognition model. The dodging attack and impersonation attack
success rates were shown to be 70% and 60%, respectively. However, the impersonation
attack considered only one test subject. The attack success rates of the methods in [38,39]
are generally higher than those of previous methods. However, in both cases, it is necessary
to query the system multiple times during training. Moreover, it is impractical to carry and
use the light projection equipment in real-world situations, and the projection angle and
light intensity must be carefully considered and managed.

Deb et al. [8] used a GAN to generate adversarial noise, which was added to the
original face to form an adversarial face in the digital world. In the original GAN ar-
chitecture, the aim is to generate an image which is as similar to the original image as
possible. In [8], however, the performance of the GAN in generating adversarial noise was
improved by extending the loss function to include not only the original loss LGAN , but also
two new losses, namely Lperturbation and Lidentity , respectively. The aim of the Lperturbation
loss was to control the amount of noise generated, while that of the Lidentity loss was to
control the generated noise such that the image was classified into a specified class. The
GAN model was used against the FaceNet face recognition model and achieved a success
rate of 97.22% for obfuscation attacks and 24.30% for impersonation attacks. Thus, even
though the attack model considered the more realistic scenario of a black-box attack, the
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impersonation success rate was still rather low. Bin et al. [40] used a GAN-based method
to add makeup around the eyes as adversarial noise. The experimental results showed
that the proposed method achieved an average success rate of 33.17% for impersonation
attacks against FaceNet and a maximum success rate of 52.92% for impersonation attacks
against a commercial face recognition model. Xiao et al. [41] proposed another GAN-based
method (advGAN) for generating adversarial examples. However, it was limited only to
attacks in the digital world and was aimed at image classification systems rather than face
recognition systems. Tong et al. [42] proposed the FACESEC method based on gradient
l0-norm to generate stickers, eyeglass frames, and face masks, which in turn attack FaceNet
and VGGFACE. The attack success rate of the eyeglass frame on the FaceNet model is 54%.
In addition, [42] explored the effect of knowing the parameter and architecture of the attack
model on the attack success rate. Shen et al. [43] proposed a GAN-based adversarial attack
to generate stickers that can be adhered to the ciliary arches, nasal bones, and two nasolabial
folds on both sides. This study attacked Arcface, CosFace, FaceNet, and VGGFace models.
For the dodging attack on FaceNet in the physical world, the work could achieve an attack
success rate of 100.0%. For the impersonation attack, the attack success rate is 55.32%.
Finally, [43] also explored the effects of camera distance, sticker size, and head pose.

In summary, other papers use Gradient-based (e.g., L-BFGS [34], FGSM [36,37],
FACESEC [42]), Visible Light-based [35,38,39], and GAN-based [8,40,41,43] methods. In
the physical world, the model architecture and parameters are mandatory knowledge for
the traditional Gradient-based method, which means it is only applicable to white-box
attacks. This approach is not realistic for practical applications. The Visible Light-based
method uses visible light projection to change the face feature pixels. Besides requiring
many resources and projectors, this method is easily vulnerable to external environmental
factors, such as an infrared cut-off lens leading to the attack’s failure. In contrast, we use a
GAN-based approach to generate attack glasses or face patches, which is convenient. We
also restrict the noise to the frame of the glasses (small area, not modified face features),
which achieves a high success rate of attacks in both the physical and digital worlds. In
addition, our method does not result in a “this person does not exist” warning in real-world
face recognition systems. It is difficult for a layman such as a security guard to know the
intent of our attack.

4. Proposed Method

The present study proposes a GAN-based attack method based on the generation
of adversarial patches. The attack method assumes the use of a black-box model and is
applicable to both the digital world and the physical world. It is shown that the proposed
method achieves a success rate of 57.99% in digital dodging attacks and 48.78% in digital
impersonation attacks. Moreover, the success rates for physical dodging and impersonation
attacks are 81.77% and 63.85%, respectively. In other words, the attack performance of the
proposed method is significantly better than that of previous methods reported in Section 3.

The present study refers to the model architecture used in [8,44], in which the training
images comprise a face data set, and adversarial noise is added to each face using the
conventional GAN method. In contrast to the method in [8], however, the generator in the
present study generates adversarial noise only on glasses rather than on the entire face, and
then adds these adversarial glasses to the face prior to judgement by the discriminator. The
proposed method is thus more easily applied for attacks in the physical world.

On the whole, our proposed GAN architecture is illustrated in Figure 1, which com-
prises three main components: the generator G, the discriminator D, and the face matcher F.
For the execution process of the proposed architecture, first, the glasses are the generator’s
input for generating the perturbation. Second, the perturbation will be combined with the
glasses and the person to form the merged image, which will be used as the input to the
discriminator (D) and the face matcher (F). Third, the generator, discriminator, and face
matcher will calculate the losses, Lperturbation, Ladv, and Lidentity, respectively. The pseudo
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codes for generating adversarial glasses and patches are shown in Algorithms 1 and 2. The
details of these components will be presented below.

Figure 1. Proposed architecture.

Algorithm 1 Training AdvFace in dodging attack

Input:
X Training Glasses Dataset
f Training Face Dataset
F Cosine similarity between an image pair obtained by face matcher
G Generator with weight Gθ

D Discriminator with Dθ

m Batch size
α Learning size

1: for number of training iterations do
2: Sample a batch of probes {x(i)}m

i=1 ∼ X
3: Sample a batch of origin face images {y(i)}m

i=1 ∼ f
4: δ(i) = G(x(i))
5: x(i)adv = x(i) + δ(i)

6: Lperturbation = 1
m [∑m

i=1 max(P, ||δ(i)||2)]
7: Lidentity = 1

m [∑m
i=1 E[(F (y(i), x(i)adv))]]

8: LD = 1
m [∑m

i=1 log(1−D(x(i)adv))]

9: Ladv = 1
m [∑m

i=1 log(D(x(i))) + log(1−D(x(i)adv))]

10: LG = Ladv + λiLidentity + λpLperturbation

11: Gθ = Adam(5GLG ,Gθ , β1, β2)
12: Dθ = Adam(5DLD ,Gθ , β1, β2)
13: end for
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Algorithm 2 Training AdvFace in impersonation attack

Input:
X Training Face Dataset
f Target Face Dataset
F Cosine similarity between an image pair obtained by face matcher
G Generator with weight Gθ

D Discriminator with Dθ

m Batch size
α Learning size

1: for number of training iterations do
2: Sample a batch of probes {x(i)}m

i=1 ∼ X
3: Sample a batch of target images {y(i)}m

i=1 ∼ f
4: δ(i) = G(x(i), y(i))
5: x(i)adv = x(i) + δ(i)

6: Lperturbation = 1
m [∑m

i=1 max(P, ||δ(i)||2)]
7: Lidentity = 1

m [∑m
i=1 E[1−F (y(i), x(i)adv)]]

8: LD = 1
m [∑m

i=1 log(1−D(x(i)adv))]

9: Ladv = 1
m [∑m

i=1 log(D(y(i))) + log(1−D(x(i)adv))]

10: LG = LGadv + λiLidentity + λpLperturbation

11: Gθ = Adam(5GLG ,Gθ , β1, β2)
12: Dθ = Adam(5DLD ,Gθ , β1, β2)
13: end for

4.1. Generator

The aim of the generator is to generate an adversarial image that causes the face
recognition system to misclassify the input. A glasses image x is input to the generator,
and the generator randomly generates G(x) from the multi-dimensional space. The noises
generated by the generator are then added to the original glasses image to produce x+G(x).
(That is, x + G(x) denotes that only noises within the glasses are remained on the glasses.)
As shown in Figure 1, the generated noise, G(x), can be controlled by the Lperturbation loss.
In particular, the L2 norm of G(x), designated as ‖G(x)‖2, is taken and compared with a
predefined noise threshold, P. The loss function, Lperturbation, is then assigned based on the
outcome of this comparison, as shown in the following:

Lperturbation = E[max(P, ‖G(x)‖2)] (1)

With the Lperturbation, the generator will be trained to generate as much noise as possible
with the constraint that the L2 norm of G(x) is close to but not larger than the predefined
noise threshold, P.

The proposed architecture incorporates an additional loss, designated as Lidentity,
which aims to encourage the generator (G) to generate noise specifically intended to cause
the face recognition system to misjudge the input face as that of another individual. The
adversarial image x + G(x) is first attached to a face image f through image processing to
produce f + x + G(x). The matcher (F) then compares f + x + G(x) with the original face image
f and calculates the difference between them as Lidentity. The aim of the generator is to
minimize the output value of the face matcher, F. The Lidentity here has different definitions
for non-targeted attack and targeted attack. When generating adversarial glasses for a
non-targeted attack, Lidentity is calculated as follows:

Lidentity = E[F( f , ( f + x + G(x))], (2)

where f is the face image of the person performing adversarial attack.



Sensors 2023, 23, 853 10 of 29

However, when generating adversarial faces ((x + G(x), where x = ft) to carry out
targeted attacks, the aim is to attack a specific target, and hence the input image patched
with the adversarial face image, f + x + G(x), is compared to the face image of the attack
target, ft. Thus, in this case, Lidentity is computed as

Lidentity = E[1− F( ft, f + x + G(x))]. (3)

For the layer structure of the generator, Table 3 shows the structural parameters of the
design in detail.

Table 3. Structural parameters of the generator.

Layer Type Filters/Neurons Stride Padding

1 Conv 64 (kernel size = 7) 1 3
2 Conv 128 (kernel size = 4) 2 -
3 Conv 256 (kernel size = 4) 3 -
- residual block kernel size = 3 - -
- residual block kernel size = 3 - -
- residual block kernel size = 3 - -
4 Unsampling 128 (kernel size = 5) 1 2
5 Unsampling 64 (kernel size = 5) 1 2
6 Conv 3 (kernel size = 7) 1 3

4.2. Discriminator

The purpose of the discriminator is to compare the original face f and the face image
with glasses f + x + G generated by the generator. The original face f is input to the
discriminator, and the generator then attempts to minimize the difference between f and f
+ x + G such that the discriminator is unable to distinguish between them. In the present
architecture, the discriminator is implemented using the loss function described in [9].
That is,

Ladv = E[log D( f )] + [log(1− D( f + x + G(x)))] (4)

For the layer structure of the discriminator, Table 4 shows the structural parameters of
the design in detail.

Table 4. Structural parameters of the discriminator.

Layer Type Filters/Neurons Stride Padding

1 Conv 32 (kernel size = 4) 2 -
2 Conv 64 (kernel size = 4) 2 -
3 Conv 128 (kernel size = 4) 2 -
4 Conv 256 (kernel size = 4) 2 -
5 Conv 512 (kernel size = 4) 2 -
6 Conv 1 (kernel size = 1) 1 -

4.3. Face Matcher

The propose of the face matcher is to quantify the similarity between two faces. In
other words, F can be regarded as a form of face recognition system. To compare the
similarity between two faces, the face matcher receives the two face images and outputs
two corresponding feature vectors. The distance between the two feature vectors is then
taken as a measure of the similarity between them, where a smaller distance indicates a
greater similarity, and vice versa.

The total loss function of the proposed GAN architecture thus has the form

Ltotal = Ladv + x1Lperturbation + x2Lidentity, (5)
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where x1 and x2 are weighting values used to control the relative contributions of the
Lperturbation and Lidentity losses, respectively. The total loss, Ltotal , is then fed back to the
generator G for further training. In particular, the generator produces a new adversarial
image, which is reevaluated by the discriminator D and face matcher F. The resulting loss,
Ltotal , is then returned to the generator as feedback once again. The training process contin-
ues iteratively in this way until the generator produces a set of high-quality adversarial
images which are virtually indistinguishable from the original face images by both the
discriminator and the face matcher.

5. Experimental Results

The present study constructed two system environments: one in the digital world and
another in the physical world. The former system implemented a face recognition system
for the digital world and a generator for producing adversarial patches. The system was
implemented on the Ubuntu 18.04 operating system with 256 GB of memory space, a Tesla
V100 GPU, 32 GB PCIe (NVIDIA Corp., San Jose, CA, USA), and an Dell PowerEdge R740
with Intelr Xeonr Silver 4116 CPU @ 2.10 GHz. The system was programmed in Python
3.6 using a variety of deep learning tools, including TensorFlow 1.14.0, Keras 2.3.1, Pytorch
1.9, and CUDA version 11.0.

The second system implemented a face recognition system in the physical world. For
testing convenience, and to reproduce a realistic face recognition system environment, the
system was implemented on an ASUS X556UR laptop (ASUSTek Computer Inc., Taipei,
Taiwan) under an Anaconda virtual environment. The face recognition system was run on
a NVIDIA GeForce 940MX (NVIDIA Corp., San Jose, CA, USA) 2 GB graphics card and was
programmed in Python 3.6 with TensorFlow 1.14.0, Keras 2.3.1 and Pytorch 1.9. The laptop
camera had a poor resolution of just 480 p. Thus, to enhance the face recognition process,
the laptop was interfaced with a Logitech C925e (Logitech International S.A., Lausanne,
Switzerland, and Newark, CA, USA) webcam with an improved resolution of 1080 p.

5.1. Evaluation Metric

The performance of the proposed GAN-based attack method was quantified by eval-
uating the attack success rate in both the digital world and the physical world. For both
worlds, the attack success rate was investigated for both dodging attacks and impersonation
attacks. In the case of dodging attacks in the digital world, the success rate was computed
as follows:

∑i∈N(ŷi 6= yi) and (d(ŷi) < threshold)
|N| , (6)

where yi is the original class of the input image i; ŷi is the image class (of the image
i) predicted by the face recognition model; d(ŷi) is the similarity (e.g., cosine distance)
of the input image i and an image in class ŷi; |N| is the total number of input images;
and threshold is a threshold parameter used for classification judgement purposes. Note
that the threshold parameter was assigned a value of 0.4, where a similarity less than this
threshold was taken to indicate a valid classification result.

The success rate of impersonation attacks in the digital world was evaluated using
Equation (7), in which ỹ is the class of the target, ŷi is the class predicted by the face
recognition model.

∑i∈N(ŷi = ỹ) and (d(ŷi) < threshold)
|N| (7)

In the physical world, the face images were read directly through the webcam. Thus,
the adversarial patches produced by the generator were printed and worn by the subjects.
For each subject, images were collected over a 10 s period with head motion allowed. For
the dodging attacks, the attack was considered to be successful when the system identified
three consecutive face images as belonging to an individual other than the subject. Similarly,
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for the impersonation attacks, the attack was considered to be a success when the system
identified three consecutive face images as belonging to the target individual.

5.2. Datasets

Three datasets were used to construct the face recognition systems, namely one dataset
consisting of 3000 face images chosen from the LFW open-source face dataset, and two
self-collected small face datasets. The first self-collected database contained 10 subjects
(6 male and 4 female) between the age of 22 and 27 years old, with five face images for each
subject. The second self-collected database added an additional 12 individuals to the first
dataset, giving a total of 22 individuals (16 male and 6 female) between the ages of 20 and
34 years old. Again, the dataset contained five face images for each individual. For both
self-collected databases, the face images were captured in a well-lit indoor environment
using a mobile phone camera.

When performing dodging attacks against the face recognition systems, adversarial
patches were produced by adding noise to the glasses dataset in [34], which contains various
styles of glasses, each with multiple colors, giving a total of 16,833 images. Meanwhile, the
impersonation attacks were conducted using the 10 individuals in the first self-collected
dataset as training subjects, where each individual wore printed adversarial glasses and
face patches.

5.3. Face Recognition Systems in Digital World

The experiments commenced by evaluating the attack performance of the proposed
GAN-based adversarial patch method against the face recognition systems constructed
in the digital world. The attack performance was evaluated for both the face recognition
system built using the LFW dataset and the systems built using the two self-collected
databases, respectively. In all three cases, face recognition was performed using the Deep-
face [45] open-source model, with a similarity (cosine distance) threshold set as 0.4 in
order to achieve a False Accept Rate (FAR) of 0.1%. Two different adversarial patches
were generated to carry out dodging attacks and impersonation attacks, respectively. The
dodging attacks were conducted using the adversarial glasses patches shown in Figure 2.

Figure 2. Generated adversarial glasses.
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The adversarial glasses were passed through the mask shown in Figure 3, and the
resulting frames were applied to the face images one-by-one to perform adversarial attacks,
as shown in Figure 4.

Figure 3. Glasses mask.

Figure 4. Addition of adversarial glasses in the digital world.

To carry out the impersonation attacks, adversarial faces were generated by the pro-
posed method, as shown in Figure 5. The adversarial faces were extracted as circles (see
Figure 6) and were then attached to the forehead regions of the face images with adversarial
glasses, as shown in Figure 7.
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Figure 5. Generated adversarial faces.

Figure 6. Adversarial faces cut into circles.
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Figure 7. Addition of adversarial faces to face images with adversarial glasses in the digital world.

5.4. Face Recognition Systems in Physical World

To evaluate the performance of the proposed model in the physical world, the face
recognition system was constructed using the self-collected dataset containing 22 individu-
als. In implementing the face recognition system, the similarity threshold was set as 0.1 to
achieve a FAR of 0.1%. For the dodging attacks, the adversarial glasses were printed on
cardboard and worn around the eyes, as shown in Figure 8. For the impersonation attacks,
the adversarial faces were additionally printed and attached to the forehead region, as
shown in Figure 9.

Figure 8. Wearing of adversarial glasses in the physical world.
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Figure 9. Wearing of adversarial glasses and an adversarial face in the physical world.

5.5. Results
5.5.1. Dodging Attacks in Digital World

The dodging attacks in the digital world were conducted against all three face recogni-
tion systems based on the LFW dataset (3000 images), Self-Collected Dataset 1 (10 subjects),
and Self-Collected Dataset 2 (22 subjects), respectively. The intention of using the three
different face recognition systems was to evaluate the relationship between the number
of faces in the face recognition database and the attack success rate. The experiments
commenced by evaluating the attack performance against the LBW face recognition system.
The attack was conducted using 10 face images chosen at random from the LBW dataset,
where each image wore 64 different adversarial glasses in turn. The corresponding attack
results are shown in Table 5.

Table 5. Digital dodging attacks against LFW database.

Number Attack Success Rate

No.1 92.18%

No.2 1.56%

No.3 10.93%

No.4 4.68%

No.5 35.93%

No.6 32.81%

No.7 62.5%

No.8 85.93%

No.9 100%

No.10 93.75%

Average 52.02%

Overall, the results presented in Table 5 show that the adversarial glasses result in a
high attack success rate for some individuals (e.g., #1, #9 and #10), but a low attack success
rate for others (e.g., #2 and #4). A detailed analysis revealed two main reasons for the
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low success rate in these cases: (1) even after wearing adversarial glasses, the adversarial
face was still very similar to the original; and (2) the LFW dataset contained no faces
similar to the adversarial face with glasses, i.e., the dataset contained no target to attack.
Accordingly, the dodging attacks were repeated against the face recognition systems built
using the two self-collected datasets, respectively. The corresponding results are presented
in Tables 6 and 7.

Table 6. Digital Dodging Attack in 10 people’s database.

Number Attack Success Rate

No.1 0%

No.2 31.25%

No.3 78.13%

No.4 0%

No.5 37.5%

No.6 0%

No.7 0%

No.8 28.13%

No.9 34%

No.10 32.81%

Average 24.18%

Table 7. Digital Dodging Attack in 22 people’s database.

Number Attack Success Rate Number Attack Success Rate

No.1 10.9% No.12 0%

No.2 100% No.13 98.4%

No.3 100% No.14 1.5%

No.4 43.75% No.15 100%

No.5 57.8% No.16 100%

No.6 0% No.17 100%

No.7 1.5% No.18 96.8%

No.8 100% No.19 39%

No.9 56.2% No.20 95.3%

No.10 54.6% No.21 34.3%

No.11 35.9% No.22 50%

Average 57.99%

As shown, the average attack success rates against the 10-person and 22-person
databases are 24.18% and 57.99%, respectively. In general, in conducting successful dodging
attacks, the aim is for the face recognition system not only to identify the original face
image after the addition of adversarial glasses, but also to match the face with another
face. For the face recognition system constructed with a larger number of faces, there exist
more targets which can be matched by the adversarial face. Consequently, as the size of the
database used by the face recognition system increases, the vulnerability of the system to
adversarial glasses attacks also increases.
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5.5.2. Impersonation Attacks in Digital World

The impersonation attacks were conducted against the face recognition system built
using the self-collected database of 22 individuals. Ten individuals were chosen randomly
from the database for testing purposes. In addition to wearing adversarial glasses, each
face also wore the adversarial faces of the other nine individuals in turn. That is, each
individual attacked nine targets. The corresponding attack results are shown in Table 8.

Table 8. Digital impersonation attacks against 22-person face recognition system.

Attack Number

Origin
Number

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 Average

No.1 90% 10% 30% 70% 90% 60% 0% 30% 70% 50%

No.2 50% 10% 30% 60% 90% 60% 30% 50% 60% 50%

No.3 30% 80% 10% 60% 80% 60% 10% 60% 50% 48.9%

No.4 70% 90% 30% 80% 90% 60% 10% 30% 70% 58.9%

No.5 40% 70% 10% 30% 80% 60% 20% 40% 60% 45.6%

No.6 10% 50% 0% 20% 40% 40% 30% 10% 10% 23.3%

No.7 50% 80% 20% 30% 50% 70% 0% 10% 50% 40%

No.8 10% 90% 10% 20% 60% 90% 50% 30% 70% 47.8%

No.9 70% 90% 10% 40% 40% 80% 40% 10% 80% 51.1%

No.10 30% 100% 20% 30% 70% 90% 60% 20% 50% 52.2%

Total 48.78%

It is seen in Table 8 that the overall average success rate is 48.78%. However, it is also
noted that some of the targets (e.g., #3 and #8) are less easily impersonated than others.
It is speculated that when adversarial face stickers are generated by the method of this
study, some faces are more difficult to attack. Furthermore, some of the adversarial images
also have a lower attack success rate than others. For example, the successful attack rate
of adversarial image #6 is just 23.3%. In other words, the face recognition system matches
the adversarial face image with the original image rather than the target individual. To
investigate this phenomenon further, the method proposed in [8] was used to generate
adversarial noise for all of the faces in the self-collected database, as shown in Figure 10.

It can be seen that some of the faces are attacked by generating noise in the eye region
of the image, while in other cases, the noise is distributed over the entire face. However, the
method proposed in the present study generates adversarial glasses and stickers which are
applied only to certain regions of the face, and it cannot attack those faces with the noise is
distributed over the entire face.

5.5.3. Dodging Attacks in Physical World

The dodging attack success rate in the physical world was evaluated for both self-
collected databases. For each database, 10 subjects were selected for testing purposes,
where each subject wore 11 adversarial glasses in turn. The corresponding attack success
rates are shown in Tables 9 and 10, respectively.

In the attacks performed in the physical world, the subjects were allowed to turn their
face during the detection process. Thus, compared to the digital case, in which the detection
process was limited to only a single face input image, the detection process in the physical
world was less constrained. As shown in Tables 9 and 10, the average dodging attack
success rates against the 10-person database and 22-person database were 39.94% and
81.77%, respectively. In other words, as for the attacks performed in the digital world, the
attack success rate in the physical world also increases as the size of the database increases.
The results also imply that when the subject turns the face to a non-frontal angle, the
likelihood of the face recognition system misclassifying the input face image also increases.



Sensors 2023, 23, 853 19 of 29

Figure 10. Generated adversarial masks.

Table 9. Physical dodging attacks against 10-person face recognition system.

Number Attack Success Rate

No.1 45.4%

No.2 54.5%

No.3 36.3%

No.4 27.2%

No.5 36.3%

No.6 54.5%

No.7 18.1%

No.8 45.4%

No.9 27.2%

No.10 54.5%

Average 39.94%
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Table 10. Physical dodging attacks against 22-person face recognition system.

Number Attack Success Rate

No.1 81.8%

No.2 72.7%

No.3 63.6%

No.4 100%

No.5 72.7%

No.6 81.8%

No.7 81.8%

No.8 90.9%

No.9 81.8%

No.10 90.9%

Average 81.77%

5.5.4. Impersonation Attacks in Physical World

The performance of the impersonation attacks in the physical world was evaluated
using the 10 subjects in the first self-collected database as test subjects and the 22 individuals
in the second self-collected database as targets. Each of the test subjects wore adversarial
glasses and the adversarial faces of all the other subjects in the first self-collected database
in turn. The aim of the attack was to cause the face recognition system to recognize the
target on the adversarial face sticker rather than the original subject. The corresponding
attack results are presented in Table 11.

Table 11. The attack success rate of a single target for impersonation attacks in the physical world on
a face recognition system with 22 persons in the database.

Attack Number

Origin
Number

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 Average

No.1 90% 0% 50% 90% 90% 80% 40% 90% 30% 62.2%

No.2 50% 0% 40% 80% 90% 60% 50% 90% 90% 63.3%

No.3 70% 80% 50% 90% 90% 90% 40% 90% 30% 70%

No.4 60% 100% 20% 100% 90% 70% 40% 100% 80% 73.3%

No.5 40% 80% 20% 40% 80% 90% 40% 90% 20% 55.5%

No.6 40% 80% 10% 50% 80% 80% 40% 90% 20% 54.4%

No.7 50% 90% 30% 50% 90% 90% 30% 90% 50% 63.3%

No.8 40% 70% 10% 50% 90% 90% 90% 80% 60% 64.4%

No.9 20% 100% 40% 50% 90% 90% 80% 40% 70% 64.4%

No.10 40% 100% 30% 50% 80% 90% 90% 40% 90% 67.7%

Total 63.85%

As shown, the average success rate of the impersonation attacks is 63.85%. Interest-
ingly, the results show that even though the same adversarial face patch of a given target
is added to all of the test subjects, the attack success rates are different for different test
subjects. On the other hand, it is also evident that some subjects (e.g., #5, #6, #7) are easier
to attack than others (e.g., #3). Notably, we achieve more than 70% attack success rate in the
physical world on most of the targets, even if we set a threshold of 0.4, corresponding to a
False Accept Rate (FAR) of 0.01%. Moreover, since the above table is a comprehensive attack
success rate test for each person against others, the existing literature mainly discusses the
attack success rate of a single target. Therefore, for a more intuitive comparison with the
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existing literature, we show in Table 12 that the average attack success result for a single
target is 78%.

Table 12. In 22-person face recognition system, the attack success rate of a single target for imperson-
ation attacks in the physical world.

Original No. Attack Target Attack Success Rate

No.1 No.3 70%

No.2 No.10 100%

No.3 No.9 40%

No.4 No.6 50%

No.5 No.4 100%

No.6 No.7 90%

No.7 No.5 90%

No.8 No.2 50%

No.9 No.4 100%

No.10 No.2 90%

Average 78%

5.6. Comparison of Dodging Attack Success Rates of Different Methods

Table 13 compares the dodging attack success rate of the proposed method in the
physical world with that of several other attack methods proposed in the literature.

Table 13. Comparison of physical dodging attack success rates of different methods.

Literature Generate
Object

Face Recog-
nition
Model

Adversarial
Capacity

Number of
Subjects

Number of
People in
Database

Dodging
Attack’s
Success

Rate

[34] Patches VGG-Face White-Box 3 10 97.22%

[38] Visible Light FaceNet Black-Box 9 5749 (LFW) 85.7%

[39] Visible Light Commercial Black-Box 10 50 70%

[42] Eyeglass FaceNet Black-Box 10 5749 (LFW) 54%

Ours Patches FaceNet Black-Box 10 22 81.77%

The method proposed in [34] applied adversarial glasses to the test images and
achieved an average attack success rate of 97.22%. However, the adversary attack was a
white-box attack, which is unrealistic in practical attack environments. The premise of
the white-box attack is to know the model architecture and parameters, which is worlds
apart from our black-box attack. At the same time, through the experiments of cosine
similarity in the [36], we can observe some interesting variations of cosine similarity. In [36],
cosine similarity varies between white box and black box attacks (note that when the cosine
similarity is larger, the more similar it is). First, experiments in [36] are based on semi-
white-box attacks, and we can see that the cosine similarity ranges from 0.15 to 0.2 in the
Final similarity. Second, when the authors transfer the adversarial attack noise generated
on the white-box attack to other unknown models, the architecture and parameters of
the unknown model are unknown for the adversarial attack noise. In this case, it can be
considered a no-box attack (more rigorous black box attack), which yields a cosine similarity
of about 0.4. However, the no-box’s cosine similarity increases from 0.2 to 0.4, which means
that the similarity between the original image and the adversarial image is affected. That
is, the attack success rate may be slightly decreased. In other words, the reason why our
proposed attack success rate is lower than [34] is due to the difference between white-box
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and black-box. Moreover, the performance evaluation was conducted using just three test
subjects in [34], which had slightly fewer test subjects. The methods in [38,39] adopted a
black-box attack model and considered a greater number of test subjects (9 and 10 subjects,
respectively). They were thus more representative of real-world attack scenarios than the
method in [34]. Moreover, they achieved reasonable attack success rates of 85.7% and 70%,
respectively. However, both methods require the use of visible light projection systems
when conducting the attack and need careful consideration of the face angle and mask
conditions. Thus, neither method is practical in real-world physical attack situations. In
addition, we further compared our work with [38]. The work [38] did not set a similarity
threshold. As aforementioned, the attack success rate will be higher without a similarity
threshold. However, it is not practical as real-world face recognition systems will set the
threshold properly. Therefore, we conducted an experiment by varying the threshold
from 0 to 1 with an interval of 0.05. The purpose of this experiment is to illustrate the
relationship between attack success rate and threshold. We discuss the results in Section 5.7.
Tong et al. [42] proposed the FACESEC method based on gradient l0-norm for adversarial
patch attacks. However, this type of attack is significantly affected by the adversarial
patch’s wearing position, shape, and scale. Although in [42], whose attack method (patch)
and position (eyeglass frame) are the same as ours, the attack success rate in [42] is lower
than ours, at only 54%. The reason is the difference between Gradient-based and GAN-
based. More interestingly, for the advantages and disadvantages of Gradient-based and
GAN-based approaches, it has been shown in the experimental results of [40] that the
performance of gradient-based attacks will be slightly lower than that of GAN-based
approaches. Clearly, our results are consistent with the results of [42]. By contrast, the
method proposed in this study not only considers a black-box attack model and achieves a
relatively high success rate of 81.77% over 10 test subjects, but also requires only the use of
simple temporary adversarial glasses stickers to deceive the face recognition system. It is
thus more convenient and practical than the other methods presented in Table 13, while
retaining a similar (if not better) attack performance.

Table 14 compares the impersonation attack success rate of the proposed method in
the physical world with that of four other attack methods reported in the literature.

Table 14. Comparison of physical impersonation attack success rates of different methods.

Literature Generate
Object

Face
Recognition

Model

Attack
Subjects

Number of
Subjects

Number of
Attack Target

Number of
People in
Database

Impersonation
Attack’s

Success Rate

[34] Patches VGG-Face White-Box 3 1 10 75%

[38] Visible Light FaceNet Black-Box 9 60 5749 (LFW) 32.4%

[39] Visible Light Commercial Black-Box 25 1 50 60%

[40] Adv-Makeup Commercial Black-Box 1 1 20 52.92%

[43] Sticker FaceNet Black-Box 20 3 20 (VolFace) 55.32%

Ours Patches FaceNet Black-Box
10 10 22 63.85%

10 1 22 78%

The method in [34] used a white-box attack model to generate adversarial glasses and
achieved an average attack success rate of 75%. It is noted that the attack rate is slightly
higher than that of the present study (63.85%). However, the present study is based on the
more realistic assumption of a black-box model and, moreover, considers a greater number
of test subjects (10 vs. 3 subjects), with the consequence that the results are expected to
be more reliable. Although the average attack success rate of the combined experimental
results is slightly lower than that of [34], the reason lay in the fact that we performed a
comprehensive attack test on several targets and averaged the resulting attack success rates.
For the above reasons, we compared the attack success rate of the single target with [34], as
shown in Table 14, which resulted in 78% and had better results than that of Sharif et al. [34].
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The method in [38] also considered a black-box attack model and used visible light to
produce noise. Moreover, the attack evaluation considered a relatively large number of
test subjects (9 subjects). However, the attack success rate against the FaceNet recognition
system was just 32.4%, i.e., around half that of the present study. The authors in [39]
also used projected light to produce noise in order to deceive the face recognition system.
The attack success rate was 60%, and is thus close to that obtained in the present study.
However, the evaluation process in [39] considered only 1 subject tested 10 times, and
hence the evaluation results may not be reliable. Furthermore, as for the method in [39], the
attack requires the use of visible light projection equipment, which is impractical for most
real-world situations. By contrast, the present method requires only the use of adversarial
stickers (glasses and face), which can be easily removed once the face recognition system
has been fooled. The method in [40] requires only the application of makeup to the face,
and is thus also convenient in real-world attack scenarios. However, the attacks in [40]
were performed only once for seven different face angles, and hence the reliability of the
evaluation results cannot be guaranteed. Moreover, the attack success rate was just 52.82%,
and is hence lower than that of the present study (63.85%). Finally, in [43], the GAN-based
adversarial stickers were crafted and put on five regions near to the facial organs (i.e., two
superciliary arches, two nasolabial sulcus, and the nasal bone). Notably, these regions are
critical regions for face recognition [8,33]. As a result, [43] was able to achieve 100% attack
success rate of the dodging attack in the physical world which are higher than our results.
However, the success rate for the impersonation attack is only 55.32%, which is slightly
lower than ours.

Defense Mechanism

The attack method proposed in the present study exploits adversarial patches, which
occupy only small regions of the face, rather than adversarial examples, which occupy
the entire face. Many defense mechanisms based on face recognition rely on the detection
of live subjects through temperature measurements [46], or the detection of adversarial
samples [47]. These methods thus have only a limited ability to counter the adversarial
patch-based method proposed in the present study. Accordingly, this study also proposes a
new defense method, in which it is assumed that the defender already knows the attack
method employed by the adversary. A new class, referred to as “Defense”, is added to the
output label. In particular, photos of each subject wearing adversarial glasses are added
to the face database to counter dodging attacks, while photos of each subject wearing
adversarial glasses and adversarial faces are also added to the face database to thwart
impersonation attacks. All these inputs are labeled as “Defense” during training of the
face recognition system. Tables 15 and 16 show the dodging attack success rate and
dodging attack defense rate, respectively, following the implementation of the proposed
defense mechanism.
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Table 15. Dodging attack success rate after defense.

Number Attack Success Rate

No.1 0%

No.2 0%

No.3 6.25%

No.4 0%

No.5 0%

No.6 0%

No.7 0%

No.8 0%

No.9 0%

No.10 0%

Average 0.06%

Table 16. Dodging defense rate after defense.

Number Defense Rate

No.1 100%

No.2 81.25%

No.3 85.93%

No.4 78.12%

No.5 100%

No.6 56.25%

No.7 100%

No.8 100%

No.9 100%

No.10 95.3%

Average 89.69%

The results presented in Table 15 show that the dodging attack success rate reduces
significantly from 57.99% to 0.06% following the implementation of the proposed defense
mechanism. Moreover, the average defense rate is 89.69%. In other words, the proposed
defense mechanism significantly improves the robustness of the face recognition system
against dodging attacks.

Tables 17 and 18 show the equivalent results for impersonation attacks.
As shown, the implementation of the defense mechanism reduces the average imper-

sonation attack success rate from 48.33% to 28.33% and achieves an average defense rate of
41.1%. It is noted that the defense rate is lower than that for dodging attacks. Nonetheless,
the defense mechanism still reduces the original attack success rate by around 60%.

It can be shown that, the attack success rate attack success rate dropped from 48.33%
to 28.33%, and the defense rate is 41.1%, the defense is not as effective as dodging attack,
but it still can reduce the original attack by about 60%, and defense about 40% attack.
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Table 17. Impersonation attack success rate after defense.

Attack Number

Origin
Number

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 Average

No.1 50% 10% 30% 0% 80% 30% 0% 0% 70% 30%

No.2 50% 0% 30% 10% 90% 10% 0% 0% 60% 27.7%

No.3 20% 80% 10% 0% 80% 20% 0% 0% 80% 32.2%

No.4 50% 70% 20% 10% 90% 20% 0% 0% 70% 37.8%

No.5 30% 50% 10% 30% 80% 10% 0% 0% 60% 30%

No.6 10% 30% 0% 20% 0% 10% 0% 0% 10% 8.9%

No.7 10% 50% 20% 30% 0% 70% 0% 0% 50% 25.6%

No.8 10% 70% 10% 10% 0% 90% 0% 0% 70% 28.9%

No.9 10% 70% 0% 40% 0% 80% 0% 0% 80% 31.1%

No.10 30% 70% 20% 30% 0% 90% 30% 10% 0% 31.1%

Total 28.33%

Table 18. Impersonation defense rate after defense.

Attack Number

Origin
Number

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 Average

No.1 40% 0% 0% 70% 10% 30% 40% 80% 0% 34.4%

No.2 30% 10% 20% 80% 0% 90% 90% 10% 10% 37.8%

No.3 10% 10% 0% 60% 0% 50% 90% 90% 0% 33.3%

No.4 20% 20% 10% 80% 10% 70% 90% 10% 0% 34.4%

No.5 60% 50% 60% 20% 20% 80% 80% 10% 20% 44.4%

No.6 90% 70% 10% 70% 90% 90% 10% 10% 90% 58.9%

No.7 90% 50% 70% 30% 90% 30% 90% 10% 40% 55.6%

No.8 0% 20% 10% 0% 60% 0% 50% 80% 0% 24.4%

No.9 80% 30% 70% 20% 90% 20% 10% 80% 20% 46.7%

No.10 40% 30% 40% 20% 80% 0% 60% 90% 10% 41.1%

Total 41.1%

5.7. Threshold

In our study, we additionally discuss two issues, which are (1) the relationship between
threshold and attack success rate and (2) the portability of attacking other models by no-box.

First, about the relationship between threshold and attack success rate, we can observe
from Figure 11 that the threshold directly affects the attack success rate. When the threshold
is set smaller, the attack success rate is lower. Based on the observation, setting a proper
threshold is necessary for the face recognition system. This also shows that our attack
method is more realistic than [38] by properly setting the threshold.

Second, according to the definition of [48], a no-box attack does not query the face
recognition system. That is, when generating adversarial samples, it does not refer to
the confidence scores of the target face recognition system. Therefore, when our adver-
sarial glasses attack other face recognition systems, that forms a no-box attack. Based
on the experimental results shown in Figure 11, we can observe that our attack method
exhibits transferability.
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Figure 11. Compare the relationship between threshold and attack success rate.

5.8. Time Efficiency

For the analysis of techniques, other papers adopted Gradient-based (e.g., L-BFGS [34,42]),
Visible-light-based [38,39], and GAN-based [40,43] methods. For Gradient-based, [34] took
4.39 h to output 35 attack images. The paper [42] did not mention its time efficiency. For the
Visible Light-based approach, the paper [38] showed that VLA took less than 3 s on average to
generate a frame pair containing a perturbation frame and a concealing frame. However, the
paper [39] did not describe its time efficiency. For GAN-based, papers [40] neither discussed
their time efficiency. [43] took 26 min to generate 8100 stickers. For our approach, first, one
iteration could generate 64 pairs of glasses, which took 75 s. In all experiments, we ran
50 iterations. The total running time is 62.5 min. Second, for adversarial patches, each iteration
could generate 32 adversarial patches in 20 s. It took 66.67 min to run 200 iterations. For the
GAN model (including the Facenet) we used, the number of parameters is 31529204, and the
FLOPs reach 58332210.

6. Conclusions

This work proposes an attack method based on GAN that generates noise and restricts
the adversarial glasses and patches generated in the face region. This method can achieve
black-box attacks in both digital and physical worlds. Among the attacks in the physical
world, our method is more representative of the real-world attacks in the physical world
by wearing adversarial glasses or patches on the face during face recognition. Furthermore,
due to the assumption of a black-box model, the adversary requires no knowledge of the
parameters and structure of the deep learning model employed by the face recognition
system to conduct an attack.

On the other hand, the reason why the traditional method of dodging attacks fails
is that “this person does not exist” attracts the attention of the guards, which is a severe
problem. However, in dodging attacks, our method can make the face recognition system
mistakenly identify the attacker as someone else, thus posing a significant threat to the
face recognition system. Moreover, we take advantage of the fact that people often use
glasses as a fashion accessory to hide the adversarial perturbation in the glasses. As such,
it is difficult for laypersons to know our attack intentions. In impersonation attacks, we
can wear glasses and patches that disguise a person as other people without tampering
with focused features on the face. Namely, we can be who we want to be in front of the
face recognition system. Furthermore, face recognition is used in various fields nowadays.
Through our experiments, we have verified that when the database of the face recognition
system is larger, the chances of being hacked will increase. In this case, serious security
concerns still need to be considered and improvements need to be made.

In another exploration, we introduce a defense mechanism to counter the GAN-based
adversarial patch method. The results show that the proposed mechanism detects almost all
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dodging attacks and more than half of the impersonation attacks. In impersonation attacks,
although the adversarial patches applied in this study occupy only a small region of the face,
which is still easily recognized by the supervisor monitoring the face recognition system.
In this case, the attack is easy to fail. Therefore, future works will generate less obvious
adversarial patches to improve the attack’s success rate in the supervisor’s presence.
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