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Abstract: In order to train receivers in American football in a targeted and individual manner, the
strengths and weaknesses of the athletes must be evaluated precisely. As human resources are limited,
it is beneficial to do it in an automated way. Automated passing machines are already given, therefore
the motivation is to design a computer-based system that records and automatically evaluates the
athlete’s catch attempts. The most fundamental evaluation would be whether the athlete has caught
the pass successfully or not. An experiment was carried out to gain data about catch attempts that
potentially contain information about the outcome of such. The experiment used a fully automated
passing machine which can release passes on command. After a pass was released, an audio and a
video sequence of the specific catch attempt was recorded. For this purpose, an audio-visual recording
system was developed which was integrated into the passing machine. This system is used to create
an audio and video dataset in the amount of 2276 recorded catch attempts. A Convolutional Neural
Network (CNN) is used for feature extraction with downstream Long Short-Term Memory (LSTM)
to classify the video data. Classification of the audio data is performed using a one-dimensional
CNN. With the chosen neural network architecture, an accuracy of 92.19% was achieved in detecting
whether a pass had been caught or not. The feasibility for automatic classification of catch attempts
during automated catch training is confirmed with this result.

Keywords: American football; action recognition; convolutional neural network; long short term
memory; machine learning; catch training

1. Introduction

Sports have become more data driven in recent years. In competitive and professional
sports, all athletes are monitored in nearly every game and, if possible, also during training.
The monitoring provides data that can be analysed to further improve the performance of
individual athletes or the team, but it can also deliver information about opposition teams,
their tactics and strategy, strength and weaknesses, etc. [1–5]. As the amount of available
data is too large to be processed efficiently by coaches and analysts, the state of the art in
the analysis of such data comprises a mixture of computer-aided and human analysis and
evaluation [2,5–8]. The computer-aided part of the analysis is mostly based on modern
algorithms, e.g., methods of machine learning [9–13], though before any analysis can be
carried out, the data has to be gathered. Hence, some sort of monitoring device or sensor
is needed.

The digi sporting consortium has published an overview of electronic performance
and tracking systems (EPTS) under [14], which reflects the state of the art, how monitoring
of athletes is achieved in many sports, such as running, soccer and rugby. The major
information that should be monitored is highly dependent on the sport. Therefore, a wide
range of EPTS are used throughout various sports. Nevertheless, they rely on mostly the
same measurement methods to gain the data.
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In many sports, the position of an athlete is a highly relevant information, so the
major methods to determine an athletes position are either optically based or inertial
measurement unit (IMU) based. In some cases, the IMU-based method is extended and
combined with some global navigation satellite systems (GNSS), depending on the sport.
Saramento et al. reviewed the most common methods for match analysis in soccer in many
parts of the world, which relied mostly on video data [4]. At the same time, companies such
as Statsports provide products reliant on IMU and GNSS data to determine the performance
in soccer and other sports [15,16]. Positions and their change over time were also measured
optically by [17–19] in their studies throughout several sports. In the context of American
football, the position information is also relevant, but there are other metrics relevant from
a positional perspective. A more detailed performance analysis, with respect to the position
of e.g., a wide receiver, would also include the outcome of a catch attempt.

Pass-receiving athletes are monitored throughout the season of the NFL and NCAA
leading to statistics such as the number of receptions, the catch rate or similar statistics [20].
Some more detailed statistics might be the defense-adjusted yards above replacement or
the defense-adjusted value over average metric [21]. Unfortunately, there are some major
problems with the given data. All mentioned statistics about catching are derived from
various actions and outcomes during games in a season. By definition, this statistic excludes
a major part of each team, including the practice squad in NFL teams or any athlete without
game time. Furthermore, athletes with a relatively low amount of minutes during a game
do not have enough opportunities to catch a pass. Therefore, no meaningful analysis of
their performance can be derived. In leagues that do not have such statistics, due to the
lack of someone to gathers and processes the data, no analysis can be accomplished at all.
This means that for the majority of athletes in American football no statistic or performance
metric exists, which reflects the catching performance.

This major drawback can be resolved by introducing a system that can gather data from
exercises during regular training in American football. By gaining data there, the availability
of such data increases drastically. For that reason, Hollaus et al. introduced a system
that can distinguish between a successful and an unsuccessful catch attempt [22] that is
applicable in regular training. The system was based on IMUs along with a machine
learning algorithm, that classifies catch attempts as catch or drop. Several disadvantages
go along with the system such as mistriggering, catch attempts might not be recognized
as such and the need that all pass receivers must wear two wearables on their wrists that
might hinder them in their catching motion. Another possible way to gain information
about a catch attempt in training would be based on an IMU in the American football ball.
A similar approach is currently taken in sports such as soccer, cricket and recently also
American football [23–25]. The major drawback there is that it is not very suitable for a
regular catch training routine including many athletes, as different balls that contain the
IMU would be required. Additionally, it would be necessary to pair every athlete to one
ball to guarantee that all catch attempts are performed by the same athlete and enable
an individual analysis. By reviewing all potential methods to classify a catch attempt,
it became clear that all of the mentioned methods and the given measurement systems
have benefits and drawbacks concerning at least one of the following features: accuracy,
precision, mobility, robustness, etc. Based on the authors’ experience, a major requirement
for any system in sport is that any recording system must not hinder or restrict the athletes
in their regular training activities.

Due to this fact, it is investigated whether it is possible to classify audio and video
recordings of American football catch training. As the necessary camera and microphone
would not be placed on the athletes, these systems do not hinder them in their catch attempt
and would represent a major improvement over the original IMU system. In contrast to the
approach with an IMU in the ball, a central audio and video recording system would be
scalable and independent of the number of athletes participating in the training. Therefore,
it is potentially more cost efficient. Additionally, it does not wear out as an American
football ball would. Nevertheless, some drawbacks also exist for an audio and video
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recording system. One of them would be that the information, which can be generated
from such a system, only covers the outcome of a catch attempt. It would be much better
if the outcome of a catch attempt can be related to a specific catch scenario (e.g., catch a pass
over the shoulder during a deep run down the field or catch a quickly thrown screen pass
in front of the receivers chest or catch an nearly underthrown pass). If a human quarterback
should throw the passes with high precision and accuracy within such a scenario, major
limitations to the catch training would be given. The number of passes is limited by the
strength of the quarterback, as well as accuracy and precision, which tend to decrease with
fatigue. Therefore, a human quarterback is not the ideal solution to the given problem.
If the systems should also be able to set a scenario for the catch attempt, it is mandatory to
control the pass to the athlete via a passing machine. At the same time, it enables a more
detailed analysis of the catch attempt under specific scenarios. For this paper, the recording
system should be seen as a part of the passing machine, not as a stand alone system.

As the recording system was integrated into a passing machine, it became necessary
to further define, which passing machine should be used. Passing machines have existed
in American football for several decades [26,27]. In the last few years passing machines
became more automized and controllable. A company named Monarc introduced a fully
automated passing machine called the Seeker [28]. All the given systems have no open
interface for integrating external hardware. Therefore the passing machine, which was
designed by Hollaus et al. [29,30], is the only one that enables the development of the catch
recognition system, based on audio and video recordings. Still, the passing machine and
the recording system only enable a profound analysis of the catching abilities of receiving
athletes but an algorithm that analyzes is still missing.

The field of action recognition in sports heavily relies on algorithms based on machine
learning [31]. As the data are manifold in the given circumstance, there is the need of a
so-called time series classification algorithm on a signal basis for the audio data, but there
is an additional need to process a series of images containing the catch attempt of the
respective athlete. In the classification of time series data, Fazle et al. showed excellent
results when using a Long Short-Term Memory Fully Convolutional Network (LSTM-
FCN) [32]. Fazle et al. also adopted this concept and could further improve the accuracy of
the classification [33]. Ref. [34] shows an overview of common methods for classifying time
series data. The classification of video or image series data is, due to the high computational
complexity, challenging. However, recent research results show very good results in the
area of activity recognition [35]. Tran et al. showed a method for classifying videos using
Channel-Separated Convolutional Network (CSN). Very good results in activity recognition
are shown by Donahue et al. A Long-Term Reccurent Convolutional Network (LRCN)
is used as the model architecture [36]. In the field of sports, machine learning has been
used to classify sports [37]. There are also studies on human activity recognition, gait
analysis or human pose estimation [38–43]. In human pose estimation, the classification is
performed mainly using data from image capture [44]. Based on the literature and state of
the art in close fields, it can be imagined that it is possible to analyze catch attempts in an
automized way by applying the mentioned methods on audio and video data of automated
catch training.

Therefore, the main goal of this paper is to provide a system and an algorithm that
allows the automated analysis of a catch attempt in American football based on audio and
video data. The analysis should identify a catch or a drop with reasonable accuracy. Based
on [22] the accuracy should be at least close to or better than 93%.

2. Material and Methods

In this section the used methods are given in chronological order. First, the audiovisual
recording device and its integration into the given passing machine is outlined. The data
acquisition phase is shown secondly. Next, the preprocessing algorithms, including labeling,
are explained in detail. This section closes with the development of neural networks for
audio and video classification.
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2.1. Audiovisual Recording System

To train the neural networks, a recording system is needed for data acquisition. This
system should independently record and store an audio and video sequence of an athlete
during a catch attempt via an external trigger. The recording system is integrated into
the passing machine [29,30], which triggers the start of the recording. A camera and a
microphone with a directional pattern are mounted on the ball-throwing machine. Af-
ter triggering, an audio sequence and an independent video sequence are recorded. An
overview of the recording system is shown in the system topology in Figure 1. The central
point of the system is the computer system. The camera, the microphone with the ampli-
fier, the external USB memory storage and the trigger contact of the passing machine are
connected to it.

Figure 1. Blockdiagram of the audivisual recording system.

For the video recording, it was necessary to choose a camera that fits the requirements
of the experiment. The requirements were defined as follows. The receiving athlete may
attempt to catch the pass in a distance between 10 m to 50 m away from the passing machine.
For the whole range, it is necessary to record the entire body of the athlete during catching.
As various scenarios for the catch attempts are considered, including a catch attempt while
running or jumping, it is necessary to have at least a field of view of 4 m. This requirement
can be met with an opening angle of 22.7° and a sensor size of at least 1/2 . Therefore the
optics were chosen according to given need with the lens Edmund Optics 16 mm f/2.8 Ci-
Series. From a camera perspective, it was important to determine the minimum frame
rate, recording time and resolution. As the catch attempt starts when the pass is thrown
and ends when the pass is successfully caught or not, the recording time was considered
to be several seconds. Within the recorded seconds, the information about the outcome
of a catch attempt should be easily visible within the recorded frames. Considering a
frame rate of 1 fps and a recording time of 5 s, five recorded frames would be the outcome,
with images before and after the potential catch happened. The authors assumed that a
classification is possible based on a few frames that show the catching motion before and
after the respective catch happens. Nevertheless, a camera was chosen that can record a
frame rate of 60 fps, to have a better coverage and be able to find the minimum frame rate
based on an experimental approach, not on an assumption. The camera was configured
with a resolution of 640 × 512 pixels, since machine learning algorithms that use images as
an input often only need even lower resolutions than 640 × 512 pixels [45].

A microphone should be used to record the characteristic catching sounds of the
football. Since the sounds should also be recorded up to a distance of 50 m, a microphone
with directional characteristic needs to be chosen. This is also beneficial for the damping
of any external noise that comes from other sound sources in the surroundings. Most
of the directional microphones need so-called phantom power along with an amplifier
to have a well established recording quality. Based on the given requirements, many
possible microphone setups would be the outcome. The authors chose Rode NTG-2,
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but also state that many other setups would be possible. Since the microphone requires
external 48 V phantom power, the recommended audio amplifier Steinberg UR22mk2 is
used. The operation was performed via a USB 2.0 interface. The audio signal was recorded
with a sampling rate of 48 kHz, which is sufficient for the needs of the experiment.

A central computer system is used to record the audio and video sequence. In the
scientific community, different central computer systems are accepted, especially within
image processing [46]. The system which was chosen for the experiment is a powerful
System-on-Module (SOM) from NVIDIA called NVIDIA JETSON. It features a dedicated
NVIDIA Maxwell graphics processor with 128 cores, a quad-core ARM A57 processor and
4 GB LPDDR4 RAM. The power supply is provided by a 5 V/4 A plug-in power supply.
The operating system is loaded onto an SD card. To reduce the write access to the SD card,
the audio and video sequences are stored on an external data carrier (USB3.0/128 GB) as
can be seen as USB storage in Figure 1. A metal case was used to protect the system from
damage. The general purpose input/output (GPIO) to trigger recording is routed to a
housing connector.

2.2. Experimental Setup and Data Acquisition

The data that are necessary to train the networks were gathered in an experiment.
The experimental setup always consisted of a passing machine [30] which also carried the
recording system. The recording system was connected to rotate horizontally according
to the azimuth of the launch unit of the passing machine. Therefore, the orientation of
the microphone and camera is always the same as the horizontal orientation of the launch
unit of the passing machine. The passing machine was instructed to run a pass routine by
pressing a button on the machine. The pass routine starts with a short acoustic warning
signal. This warns the receiving athletes so they are aware that a pass will be released just
after the warning signal ends. This also triggers the audio and video recording so the catch
attempt is covered from pass release to a few seconds after the end of a catch attempt was
made. The recordings were then stored on the external USB-Storage according to Figure 1.

All participants were only instructed to attempt to catch the pass and try various
catch motions (e.g., faced toward the machine, while running, over-the-shoulder catches,
or similar). There were no further instructions for the catching process. The experiment
was designed to have as much variability as reasonably possible. Therefore, the experiment
was carried out with a total of thirteen different athletes. All the players were amateurs.
Most players have never caught an American football ball before and are not entrusted with
catching techniques. In this data, it is important to note that four of the thirteen players
with percentages of 67.57% are included in the dataset.

The experimental design was approved by the ethics committee of the MCI and all
participants have signed a declaration of consent. To enhance variability within the dataset,
the data recording was performed at two different locations, the auditorium at MCI and a
parking lot. The recordings at the MCI auditorium site were made indoors in the building
and recordings at the parking lot were made outdoors. At each location, passes are taken
with different background types. This should lead to a higher robustness of the neural
network with respect to a change in the environmental parameters. A total of five different
background types were chosen. In the outdoor area, the background types shrubbery,
shrubbery & wall and building are included in the dataset. In the indoor environment, two
background types are recorded, glass doors and a light background. The recorded dataset,
in a volume of 2276 passes, forms the basis for training the neural networks.

2.3. Labeling and Data Processing

The labeling of the data is indispensable for the training of neural networks. Therefore,
the labeling of the individual data is performed by the file name and consists of several parts.
The name of the recording system, information about key frames of the video, the class and
subclass, the recording location and the player are stored. Audio and video recordings are
stored separately. To still be able to assign the data to each other, they are labeled exactly
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the same—except for the file extension. In addition to the two main classes Catch and Drop,
subclasses are also formed. These subclasses contain the movement pattern of the athlete
during the catch the pass. The subclasses Jump, One-handed, Run and Stand are formed.
The catch types are not used for training the neural networks. However, the subclasses can
be used to analyze the dataset and for more future work. An important metric for training
is the ratio of caught passes (class: Catch) and uncaught passes (class: Drop). This ratio can
be seen in Table 1.

Table 1. Catch Attempts per Class.

Class Amount Ratio in %

Catch 1607 70.61
Drop 669 29.39

The Drop class has a significantly smaller share of the total amount of data with
669 recorded passes. When training the neural network, this can lead to the fact that data
belonging to the class Drop are not classified with the same high accuracy as data of the
class Catch [47].

Before the data ar fed to the neural network, it was processed in three steps. First,
the data were preprocessed, then duplicated, and finally stored in a specific file format.

When the video data were processed, the individual recordings are converted into
a four-dimensional matrix of the form 209 × 512 × 640 × 3. To train the neural network
with different datasets, the videos are scaled differently and their frame counts are varied.
The OpenCV scaling function is used to scale down the video. The frames are reduced to
four different sizes 100 × 100, 150 × 150, 200 × 200 and 250 × 250 pixels. In addition to
reducing the size of the frames, the number of frames in the video is reduced. The reduction
is performed using the number of the key frame at which the player touches the ball. Based
on this time point, only frames that are 0.5 s before and 1.5 s after this time point are further
used. Thus, the time range is 2 s. Three time intervals 0.5 s, 0.2 s, and 0.1 s are defined
between frames. The resulting videos have frame counts of 5, 12, and 21. After data
reduction, the videos are normalized to the range of values [0, 1]. The audio data, similar to
the video data, are trimmed, interpolated and stored as a matrix. The audio data, like the
video data, are trimmed to a period of 2 s. 0.5 s before and 1.5 s after the player touches the
ball are used for the sequence. The data are reduced to a size of 50,000 × 1 via interpolation.
Analogous to the video data, the audio data are also normalized. The normalization is
performed to the range of values [−1, 1].

Figure 2 shows the normalized audio and video data of class Catch. Here, the video has
the format 5 × 200 × 200 × 3. The audio and video data are time-synchronized. For every
trimmed sequence, the recorded time is given a unique offset such that the time is 0 s when
the athlete first touches the ball.

To increase the accuracy and robustness of the neural network, the data are multiplied.
Too little data can cause the neural network to generalize poorly and thus produce poor
results on unknown data [48]. Duplication of the data is applied to the video data and
to the audio data [48]. The video data are duplicated using four different methods [49].
The horizontal mirroring and cropping of the image, the addition of noise, and histogram
equalization. Duplicating the audio data is also performed with four methods. Two
methods, adding noise and adjusting gain, change the amplitude of the signal. Two
other methods make changes to the time course of the signal. Shifting and stretching or
compressing the audio signal. Especially when augmenting input data, overfitting of the
network must be cautiously avoided. Therefore, all network performances are judged using
test data as shown in the Results and Discussion section. Since the processing of the data
takes a lot of time and the dataset cannot be completely loaded into the working memory,
it must be cached on the hard disk and loaded sequentially for the training of the neural
network. The Tensorflow proprietary TFRecord format is used to store the data. This simple



Sensors 2023, 23, 840 7 of 17

binary format is used for storing large datasets and is optimized for Tensorflow [50]. In the
initial development phase tensorflow version 2.2.0 was used. In addition to conversion,
data are split before saving. Splitting is performed into a partial dataset for training (64.9%),
validation (12.2%), testing (22.9%). The splitting of the dataset is achieved with the function
StratifiedShuffleSplit, of the scikit-learn library. This function has the advantage that the
splitting of the classes is evenly distributed in all splits.

Figure 2. Processed audio and video data of class Catch in a synchronized fashion. Every extracted
frame is connected to the specific time stamp in the audio data.

2.4. Development of Neural Networks

The recordings contained in the dataset, consisting of audio and video data, are used
to train neural network models. These models are designed to perform binary classification.
The audio recordings consist of univariate time series data. The video data, on the other
hand, is composed of images in a specific time sequence. Several models are implemented
for classification due to the different data types. The optimization of the model structure
and hyper-parameters of all models is performed empirically. The optimization process
is performed in two stages. The optimization of the models is achieved using only the
training dataset of the raw data. No data duplication is used to reduce the computation
time. In the first stage the model structure is optimized and with the next stage a fine
optimization of the hyper-parameters was performed.

2.4.1. Classification Based on Audio Data

The classification whether a record belongs to the class Drop or to the class Catch
is performed with a first model purely based on the audio recordings. For classification,
a model architecture with several Convolutional layers connected in series and a fully
meshed output layer is used. An overview of the network structure of this model is shown
in Figure 3. The input to the model is the audio signal in the form of a one-dimensional
tensor with 50,000 elements. This is followed by four convolutional blocks, Conv-Block 1
through Conv-Block 4. These are used to extract signal features. The final classification is
performed using Fully Connected (FC) layers. The special feature of Conv-Block 1 to Conv-
Block 3 is the downstream Squeeze and Excitation (SE) block. Ref. [51] demonstrates that SE
blocks provide significant performance improvements with little additional computational
overhead. The model is trained with the training dataset. Since the classification is binary,
the Binary Crossentropy loss function is chosen. As an optimization function, for updating
the weights during training, Adam [52] is used. The batch size is set to 5. During training,
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the learning rate is adjusted after each epoch. The best results are obtained with an initially
higher learning rate of 1 × 10−5, which decreases linearly over 20 epochs to 8 × 10−6. This
is kept stable over 40 epochs and then exponentially reduced to 2 × 10−6.

Figure 3. Network structure of the audio model with the applied operations. To the right of the
operations, their set parameters can be seen, such as the number of neurons, filters and filter sizes.
The size of the tensor, at the model input and at the output of each of the convolutional blocks, is
shown on the left side.

2.4.2. Classification Based on Video Data

A CNN is used to extract the features contained in the individual images. However,
since training a CNN to classify image data requires a very large dataset to achieve high
accuracy, pre-trained network is used for feature extraction. Specifically, the VGG16 [45]
Network is embedded. This is a very compact mesh with relatively few parameters.
The network was developed to classify images and has been used with 1.28 × 106 Images
trained on 1000 classes. It gives very good results on the ImageNet dataset. Since a video
consists of multiple frames, feature extraction is applied to all frames separately using
TimeDistributed function. The output of the feature extraction has an additional dimension
that describes the temporal flow of the extracted features. An LSTM is used to account
for temporal dependencies between the extracted features. The network structure of the
implemented model is shown in Figure 4.



Sensors 2023, 23, 840 9 of 17

Figure 4. Network structure of the video model with the applied operations. To the right of the
operations, their set parameters can be seen, such as the number of neurons, filters and filter sizes.
The size of the tensor, at the model input and at the output of the VGG16 network, is shown in
the middle.

The model input is a tensor of the form number of frames × 200 × 200 × 3. An image
dimension of 200 × 200 × 3 is chosen because the VGG16 network was developed with
images of dimension 224 × 224 × 3 and is optimized for this purpose. Finally, the feature
extraction contains a flatten operation to suitably restructure the tensor for use with the
LSTM. To learn the temporal dependencies between the extracted features, an LSTM with
128 cells is used. The final block, which also contains the final output layer for classification,
is formed by FC layers, similar to the audio model. The training dataset is used to train the
model. Since the classification is binary, Binary Crossentropy is chosen as the loss function.
Adam is used as the optimization function. A batch size of 6 is used. During training,
the learning rate is adapted after each epoch. The best results are obtained with an initial
learning rate of 2 × 10−5. This is exponentially reduced from epoch 2 to 8 × 10−6.

2.4.3. Classification Based on Audio and Video Data

The pre-trained models for audio and video classification were integrated and linked
into a third model. This should lead to higher accuracy in the classification of the data,
since the entire dataset with the audio and video source is used for the prediction. The
network structure shown in Figure 5 provides an overview of the model. The video data
are processed using a model branch with the video classification model already trained.
The input tensor of the video data has the same size as the input tensor of the video
classification model.

The second network’s input is the audio data. The input processing is performed with
the already trained network of audio classification. The input tensor of the audio data has
the same dimension and size as the input tensor of the audio model. The last layers, which
are used for classification, are removed in both models. Instead, a fully connected (FC) layer
with a Rectified Linear Unit (ReLU) activation function is used. The two model branches
for processing the audio and video data are linked using the Concatenate function. Two
FC layers follow. The output layer for binary classification is an FC layer with a sigmoid
activation function. The training of the model is performed with the audio and video
training datasets. Binary Crossentropy is chosen as the loss function since the classification
is binary. A batch size of 3 is used. During training, the learning rate is adjusted after an
epoch change. The highest accuracy on the test dataset is obtained with an initial learning
rate of 1 × 10−5. The learning rate is exponentially reduced to 5 × 10−6 from epoch 2.



Sensors 2023, 23, 840 10 of 17

Figure 5. Network structure of the audio/video model with the applied operations. To the right of
the operations, their set parameters can be seen, such as the number of neurons, filters and filter sizes.
The size of the input tensor is shown per data type.

3. Results

As a result, all networks are evaluated on their accuracies and robustness. To test
whether the training dataset used impacts the classification result, the models are trained
with different training datasets. For this purpose, different combinations of training datasets
of the raw data are tested with duplicated data. The achieved accuracy in the classification
of the test dataset serves as a comparison value.

3.1. Performance of the Audio Network

The accuracies achieved by the audio network using different training datasets are
shown in ascending order in Table 2. Training the network with a combination of raw
data and stretched/compressed data in time causes a significant degradation in accuracy
compared to the result of the raw data alone. The combination of raw data and data where
the audio signal is amplified shows no significant improvement to the result of the raw data.

Table 2. Achieved accuracies of audio classification on the test dataset, using different combinations
of the training dataset.

Training Dataset Accuracy
Raw Data Shift Amplify Noise Stretch/Compress in %

Yes - - - Yes 76.88
Yes - - - - 78.18
Yes - Yes - - 78.70
Yes Yes - - - 80.52
Yes - - Yes - 80.52
Yes Yes - Yes - 81.04
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On the other hand, two combinations of datasets show a significant improvement in the
achieved accuracy. The combination of raw data with shifted signals and the combination of
raw data and the signal with noise both produce an increase in accuracy. Finally, the audio
model is trained with a combination of the raw dataset and the datasets with shifted and
noisy audio signal. The result can be increased again with this combination.

The evaluation of the classification, such as accuracy, hit ratio and F1-measure shows
very low values for the class Drop. The class Catch, on the other hand, shows better values
in the classification. The results of these metrics are shown in Table 3.

Table 3. Model assessment with the test dataset in audio classification.

Class Accuracy Hit Rate F1 Measure Number of Catch Attempts
in % in % in %

Drop 69 62 65 111
Catch 85 89 87 274

3.2. Performance of the Video Network

The accuracies achieved by the video model on different training datasets are shown
in ascending order in Table 4. Training the model with the raw data only gives the worst
results. No improvement in accuracy is shown by combining raw data and cropping. Good
results are obtained with dataset combinations of raw data with mirrors, noise or histogram.
Using all datasets when training the model shows no advantage over a simple dataset
combination. However, the highest accuracy can be achieved with the dataset combination
of raw data with mirrors, noise and histogram.

Table 4. Achieved accuracies of video classification on the test dataset, using different combinations
of the training dataset.

Training Record: 5 × 200 × 200 × 3 Accuracy
Raw Data Mirror Crop Noise Histogram in %

Yes - - - - 83.07
Yes - Yes - - 83.33
Yes - - Yes - 85.68
Yes Yes Yes Yes Yes 85.68
Yes - - - Yes 85.94
Yes Yes - - - 86.46
Yes Yes - Yes Yes 86.98

This dataset combination is used for further investigation in training the model. The ef-
fect of the size of the frames of the video on the achieved accuracy is tested. The model is
trained using datasets with four different frame sizes. Table 5 shows the results of classifica-
tion on the test dataset using different video configurations. The results show an increase in
model accuracy with increasing image size up to an image size of 200 × 200 pixels. Higher
resolution images do not produce better results with this model.

Table 5. Achieved accuracies of video classification on the test dataset, for datasets with different
image sizes. Raw, mirror, noise and histogram datasets are used respectively.

Training Dataset Accuracy in %

5 × 100 × 100 × 3 82.03
5 × 150 × 150 × 3 85.45
5 × 200 × 200 × 3 86.98
5 × 250 × 250 × 3 86.60
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Another test is performed. In this one, it is tested whether the number of frames of
the video used for training has an impact on the model accuracy obtained. The model is
trained with three different datasets. Videos with 5, 12 and 21 frames are used. The results
of classification on the test dataset can be seen in Table 6. Increasing the frames used per
video also improves the accuracy of classification to some extent. The maximum accuracy
can be achieved with the dataset where 12 images are used. Increasing the images per
video to 21 does not improve the result. The major drawback of increasing the number of
images, is the huge increase in computational cost for training and classification.

Table 6. Achieved accuracies of video classification on the test dataset, for datasets with different
number of frames. Raw, mirror, noise and histogram datasets are used respectively.

Training Dataset Accuracy in %

5 × 200 × 200 × 3 86.98
12 × 200 × 200 × 3 90.36
21 × 200 × 200 × 3 88.80

The model evaluation is performed using the key figures for the individual classes,
such as accuracy, hit rate and F1 measure. These can be seen in Table 7 and show, compared
to the audio classification, significantly higher accuracy for the classification of the class
Drop. The class Catch is classified, compared to the audio model, with a slightly higher
accuracy.

Table 7. Model evaluation with the test dataset in video classification.

Class Accuracy Hit Rate F1 Measure Number of Data
in % in % in %

Drop 86 79 83 111
Catch 92 95 93 273

3.3. Performance of the Combined Network

The accuracies achieved by the combined network, using different training datasets,
are shown in Table 8. Training the model with a combination of raw data and augmented
data leads to worse results in most cases. Only a slight improvement in accuracy is shown
by the combination of raw data and augmented data by using methods such as shifting
and amplification for audio and mirroring and histogram equalization for video data. This
dataset combination has the main advantage that the amount of data and therefore the
computational effort is low.

Table 8. Achieved accuracies of audio/video classification on the test dataset, using different combi-
nations of the training dataset.

Training Record Accuracy

Raw Data
Audio: Shift Stretch/Compress Noise Amplify

in %Video: Mirror Crop Noise Histogram

Yes Yes - - - 86.72
Yes - Yes - - 88.80
Yes Yes Yes Yes Yes 90.36
Yes - - Yes - 90.63
Yes - - Yes Yes 91.14
Yes - - - Yes 91.15
Yes - - - - 91.92
Yes Yes - - Yes 92.19
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The results show a different behavior when using augmented data as input for the
combined network when compared to the audio or video model. The studies of the audio
model and also the video model show an improvement in accuracy when using augmented
data for training the models. The audio/video model, on the other hand, shows a decrease
in accuracy in most cases, with one exception.

Using the metrics for each class, such as accuracy, hit ratio, and F1 measure, the model
is evaluated. The classification of the class Drop can be further improved by an absolute
value of 6%. The metrics can be seen in Table 9.

Table 9. Model assessment with the test dataset in audio/video classification.

Class Accuracy Hit Rate F1 Measure Number of Data
in % in % in %

Drop 88 85 86 111
Catch 94 95 95 273

4. Discussion

The results showed that, when using only the audio network it is not possible to
classify the data reliably. This model cannot be used as an independent system due to
low accuracy in the classification. The information content of the recorded audio data
was too low to achieve a higher accuracy. Analyses of the dataset show that in some
cases no audio signal of the ball hitting the player is recorded. This happens when the
player is too far away from the microphone or when too much ambient noise overlays the
recording. Recordings in a sports hall would show an improvement. The ambient noise
can be minimized and the quality of the audio recording can be increased.

The evaluation of the video network shows that classification of video data is possible.
The class Catch can be determined very well. The hit rate for the class Drop is still not
sufficient for a reliable classification of the data with 79%. However, it is important to keep
in mind that the size of the dataset is very small. With a larger dataset, higher accuracy may
be achieved. An increase in accuracy when using a larger dataset can already be observed
when optimizing the model.

The combined use of the audio and video network shows a strong improvement
in the classification of catch attempts. In comparison with the IMU approach in [22]
the performance is close. An overall accuracy on the test dataset of 92.19% is not yet
sufficient for the use of the model in a fully automatic training system. However, this result
demonstrates the feasibility of such a system.

There are also limitations of the system regarding its performance outside the given
scenarios of the experiment. In the experiment, only amateurs participated in two different
locations. This means, that other backgrounds, other athletes wearing other sportswear
that have other individual catching skills, might lead to worse accuracy. This issue can
only be solved by creating more versatile data in many different places with many different
athletes that have a wide range of catching skill level. Nevertheless, the initial goal was to
show that catch recognition can be achieved in American football using machine learning
based on audio and video data. This goal was achieved.

Another major limitation was the number of athletes within the area of sight of the
camera. In a training scenario, the background might not be as static as it was in the given
scenarios during the experiment. On a pitch, there might be more dynamic backgrounds,
which could lead to a worse performance. As no dynamic backgrounds were part of the
dataset, the network did not learn how to deal with them properly. As already mentioned,
the amount of data and the versatility of it is a major limitation of the given system. Though,
within the given constraints of the dataset the outcome is acceptable.
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5. Conclusions

As part of the paper, an audiovisual recording system was developed. This offers the
possibility to record a football athlete during catch training. Together with an automatic
ball-throwing machine, a comprehensive dataset was created. The dataset consists of audio
and video recordings with a dataset of 2276 recorded catch attempts. This was preprocessed
and duplicated by applying different augmentation methods. Three neural networks were
developed and optimized to classify the data. An evaluation of the three models showed
that the classification of the data was possible. From the individual model tests, it was
found that the audio model achieved the worst result in the classification. The model for
classifying the video data achieved good accuracy. The best performance was achieved
with a combination of the audio and video network. It was shown that the classification
of audio and video data is possible. The achieved accuracies of classification of 92.19%
confirm this study. Through the research accomplished in this work, a system for automatic
training of athletes can be developed. With such a system, it is especially possible to gain
new knowledge in the field of training athletes and developing training methods with
fully automatic systems. In comparison to the IMU-based system, the performance of the
combined network is slightly worse. Nevertheless, the major advantage of the combined
audio video approach is that there is no need to put wearables on the athlete. Therefore,
the training routine of receivers does not change, which most likely would result in better
acceptance of the system by coaches and athletes.

According to the authors, further research should focus on identifying the subclasses
of the catch motion, such as Jump, One-handed, etc. Another question that remains
unanswered is whether the improvement in audio quality allows for reliable audio-only
classification. Likewise, the classification using only video data could have interesting
applications in broadcast recordings of sports matches.

Another area that was not researched yet is the automated training and the develop-
ment of a performance index according to the data, recorded during automated training. It
can be imagined that an automated passing machine, that throws a pass accurately, can
throw passes athletes in a randomized way (e.g., 100 passes in total within the area of
reach of an athlete, 25 passes in each quadrant from seen from the athletes chest). Based on
the information if the athlete caught a pass or not, a performance index could be derived,
according to the quadrants. This approach could be extended to any other catching scenario
in American football catch training as the information is surely useful for coaches, scouting,
athletes, fans, etc.
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Abbreviations
The following abbreviations are used in this manuscript:

MCI Management Center Innsbruck
IMU inertial measurement unit
ICA independent component analysis
etc. et cetera
ADC analog digital converter
e.g. exempli gratia
CNN convolutional neural network
LSTM long short time memory
ReLu rectified linear unit
ML machine learning
FC fully connected
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