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Abstract: Building reconstruction using high-resolution satellite-based synthetic SAR tomography
(TomoSAR) is of great importance in urban planning and city modeling applications. However, since
the imaging mode of SAR is side-by-side, the TomoSAR point cloud of a single orbit cannot achieve a
complete observation of buildings. It is difficult for existing methods to extract the same features, as
well as to use the overlap rate to achieve the alignment of the homologous TomoSAR point cloud and
the cross-source TomoSAR point cloud. Therefore, this paper proposes a robust alignment method for
TomoSAR point clouds in urban areas. First, noise points and outlier points are filtered by statistical
filtering, and density of projection point (DoPP)-based projection is used to extract TomoSAR building
point clouds and obtain the facade points for subsequent calculations based on density clustering.
Subsequently, coarse alignment of source and target point clouds was performed using principal
component analysis (PCA). Lastly, the rotation and translation coefficients were calculated using the
angle of the normal vector of the opposite facade of the building and the distance of the outer end of
the facade projection. The experimental results verify the feasibility and robustness of the proposed
method. For the homologous TomoSAR point cloud, the experimental results show that the average
rotation error of the proposed method was less than 0.1◦, and the average translation error was less
than 0.25 m. The alignment accuracy of the cross-source TomoSAR point cloud was evaluated for the
defined angle and distance, whose values were less than 0.2◦ and 0.25 m.

Keywords: homologous TomoSAR point cloud; cross-source TomoSAR point cloud; the normal
vector of the opposite facade; the facade projection

1. Introduction

As an extension of the interferometric synthetic aperture radar (InSAR) technology,
the synthetic aperture principle is extended to the elevation direction, solving the overlay
mask problem caused by the SAR imaging geometry, and realizing the three-dimensional
imaging of the distance direction, azimuth direction, and elevation direction [1,2]. In recent
years, with the improvement of airborne SAR and satellite-based SAR systems and the
advancement of technology, the resolution, signal-to-noise ratio, and other indices have
been improved, and high-precision 3D building point clouds in the observation area can
now be generated using airborne or satellite-based SAR tomography technology, while
even higher-dimensional information such as building deformation can be obtained using
differential tomography technology [3–5].

The three-dimensional visualization of urban buildings plays an extremely important
role in the process of urban digital construction. Since the synthetic aperture radar is side-
imaging, the TomoSAR point cloud generated by a single track only shows the structure
of one side of the building, and the TomoSAR point cloud generated by SAR images of
at least two tracks is needed to show the complete structure of the building in the target
area. The team of Zhu Xiaoxiang [6] fused the TomoSAR point cloud of the ascending
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and descending orbit of the Berlin urban area for the first time, and the fused TomoSAR
point cloud could realize the construction of urban dynamic models and 3D visualization.
However, in the environment of urban expansion, the low coherence and noise of buildings
in the observation area lead to a reduction in the total amount of SAR images and the
quality of TomoSAR point clouds, thus limiting the application of spaceborne SAR 3D
imaging. Due to the different number of SAR images in different orbits and the error of
geocoding, there are some rotation and translation errors in multi-view TomoSAR point
clouds. The 3D visualization of a complete building structure based on the TomoSAR point
cloud can not only rely on the TomoSAR point cloud generated by the SAR image of rising
and falling tracks but also be realized by combining TomoSAR and LiDAR point clouds.
The backpack mobile 3D laser scanner uses the laser SLAM principle, and the operation
is very simple [7,8]. It restores the spatial 3D data through the algorithm as a function of
its attitude data and laser point cloud. The detection distance of the backpack mobile 3D
laser scanner is 50–120 m. Scanning a high-rise building of more than 100 m can easily
cause the loss of the facade and top point cloud of the high-rise building; in contrast, SAR
is prone to missing point clouds at the bottom of buildings in complex environments, but it
can detect the upper floors and top areas of buildings. Compared with TomoSAR point
clouds, mobile laser scanning (MLS) point clouds have higher density and a very low
overlap rate. However, how to extract the same features to fuse ascending and descending
TomoSAR point clouds with single-track TomoSAR and MLS point clouds is the main
research problem addressed in this paper.

Point cloud automatic registration mainly adopts the registration strategy from coarse
to fine. Firstly, the rough point cloud registration algorithm is used to roughly estimate
the altitude conversion parameters between the two-point cloud data, i.e., the initial
rotation and translation parameters. Then, the initial conversion parameters are used as the
input parameters of the point cloud precision registration algorithm to further accurately
register the two-point clouds, and a higher precision point cloud registration result is
obtained [9–11]. The main features used for point cloud automatic coarse configuration are
point [12,13], line [10,14], and face [15,16]. Point features such as SIFT [17,18], Harris [19,20],
and FPFH [21,22] are extracted for automatic registration of airborne laser scanned (ALS)
and terrestrial laser scanned(TLS) building point cloud data [10,23]. Extracting line and
surface features for automatic registration leads to higher robustness than point features,
and it can effectively reduce the interference of point cloud noise [11]. The 2-D contours of
buildings were extracted to automatically register ground and airborne point clouds in [24].
A parameterization based on complex numbers was used to determine the corresponding
relationship between planes, which was effectively applied to the ground laser scanning
data with a certain degree of overlap.

At present, the commonly used methods of point cloud precise registration are the
iterative nearest neighbor algorithm (ICP), random sampling consistency (RANSAC), nor-
mal distribution transformation algorithm (NDT), etc. Among them, the ICP algorithm [25]
iteratively corrects the rigid body transformation (translation and rotation) of two original
point clouds to minimize the distance between all point sets. The RANSAC algorithm [26]
achieves this goal by iteratively selecting a set of random subsets of point cloud data with
a certain probability to get a reasonable alignment result, and the number of iterations
must be increased to improve the probability. The NDT algorithm [27] uses the statistical
information of the point cloud data, whereby the probability density of the transformed
points is maximized if the transformed parameters are the best alignment result of the two
point clouds.

The above methods are commonly used in the coalignment of LiDAR point clouds
and point clouds derived from optical images, but they are not applicable to point clouds
derived from SAR images because the overlap rate of TomoSAR point clouds generated
from cross-directional orbits is extremely low, and the density and accuracy of point clouds
are low compared with LiDAR point clouds; hence, the automatic alignment of TomoSAR
point clouds faces greater difficulties. Gernhardt et al. [28] used the fused PSI for detailed
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monitoring of individual buildings. In [6], the automatic alignment of the TomoSAR
point clouds of ascending and descending orbits was achieved by extracting the L-shaped
endpoints of the TomoSAR building facade point clouds, and the L-shaped endpoints of
the TomoSAR point clouds of the two orbits could not be accurately corresponded when
there were fewer point clouds of one of the building L-shaped facades. Hence, this method
was limited to buildings with L-shaped facades. A robust alignment method for urban
area array InSAR point clouds was proposed in [29], using the concave and convex facades
of buildings for rotation correction and fine displacement. The TomoSAR and MLS point
clouds in urban areas also have rich facade information. In this paper, the geometric
features of the TomoSAR and MLS facade point clouds were used to derive the optimal
alignment parameters, i.e., rotation matrix and translation matrix, to achieve automatic
alignment between homologous and cross-source TomoSAR point clouds. Thus, the main
contributions of the work in this paper are as follows:

• A method is proposed for aligning TomoSAR point clouds for both ascending and
descending orbits, and TomoSAR point clouds with MLS point clouds;

• Rotation correction is performed using the normal vector angle of the opposing facades
of the building;

• Fine translation correction of the spatial position of the opposing facades of the build-
ing is achieved using previous information.

2. Materials and Methods

Three-dimensional point clouds were acquired from two different views of the urban
area, as shown in Figure 1. For the ascending and descending TomoSAR point clouds, the
homologous TomoSAR point clouds had offset and rotation errors perpendicular to the
line of sight due to the satellite platform position and geocoding errors, and the overlap
rate of the two point clouds was extremely low. For TomoSAR point clouds and MLS point
clouds, the point cloud densities were different, and the two point clouds obtained from
different viewpoints belonged to the opposite facades of buildings; therefore, the overlap
information could not be used for alignment fusion. Accordingly, we propose an alignment
method using the point cloud characteristics of building facades.
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Figure 1. Schematic map of multi-view urban building point cloud acquisition (tomographic synthetic
aperture radar system and backpack mobile 3D laser scanner).

Our method was implemented in C++ based on the existing functions of PCL. All
the experiments are conducted on a computer with an Intel i7-11700 and 32-GB RAM. The
flow chart of the method is shown in Figure 2. The source and target point clouds were
composed of the TomoSAR point clouds of the ascending and descending orbits, or the
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source and target point clouds were composed of the single-orbit TomoSAR point cloud
and the MLS point cloud, and the two point clouds provided the front and reverse sides of
the building. Firstly, statistical filtering was used for filtering, and most of the noise and
outlier points were eliminated. The filtered point cloud still had some of the denser outlier
block point clouds. According to the DoPP algorithm, to extract the building facade points,
the extracted building facade points were clustered by density to obtain the building facade
blocks, thus further eliminating the outlier points. To ensure that the source and target
point clouds had good initial positions, the PCA-based initial coarse alignment method
was used, which mainly used the principal axis direction of the point cloud data to align
the two sets of point clouds with good initial positions after alignment. Using RANSAC
to fit the building facade points to get the plane of the building facade, the normal vector
of the plane, angle of the normal vector according to the topological relationship with the
building facade, and rotation coefficient were sequentially calculated. After projecting
the fitted plane point cloud onto the xy-axis, the least squares method was used to fit a
two-dimensional straight line, and the translation coefficient was calculated according to
the spatial position of the building facade.
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preprocessing of the data: filtering and extraction of building elevation points. The rectangular box
in the lower half represents the step of data alignment: coarse alignment followed by rotation and
fine translation correction.
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The method of data pre-processing described above involves several artificially given
parameters, including statistical filtering, building point extraction, and RANSAC-based
façade extraction. We set these parameters in combination with building spacing, number
of building storys and point cloud density:

• Statistical filtering: the number of close points analyzed for each point is set to 50 and
the multiple of the standard deviation is set to 1. This means that a point is marked as
an outlier if it exceeds the mean distance by more than one standard deviation;

• Building elevation point extraction: Set the grid size of the DoPP projection to
0.5 m × 0.5 m, and set the number of points of a single grid to 15 for TomoSAR
facade point cloud estimation;

• Facade extraction based on RANSAC: As the remaining thickness of the building
facade points is about 1~2 m, the facade plane fitting tolerance is set to 0.5 m, resulting
in an average facade thickness of 1.5 m.

2.1. TomoSAR System Model

TomoSAR, which originated from medical CT imaging technology, extends the two-
dimensional imaging principle of SAR to three dimensions. TomoSAR uses multiple aligned
two-dimensional SAR images obtained from observations of the same target feature to
invert its scattering values at different heights in the oblique distance direction, thus
restoring the real three-dimensional scene [30,31]. The geometric model of the TomoSAR
imaging principle is shown in Figure 3. One of the M + 1 view aerial pass SAR single-view
complex images of the same target area was selected as the main image, and the complex
value gm of each resolution unit in the m-th aerial pass image except the main image could
be regarded as the superposition of N scattered target signals in the same orientation at the
same oblique distance in the laminar direction s. This can be expressed as follows:

gn =
∫

∆s
γ(s)exp(−j2πξns)ds, n = 1, 2, 3, . . . , N, (1)

where γ(s) is the backward reflectivity function along the elevation direction of the imaging
area, and the spatial sampling interval ξn can be calculated as ξn = −2b⊥n/(λr), b⊥n is
the vertical baseline distance, λ is the incident wavelength, ∆s is the range of elevation
angles depending on the width of the antenna diffraction pattern, and r is the central slope
distance. After discretization, Equation (1) can be simply approximated as follows:

g = Rγ + ε (2)

where g is the measurement vector of length N, R is the dictionary matrix with size N × L,
L is the number of grid cells divided on the s-axis, Aik = exp(−j2πξksk) is the element of
the i-th row and k-th column of the matrix, and ε is the noise vector.

According to linear algebra theory, Equation (2) becomes an underdetermined equation
with a nonunique solution space when the number of samples in the elevation direction is
much larger than the actual number of coherent trajectories. A common solution is to use
compressed sensing methods [32]. The objective function with a sparse constraint term is
as follows:

γ̂ = arg min
x

{
‖ Rγ− g ‖2

2 +λ‖ γ ‖1

}
(3)

where λ denotes the sparsity factor. A larger value indicates a sparser solution. ‖ γ ‖1 is
the sparsity constraint term that limits the solution space.
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2.2. Filtering and Facade Point Extraction

The TomoSAR point cloud of urban scenes had more outliers; in order to extract the
building facade points effectively, statistical filtering was first used to remove obvious
outliers. The outliers were sparsely distributed, and the distances of all points in the point
cloud formed a Gaussian distribution. The average distance of each point to its nearest k
points was calculated, and the mean and variance were designed to eliminate the outliers
smaller than the set value.

For both TomoSAR and MLS point clouds, the building facade points could be ex-
tracted on the basis of the density of the projection point, whereby the point cloud is
divided using a horizontal grid, and the number of projection points falling on each grid
cell is counted. For the characteristics of TomoSAR point clouds, the DoPP values were
much larger in the building facade than in other areas. The DoPP values of noise points
caused by multiple scattering and noise points on the ground were uniform and small; for
the point clouds on top of buildings and ground features, the DoPP values were locally
larger. Using the above characteristics, a reasonable threshold value could be selected to
classify the TomoSAR point clouds, with DoPP greater than T1 for the building facade
point clouds, DoPP less than T2 for the noise points, and the remaining DoPP for the point
clouds of the top of buildings and ground features [33].

Figure 4b shows the statistically filtered point cloud with most of the outlier points
removed. Figure 4c shows the results of extracting the elevation points according to the
DoPP projection point density, where the blue point cloud is the building elevation point
and the green point cloud is composed of the small-scale building points and the top
point cloud. In Figure 4d, the observations in the n × p data matrix X are divided into
clusters according to the DBSCAN algorithm, and the extracted building facade points are
partitioned into point cloud blocks by clusters.
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2.3. Coarse Alignment

Point cloud alignment was divided into two steps: coarse alignment and fine align-
ment. Coarse alignment referred to when the transformation between two point clouds was
unknown, aimed at providing a better initial value of transformation for the fine alignment;
the fine alignment criterion was given an initial transformation and further optimized to
obtain a more accurate transformation.

For rigidly transformed point cloud alignment, the transformation factor T can be
expressed as follows [34]:

T =
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∣∣∣∣∣∣∣∣, R∗ =

∣∣∣∣∣∣
R11 R12 R13
R21 R22 R23
R31 R32 R33

∣∣∣∣∣∣, t∗ =

∣∣∣∣∣∣
x′

y′

z′

∣∣∣∣∣∣ (4)

where R∗ and t∗ are the rotation and translation coefficients.
The PCA-based initial alignment method mainly uses the principal axis direction of

the extracted façade point cloud data for alignment [35]. Firstly, the covariance matrix
of the two sets of point clouds is calculated, and the main feature components, i.e., the
principal axis directions of the point cloud data, are calculated according to the covariance
matrix. Then, the rotation matrix is derived from the principal axis direction, and the
translation vector is directly derived by calculating the translational shift of the center
coordinates of the two sets of point clouds. As shown in Figure 5a, the source and target
point clouds were not parallel and had rotation and translation errors. Figure 5b shows the
results after coarse alignment based on PCA, where the two point clouds had good initial
spatial positions after coarse alignment but still have some rotation and translation errors.
Therefore, a rotation and translation correction using the characteristics of the point cloud
of the building façade is proposed below in order to recover the correct spatial position
between the building facades.
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Figure 5. (a) The initial positions of the source and target point clouds. (b) The two point clouds after
coarse alignment based on PCA.

2.4. Rotation Correction

The easiest way to fit the plane is least squares fitting, but the accuracy of least squares
fitting is easily affected by noise, while the random sample consensus (RANSAC) algorithm
is a method to calculate mathematical model parameters from a series of data containing
outliers. By fitting the plane with RANSAC, the effect of noise can be excluded, and the
fitting accuracy can be greatly improved [36]. As shown in Figure 6a, the facades of the
same color were the opposite facades of the same building, and the point clouds of the
opposite facades were fitted using RANSAC after coarse alignment.
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Figure 6. Schematic diagram of the spatially positioned fusion point cloud process using pairs of
building elevations. (a) Ideal paired target and source facades with the same color facade spatial
positions parallel. (b) The arrows indicate the corresponding normal vectors of the facades, and the
normal vectors are not parallel with obvious pinch angles. (c) The normal vectors of the opposing
elevations are parallel after rotation correction of the facade positions. (d) Exact translation correction
of the facade position.

When the height or width of the fitted elevation is close to that of its opposite elevation,
the normal vector of the plane should be calculated to perform the rotation correction. The
eigenvector corresponding to the minimum eigenvalue of the covariance matrix calculated
by PCA is the normal vector of the plane. Since the eigenvectors calculated by PCA are
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dualistic, the normal vectors of the opposing facades of the building are oriented such
that the normal vectors of the two planes are oriented in the same direction. The angle
between the normal vectors of the opposing faces of the building should be 0◦. As shown
in Figure 6b, the normal vectors of the opposing facades were not parallel and had a
certain angle; thus, the angle between the vectors and the rotation axis could be found
according to the two normal vectors. The formula for the rotation matrix was derived as
described below.

It is known that the vector before rotation is
→
a (a1, a2, a3) and the vector after rotation

is
→
b (b1, b2, b3); hence, the vector inner product is

→
a ·
→
b =

∣∣∣→a ∣∣∣∣∣∣∣→b ∣∣∣∣cosθ (5)

The angle between the vectors
→
a and

→
b is

θ = arccos

 →
a ·
→
b∣∣∣→a ∣∣∣∣∣∣∣→b ∣∣∣∣
 (6)

Following cross-multiplication,

a× b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k (7)

Then, the rotation axis
→
c is c1

c2
c3

 =

 a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 (8)

The rotation matrix R∗ is obtained from the Rodrigues rotation formula [37,38]:

R∗ = Ecosθ + (1− cosθ)

 a1
a2
a3

(a1, a2, a3) + sinθ

 0
a3
−a2

−a3
0
a1

a2
−a1

0

 (9)

R∗ is reduced to

R∗ =

∣∣∣∣∣∣
cosθ + a1

2(1 − cosθ) a1a2(1 − cosθ) − a3sinθ a1a3(1 − cosθ) + a2sinθ
a1a2(1 − cosθ) + a3sinθ cosθ + a2

2(1 − cosθ) a2a3(1 − cosθ) − a1sinθ
a1a3(1 − cosθ) − a2sinθ a2a3(1 − cosθ) + a1sinθ cosθ + a3

2(1 − cosθ)

∣∣∣∣∣∣ (10)

where E is the third-order unit matrix, and the second term of the formula is a tensor
product. The result is a matrix of three rows and three columns, and the rotation matrix R
of 3 × 3 order is obtained by operation.

The ICP algorithm can theoretically find the optimal rotation matrix R* from the
nearest point correspondence of the points; however, due to the low overlap between the
source and target point clouds and the lack of noise immunity, it is easy to get the local
optimal solution, leading to a mismatch. Therefore, we calculated the angle of the normal
vector of the opposite face of the building to obtain the rotation matrix R* for rotation
correction. The diagram of the result after rotation correction is shown in Figure 6c. After
rotation correction, the normal vector of the opposite facade was parallel, but the translation
needed to be further refined to get the result of Figure 6d. Therefore, for the next process,
the aim was to determine the translation vector t*.
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2.5. Final Shift Correction

The point clouds after PCA-based coarse alignment and rotation correction are shown
in Figure 7a. The rotation errors of the two point clouds were accurately corrected, while
the final displacement vector t* still needed to be accurately calculated. Figure 7b,c show
the height difference between the two point clouds, and the z′ value of displacement vector
t* could be calculated by calculating the height difference between the target and source
point clouds of the building facade.
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Figure 7. The source and target point clouds after coarse alignment and rotation correction are shown
in green and blue: (a) point cloud of the top view; (b) point cloud of the side view; (c) point cloud of
the front view.

For the two-dimensional displacement vectors x′ and y′, the point cloud of the building
facade needed to be projected onto the two-dimensional plane for calculation. Using a priori
information about the building to determine the vertical distance between the opposing
facades of the building, we could determine d by measuring on Google Earth or in the field.
As shown in Figure 8, we selected a set of building opposing facades of the experimental
data to calculate the 2D displacement vectors, with the source and target point clouds
corresponding to the two facades of the building. The point clouds of the building facades
were projected to the xy plane, and the projected facade point clouds were fitted with
RANSAC.
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3. Results and Discussion

In this section, three sets of experimental data with different scenes are used to evaluate
the performance of the proposed method in this paper. The TomoSAR point clouds in the
experiments were generated by 3D imaging of the ascending and descending orbits of
TerraSAR-X spotlight data in Baoan District, Shenzhen, with 18 images of the ascending
orbit and 37 images of the descending orbit, both of which had a time span greater than
800 days. Three urban scenes with different complexity were selected for experiments,
as shown in Figure 9. Experiment 1 and Experiment 2 verified the robustness of this
paper’s method to align the ascending- and descending-orbit TomoSAR point clouds,
while Experiment 3 verified the robustness of this paper’s method to align the single-orbit
TomoSAR and MLS point clouds.
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Figure 9. SAR images and optical images of three experimental scenes. The experimental area is red
wireframe building 1 and building 2.

The alignment accuracy evaluation measured the angular rotation deviation and
translation deviation between the aligned point cloud and the true point cloud. Due to
the lack of real point clouds, we selected the TomoSAR point clouds generated when the
geocoded distance direction and azimuth direction fitting error were less than 1 as the
validation data for Experiments 1 and 2. The low sparse density of the TomoSAR point
cloud and the small amount of information for extracting conjugate features did not allow
the introduction of line, surface, and body-based feature elements for accuracy evaluation.
Therefore, the alignment accuracy was evaluated by the difference between the calculated
transformation parameters Er and Et and the validation data, according to the RMSE. In
addition, for Experiment 3, which lacked validation data, we evaluated the difference
between the angle θ of the two normal vectors between each facade shown in Figure 6, as
well as the difference between the vertical distance of the outer endpoints of the aligned
facade shown in Figure 8 and the true value d.

3.1. Homologous TomoSAR Point Cloud Alignment Experiment 1

In Experiment 1, an open urban area with no high-rise buildings around was selected;
the main building in the area had 10 floors, and the building height was about 50 m. The
descending-orbit TomoSAR and ascending-orbit TomoSAR point clouds were selected as
the source and target point clouds, respectively. The two point clouds were extracted by
statistical filtering and DoPP-based building points, and then, PCA-based coarse alignment
was used; the coarse-aligned point clouds had good initial positions. Then, the point clouds
were finely aligned using the method of this paper, ICP algorithm and FPFH algorithm,
after which the results of the alignment were compared and evaluated in terms of accuracy.

In our experiments, the elevation information of the source and target point clouds
were used for the fine alignment of the whole building point clouds; therefore, in the data
preprocessing step, we extracted and filtered out the available elevation information and



Sensors 2023, 23, 852 12 of 19

showed it with red point clouds in Figure 10a.The ICP algorithm was more sensitive to the
initial position and rotation error of the point clouds, and the algorithm combined the two
point clouds through the nearest neighbor search; The FPFH algorithm aligned two point
clouds together by calculating the neighborhood features of the points. Since the TomoSAR
point cloud is a sparse point cloud with an uneven distribution, the algorithm is limited
by the process of feature extraction; however, due to the overlap of the two point clouds
being extremely low, the ICP algorithm tended to obtain a local optimal solution, which
led to unstable results of the alignment. Table 1 presents the quantitative evaluation results,
revealing that the two point clouds still had large rotation and translation errors after coarse
alignment. Although the ICP algorithm reduced the translation error, the rotation error
increased due to its instability. The FPFH algorithm reduced the translation error and
rotation error, but their values are still large. Our method could achieve a rotation error of
0.019◦ and a translation error of 0.1242 m, which achieved a good alignment.
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Figure 10. Alignment results of homologous TomoSAR point cloud of Experiment 1: (a) raw data
and preprocessing of experimental data, including statistical filtering, extraction of DoPP-based
facade points, density clustering, and PCA-based coarse alignment; (b) top and oblique views of the
alignment results of the method in this paper and top view of the aligned facade points; (c) top and
oblique views of the alignment results of ICP algorithm and top view of the aligned facade points;
(d) top and oblique views of the alignment results of FPFH algorithm and top view of the aligned
facade points.
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Table 1. Alignment accuracy parameters of Experiment 1.

Method Rotation Error Er (◦) Translation Error Et (m) RMSE (m)

PCA 15.0321 9.2350 8.9866
ICP 16.1078 6.7562 6.9740

FPFH 9.2041 2.4132 4.5473
Proposed method 0.0189 0.1242 0.1913

For the alignment of the ascending and descending TomoSAR point clouds, we also
calculated the root-mean-square error to evaluate the alignment results, and the RMSE
was used to measure the deviation between the observed and real values. The distance
between the aligned point cloud and the real value was greater than 6 m. Although the
FPFH algorithm reduced the registration error, its RMSE is still 4.5473 m. As shown in
Figure 10c,d, the aligned point cloud of the building facade still had a large deviation from
the real building. The ICP algorithm was weakly applicable to the lift-track TomoSAR
point cloud. The FPFH algorithm has some applicability to the homogenous TomoSAR
point cloud, but it was limited by the quality of the point cloud itself, and its applicability
was reduced for TomoSAR point cloud with fractures and uneven distribution. The main
reason for its non-applicability was that the TomoSAR point cloud was not homogeneous,
and the overlap rate of the two points was too low. The method in this paper does not use
the overlap information for alignment but uses the elevation information for alignment;
the results of the alignment are shown in Figure 10b. From the top and oblique views,
the aligned point cloud and the target point cloud showed the structure of the building
accurately, and the elevation point cloud also had a precise position. Since the TomoSAR
point cloud contains many noise points and the TerraSAR-X image has a 3D resolution of
0.25 m, the alignment error of about 0.25 m is within the controllable range because the
method in this paper has a high alignment accuracy and strong robustness for aligning the
ascending and descending TomoSAR point clouds.

3.2. Homologous TomoSAR Point Cloud Alignment Experiment 2

A denser building complex was selected for Experiment 2. The main building in
this area had 18 floors and was about 65 m high. The descending-orbit TomoSAR and
ascending-orbit TomoSAR point clouds were selected as the source and target point clouds,
respectively. Since the region was more complex compared with the scene of Experiment 1,
the filtered point cloud still had a small number of dense outliers. Due to the limitation
of the onboard TerraSAR-X incidence angle, the two TomoSAR elevation point clouds
extracted using DoPP could not represent the facades of the six buildings in the scene, and
the point cloud on the facade of the rightmost rectangular building in the scene has been
removed because they were too sparse, but this did not affect the calculation of the method
in this paper; accordingly, the extracted building facades were sufficient to complete the
calculation of the rotation matrix and translation matrix.

The coarse alignment based on PCA roughly aligned the two point clouds together
according to their principal axes, and the two point clouds after the coarse alignment also
had certain rotation and translation errors. As in Experiment 1, we used the method of this
paper, ICP and FPFH, to finely align them. From the top and oblique views in Figure 11b–d,
our method achieved more accurate alignment results than the ICP and FPFH algorithm,
and the purple building elevation points were parallel to the source building facade points
and had precise spatial positions after alignment. As shown in Table 2, the alignment
results of the ICP and FPFH algorithm also had large rotation and translation errors, while
the errors of the methods in this paper were less than 0.25 m, demonstrating the high
accuracy and robustness of the TomoSAR point cloud alignment.
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Figure 11. Alignment results of homologous TomoSAR point cloud in Experiment 2: (a) preprocessing
of raw and experimental data, including statistical filtering, DoPP-based extraction of elevation points,
density clustering, and PCA-based coarse alignment; (b) top and oblique views of the alignment
results of the method in this paper and top view of the aligned facade points; (c) top and oblique
views of the alignment results of ICP algorithm and top view of the aligned facade points; (d) top and
oblique views of the alignment results of FPFH algorithm and top view of the aligned facade points.
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Table 2. Alignment accuracy parameters of Experiment 2.

Method Rotation Error Er (◦) Translation Error Et (m) RMSE (m)

PCA 12.0547 8.9407 8.6295
ICP 8.1752 6.8431 7.0945

FPFH 6.0982 9.8456 8.7361
Proposed method 0.0107 0.1584 0.1802

The results of Experiments 1 and 2 demonstrate the high accuracy and strong adapt-
ability of the method in this paper for aligning homologous TomoSAR point clouds, as well
as the good robustness of the alignment using the characteristics of the building facade for
the very low overlap rate of the two point clouds. The limitations of the image data and
building environment led to the point cloud of a particular track not being able to support
it for alignment. Our experimental solution was to align the TomoSAR point cloud on one
side with the point cloud on one side scanned by other sensors.

3.3. Cross-Source TomoSAR Point Cloud Alignment Experiment

Experiment 3 selected the TomoSAR point cloud obtained from 38-view downlinked
TerraSAR-X data after 3D imaging and the point cloud of one side of the building scanned
by a ZEB-REVO RTT portable laser scanner of CHC NAVIGATION. The experimental area
was a high-rise building with a complex building environment, and the main building had
32 floors and was about 100 m high. The downlinked TomoSAR and MLS point clouds
were selected as the source and target point clouds, respectively. Since the density of the
MLS point cloud was denser than that of TomoSAR point cloud, the threshold value for
setting filtering and building facade point extraction needed to be increased.

The results based on PCA coarse alignment are shown in Figure 12b. From the
top and oblique views, the two point clouds after aggregation had obvious rotation and
translation errors, and the top view of the building facade points showed the spatial position
relationship between the aligned facade point cloud and the target point cloud facade point
cloud, whereas the coarsely aligned facade points did not show their spatial position
correctly and could not express the building structure in the top view. In Experiments 1
and 2, the method of this paper and the ICP algorithm were used to finely align the point
clouds. The alignment results of the ICP and FPFH algorithm are shown in Figure 12d,e,
where the two point clouds showed visually obvious rotation errors, and the two facade
points did not have correct spatial positions. The alignment results of the method in this
paper are shown in Figure 12c. From the top and oblique views of the two points, the
two point clouds correctly represented visually the buildings for which the accuracy was
evaluated, and the facade points also had the correct spatial positions.

In the absence of real validation data, we evaluated the alignment results by the
angular difference θ of the designed facade normal vectors and the outer endpoint ∆d
of the facade. We calculated θ and ∆d for planar buildings 1 and 2 within the scene in
Figure 9c after alignment by the ICP algorithm, FPFH algorithm and the method in this
paper, and the results are shown in Table 3. The ICP method could not correctly rotate the
two point clouds, and the angle between the opposite elevations of buildings 1 and 2 after
alignment was about 24◦, while the value of ∆d was greater than 1.5 m. The FPFH method
also could not rotate the two point clouds correctly, after registration, the relative elevation
angle of building 1 and 2 is about-19◦, and the ∆d value is more than 3.0 m. From the
experimental results and accuracy analysis, the ICP and FPFH algorithm could not calculate
the exact correspondence between the TomoSAR point cloud and the MLS point cloud, and
although the translation error was close to the meter level, it had a more obvious rotation
error. However, our proposed method had significantly improved accuracy compared
with the ICP and FPFH algorithm; the translation error reached 0.25 m, and the normal
vectors of the rotated building facade point clouds were parallel with minimal rotation
error. Since the TomoSAR and MLS point clouds contained many noise points and the
difference between the two point clouds was too large, we believe that the error after
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alignment is within the acceptable range, but the accuracy and efficiency of the alignment
still have room for improvement; in particular, the efficiency of the algorithm needs to be
further optimized.
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Figure 12. Experiment 3 alignment results of cross-source TomoSAR point cloud with MLS point
cloud: (a) top, front, and left views of the original data; (b) top and oblique views of the coarse
alignment results based on PCA and top view of the aligned facade points; (c) top and oblique views
of the alignment results of this paper and top view of the aligned facade points; (d) top and oblique
views of the alignment result of ICP algorithm and top view of the facade point after alignment;
(e) top and oblique views of the alignment results of FPFH algorithm and top view of the aligned
facade points.
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Table 3. Alignment accuracy parameters of Experiment 3. Processing times are obtained by a regular
desktop PC (Intel i7-11700).

Building Method Θ (◦) ∆d (m) Time (s)

Building one
ICP 24.5624 1.5898 4.1847

FPFH −19.4571 3.2489 64.4830
Proposed 0.1681 0.2259 24.4830

Building two
ICP 24.2873 1.5788 3.7857

FPFH −19.6317 3.3115 47.6954
Proposed 0.1487 0.2314 22.8704

3.4. Discussion

In this paper, we proposed an alignment method to align homologous and cross-
source TomoSAR point clouds using the normal vectors and outer endpoints of building
facades. The above experimental results verified the effectiveness of the proposed method.
Compared with the famous PCA, ICP, and FPFH algorithms, the proposed method has the
following advantages and disadvantages:

(1) The most important significance of our method is that it could be applied to both
homologous and cross-source TomoSAR point cloud registration, helps to accurately correct
rotation and translation errors, and could realize the complete observation of 3D buildings
based on TomoSAR point clouds. In contrast, PCA algorithm could only achieve rough
registration of two point clouds, and subsequent fine alignment was required to obtain
more accurate alignment results. Although ICP algorithm can reduce the translation error,
the registration result had a large rotation error and could not correctly display the building
structure. The FPFH algorithm was applicable to homologous TomoSAR point clouds in
simple environments, but it was not used in homologous TomoSAR point clouds with
complex environments and cross-source TomoSAR point clouds.

(2) Our method does not depend on the overlap between the two point clouds but
obtains the architectural points in the experimental scene and extracts the facade points
through statistical filtering and DoPP projection filtering and calculates the rotation matrix
by using the angle of the normal vector of the opposite side of the building and then uses
the outer endpoint of the building facade projection to estimate the fine translation. The
experimental results and actual data show that the method proposed in this paper had
higher accuracy than other algorithms.

(3) However, the engineering process of this paper is more complex complicated and
less time-efficient, especially in the extraction of building facade information. Furthermore,
the calculation of facade information consumes most of the time. In addition, we need to
measure the vertical distance between opposite building elevations from high-precision
remote sensing images, cadastral information, or in the field.

In summary, for satellite-based synthetic SAR tomography point clouds, the method in
this paper can achieve the alignment of their homologous or cross-source urban multi-view
point clouds using building facade information. Moreover, we will continue to refine
the method and apply it to the alignment of point clouds acquired by other sensors of
different quality.

4. Conclusions

The TomoSAR point cloud of a single track cannot show the complete building struc-
ture. In order to solve this problem, this paper proposed a robust homologous and cross-
source TomoSAR point cloud registration method. Under the condition of many noise
points and a low overlap rate, a complete TomoSAR point cloud registration process was
designed and implemented. The experimental process includes statistical filtering, building
facade point extraction based on DoPP, density clustering, and rough registration based
on PCA. The final rotation and translation coefficients are calculated from the angle of
the normal vector of the building facade and the distance between the outer endpoints.
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Experimental results showed that, compared with the ICP algorithm, the proposed method
is more robust in registering homologous and cross-source TomoSAR point clouds.

However, there are several aspects of our work that can be improved. First of all, for
the facade of building facade points, the method of this paper depends on the selection of
parameters, which greatly reduces the efficiency of registration. When there are enough
spaceborne TomoSAR point cloud data, we can use some deep learning methods to classify
and segment them. Secondly, the method in this paper can be applied to urban point cloud
registration collected by sensors of different quality. In future work, we will optimize the
efficiency of this method and further analyze and evaluate its performance of this method.
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