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Abstract: The emergence and advancement of flexible electronics have great potential to lead devel-
opment trends in many fields, such as “smart electronic skin” and wearable electronics. By acting
as intermediates to detect a variety of external stimuli or physiological parameters, flexible sensors
are regarded as a core component of flexible electronic systems and have been extensively studied.
Unlike conventional rigid sensors requiring costly instruments and complicated fabrication processes,
flexible sensors can be manufactured by simple procedures with excellent production efficiency, reli-
able output performance, and superior adaptability to the irregular surface of the surroundings where
they are applied. Here, recent studies on flexible sensors for sensing humidity and strain/pressure are
outlined, emphasizing their sensory materials, working mechanisms, structures, fabrication methods,
and particular applications. Furthermore, a conclusion, including future perspectives and a short
overview of the market share in this field, is given for further advancing this field of research.
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1. Introduction

Recent progress in electronic systems has ignited promising applications in many
fields, including consumer electronics [1,2], human–computer interactions [3,4], augmented
reality devices [5,6], and electronic skins [7,8]. A sensor that can sense the physical world
is an essential part of these systems. Conventional sensors are generally fabricated from
semiconductors that have rigid substrates or scaffolds that become deformable once they
are thinned and oriented into nanostructures [9], thus limiting their applications such
as wearable “smart” devices [10], soft robots [11,12], body motion tracking [13,14], and
portable medical diagnostic devices [15,16]. The emergence of flexible sensors made of
inherently elastic materials, such as hydrogels and organic semiconductors, may allow the
revolutionary development of electronic systems because of their significant advantage of
allowing a high degree of design freedom. A flexible sensor can be folded into different
shapes and even trimmed down to different sizes, thus greatly enlarging its fields of
application. For example, the integration of wearable electronics could meet the softness
demands of clothing or fit the irregular surfaces of tissues and the body.

The manufacture of flexible sensors needs novel designs and appropriate materials,
which mainly include conductors and synthesized materials. Conductors are generally
classified into the carbon family and the metal oxides (and sulfides). For example, graphene
is one of the most popular two-dimensional (2D) nanostructure-based semiconductors in
the carbon family [17]. Non-transition-metal oxides such, as ZnO and SnO2, which exhibit
high sensitivity and favorable conductivity, are also widely used as sensing materials [17].
As a representative synthesized material, the emergence of MXene (e.g., Ti3C2Tx) has
greatly widened the selection of materials that are suitable for flexible sensors because of
its unique sandwich-like layer structure, its excellent electrical conductivity, and its large
area of hydrophilicity [18]. Furthermore, organic semiconductors with features such as
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π-conjugation, low cost, print compatibility, solution processability, and light weight are
other common sensing materials used for flexible sensors [19].

Alongside the materials, the substrate or structure is another core factor that affects
the particular demands and application of a sensor [20–22]. For example, to apply a flex-
ible sensor in wearable electronics, the designer must select a proper substrate material
and design that can withstand high strain values. Moreover, the substrate needs excel-
lent ability to integrate with the sensing element without affecting the device’s reliability
and digital signal readout [23]. The popular materials that have been adopted as flex-
ible substrates include polyimide (PI) [24], polyetheretherketone [25], polyethersulfone
(PES) [26], polycarbonate, poly(ethylene naphthalene) (PEN), hydrogel [27], and polyethy-
lene terephthalate (PET) [28]; however, their thermal stability, light transmittance, electrical
conductivity, chemical stability, and mechanical elasticity should be considered prior to
their practical application.

In this work, we selected noteworthy studies that aimed to demonstrate different
types of flexible sensors, rather than presenting all the relevant reported works in the
literature. For clarity, the most recent state-of-the-art flexible humidity sensors and flexible
strain/pressure sensors were adopted as examples to suggest the key future trends and de-
velopments of flexible sensors. The following subsections present the selection of materials,
structures, working mechanisms, and specific applications of flexible sensors for sensing
humidity and strain/pressure, and summarize the fabrication methods of the correspond-
ing sensors. Finally, a conclusion is provided, and the challenges of these emerging devices
are addressed for inducing the smooth exchange of new ideas and research interests.

2. Flexible Sensors for Sensing Humidity

Humidity sensors that can sense the presence or amount of water vapor in the atmo-
sphere or other environments have been widely applied in food monitoring, environmental
monitoring, human–computer interactions, etc. [29]. An ideal humidity sensor requires
high sensitivity, fast responses, a short recovery time, a wide monitoring range, excel-
lent durability, low cost, and high reproducibility [30]. In this subsection, the sensing
mechanisms, materials, and applications of humidity sensors are presented.

2.1. Sensing Mechanisms

The processes of sensing humidity typically involve changes in either the conductivity
or the capacitance of the sensing material. In 1806, Grotthuss observed the decomposition
process of water and the occurrence of some type of “action” that was transferred along the
line or chain of molecule formation [31]. The contemporary proton jumping theory is based
on the Grotthuss mechanism. This indicates that the transfer of protons occurs through
a series of hydrogen bonds between hydrated hydrogen ions and water molecules, as
shown in Figure 1a. The adsorption of water molecules can be divided into two processes:
physical adsorption and chemical adsorption. First, the water molecules occupy the water
affinity point through chemical adsorption. Next, the water molecules are adsorbed on the
chemically adsorbed molecular layer of water through a single hydrogen bond, and the
free protons jump through the physically adsorbed water molecules, thus increasing the
conductivity and capacitance based on the hopping process of the proton, which can be
expressed as [32]

H2O + H3O+ → H3O+ + H2O

Yi et al. generated carbonized fabric (CF) through the high-temperature carbonization
of cellulose and then immersed the CF in an acidic mixture to promote the growth of oxygen-
containing functional groups on the surface of the CF. The oxygen-containing functional
groups provided sufficient adsorption sites for the water molecules. Continuous water
molecules connected by hydrogen bonds underwent proton jumps, causing changes in the
resistance of the oxidated carbonized fabric (OCF), which could reflect the corresponding
changes in humidity (Figure 1b) [33].
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Figure 1. Example of the Grotthuss mechanism: (a) illustration of the humidity-sensing mechanism
of the PIL (reproduced with permission from [32]); (b) principle of the OCF sensor (reproduced with
permission from [33]).

In addition to the structures with the capacity for “proton jumps”, those with dielectric
layers in between the electrodes usually act as capacitance-based humidity sensors. Gener-
ally, the formula used to link the capacitance output of the sensor and the varying dielectric
constant of the sensing material in different wet environments is expressed as follows [34]:

Cp =
εrε0

d
S (1)

where Cp is the sensor’s capacitance, ε0 is the dielectric constant of the sensing material,
εr is the dielectric constant in air, S is the squared area of the capacitor poles, and d is the
distance between the capacitor poles. At a given temperature, ε0 is a definite value. S and d
are also definite values when the shape and size of the device have been determined. The
sensing material absorbs polar water molecules, resulting in enhanced polarization and
increased εr, which, in turn, increase the output, Cp. Zhang et al. prepared a new printed
parallel plate electrode-based humidity sensor that enabled contact with water vapor [35],
and it had a capacitance of up to several hundred pF higher than that provided by the
typical forked finger electrode because of the larger front-to-back area of the capacitance
poles’ plates.

Resistance-based humidity sensors are usually simple in their structural design and
have the advantages of less cost, low power consumption, and simple measurement
schemes [36]. The sensing mechanisms of resistive humidity sensors are related to the
change in conductivity caused by the absorption and resolution of water molecules on
the device’s surface. He et al. reported a humidity sensor made from a LiCl salt solution-
modified single-walled carbon nanotube (SWNT)/polyvinyl alcohol (PVA) filament, in
which the conductivity mainly came from the diffusion and movement of ions [37]. In this
case, Li+ and Cl− were generated during the dissolution of LiCl in water, thus dominating
the carrier transport-based mechanism. As the humidity level increased, more Li+ and Cl−

were generated by the deliquescence of LiCl; accordingly, the ion concentration increased,
resulting in increased carrier mobility, which decreased the material’s impedance.

Surface acoustic wave (SAW)-based mechanisms have also been widely adopted to
design humidity sensors [38]. The transmission speed or frequency of the SAW changes
when water molecules contact the surface of a SAW-based humidity sensor. Accordingly,
the change in frequency can be expressed as follows [39]:

∆ f =
C f 2

r
A

∆m (2)

where fr represents the resonant frequency, C is a constant, ∆m is the mass change caused by
the absorption of water, and A denotes the sensing area. Although SAW humidity sensors
have the advantages of high sensitivity, a miniaturized structure, stable frequency, and low
power consumption [40], they are typically fabricated on rigid substrates [41], showing
poor compatibility with flexible electronics.
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2.2. Materials and Design

The design and sensing materials are the core components of humidity sensors. From
the perspective of moisture-sensitive materials, materials with porous, pleated, and uni-
formly stacked structures often exhibit hydrophilic characteristics [34]. In addition to
their structure, moisture-sensitive materials easily bind with water molecules because of
their rich hydrophilic groups [42]. The popular materials used to fabricate the humidity
sensor typically involve the carbon family [43], metal oxide (and sulfide) types [44,45], or
polymers [46]. We do not intend to list all the relevant work in this review. For clarity, we
compare recently reported flexible humidity sensors using the aforementioned material
types and the related production methods (Table 1).

Table 1. Recent studies on humidity sensors.

Sensitive Material
Type Sensitive Material Measurement Parameters Production Method Ref.

GO Capacitance Screen printing [47]
Carbon-based CGO Resistance Electrospinning [48]

GO Capacitance Microwave plasma-enhanced
chemical vapor deposition [49]

SnO2/RGO Capacitance Electrospinning [50]
Metallic oxide or

sulfide TiO2 Current/voltage Anodizing [51]

MoS2/PVP Impedance Inkjet printing [52]
RGO/WS2 Frequency Sputtering [53]

SPEEK Capacitance/resistance Electrospinning [54]
Polymer PANI/PVDF Impedance Heterogeneous in-situ polymerization [55]

P(VDF-T rFE)/GF Capacitance Screen printing and spin coating [56]

The members of the carbon family are the most popular materials for fabricating
humidity sensors, e.g., graphene oxide (GO) and its derivatives. Wei et al. prepared a
capacitive flexible humidity sensor using ethanol-treated hydrophobic porous polytetraflu-
oroethylene (PTFE) as a substrate and graphene oxide (GO) as a moisture-sensitive material
(Figure 2a) [47]. The PTFE substrate greatly enhanced the amount of water molecules
adsorbed, due to the porous structure and the excellent hydrophilicity of ethanol. Li et al.
developed a crinkled graphene oxide (CGO) film-based sensor by pre-stretching shape-
memory polylactic acid fibers (SMPLAF) [48]. The unique crinkled morphology of the CGO
films provided a large specific surface area and a high capillary force, which facilitated the
absorption of water molecules. The as-prepared sensors had an excellent moisture-sensitive
humidity range and a stable baseline, which was achieved by adjusting the wavelength of
the folded structure. Wang et al. developed a capacitive humidity sensor that consisted of
vertically aligned carbon nanotube (VACNT) electrodes, a PDMS/parylene C double-layer
substrate, and GO, which acted as a moisture-sensitive material (Figure 2b) [49]. Although
the device had a simple structure, it displayed an ultra-fast response (20.8 ms) and recov-
ery time (19.9 ms), high sensitivity (16.7 pF/% RH), low hysteresis (<0.44%), and high
repeatability (2.7%).

As a conventional sensing material, metallic oxides or sulfides also exhibit great poten-
tial for fabricating humidity sensors. Yan et al. fabricated a SnO2/reduced graphene oxide
(RGO) nanocomposite with different reference ratios by the hydrothermal method. Sensi-
tive SnO2/RGO films were sprayed on polyimide (PI) films by electrospinning (Figure 2c),
and the SnO2 nanoparticles were uniformly distributed on the RGO nanosheets [50]. The
experimental results revealed that 1 wt% of SnO2/RGO had the highest sensitivity to water
molecules, while 2 wt% yielded the humidity sensor with the best performance in terms of
response/recovery and hysteresis. Farahani et al. prepared a flexible self-powered humid-
ity sensor based on TiO2 nanoarrays [51]. The high specific surface area, the nanoporous
structure, and the adsorption of water molecules at the Ti3+ defect sites made the TiO2
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nanotube arrays very suitable for sensing humidity. Jin et al. mixed polyvinylpyrrolidone
(PVP) with MoS2 to fabricate a humidity sensor [52]. The exfoliated MoS2 had a nanoscale
size, an increased surface-to-volume ratio, and more hydrophilic active sites, thus enhanc-
ing the moisture-sensitive properties of the sensor. Zhang et al. used RGO and tungsten
disulfide (WS2) heterojunctions to design a humidity sensor. The mechanism was based
on the transfer of electrons from materials with a low to high work function via the P-N
junction formed by RGO and WS2, while blocking the electron transfer channels through
the potential barriers formed between the P-N heterojunctions. Therefore, the sensitivity of
the sensor was improved because the electrons exposed to the outside of the material could
adsorb more and more water molecules (Figure 2d) [53].
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Figure 2. (a) Structure of a flexible humidity sensor using graphene oxide and PTFE (reproduced
with permission from [47]); (b) exploded view of a CNT-based flexible sensor (reproduced with
permission from [49]); (c) illustration of the process of preparing a SnO2/RGO humidity sensor
(reproduced with permission from [50]); (d) illustration of the different mechanisms of interaction
between RGO and WS2 (reproduced with permission from [53]); (e) illustration of a PANI/PVDF
IFHS sensor (reproduced with permission from [55]); (f) response and recovery time of a capacitive
humidity sensor at 10 kHz (reproduced with permission from [56]).

Polymers are materials that are commonly used to design flexible electronics because
of their superior elasticity, excellent mechanical properties, biocompatibility, simple man-
ufacturing process, and flexible mechanical structure [57]. The sensing performance of
polymer-based flexible humidity sensors depends mainly on the hydrogen bonds formed be-
tween the hydrophilic functional groups of the polymer and the water molecules [58]. Choi
et al. prepared sulfonated polyether ether ketone (SPEEK)-based electrospun nanofibers
with different degrees of sulfonation and deposited them directly on flexible substrates to
fabricate flexible humidity sensors [54]. The results revealed that the higher the degree of
sulfonation obtained, the more sulfonyl groups were contained in the PEEK membranes
and the greater the electrical conductivity exhibited. Zhao et al. designed flexible humid-
ity sensors (IFHS) by depositing polyaniline (PANI) on poly(vinylidene fluoride) (PVDF)
microporous membranes in the presence of a cetyltrimethylammonium bromide (CTAB)
surfactant [55]. The PANI/PVDF membranes have a prominent micro/nanostructure, and
the increased specific surface area enabled the humidity sensor to exhibit a promising
humidity-sensing ability. Moreover, the unilateral deposition of PANI and the high perme-
ability of the integrated flexible humidity sensor (IFHS) avoided direct contact between
PANI and human skin, thus mitigating the health concerns (Figure 2e). Khan et al. pro-
posed a humidity sensor using a P(VDF-TrFE)/graphene flower composite as a sensing
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material, which had a wide humidity monitoring range and a fast response and recovery
time (Figure 2f) [56].

2.3. Practical Applications

Flexible humidity sensors have critical applications in food storage [59], health mon-
itoring [60], contactless sensing [61], human–computer interactions [62], and industrial
and agricultural production [63]. As an example of their use in healthcare, humidity
sensors can monitor human respiration, which provides critical health information for
diagnosing diseases associated with heart attacks [64], asthma, anxiety, and epilepsy. Zhu
et al. developed an electrostatic self-assembled paper-based flexible humidity sensor using
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose fibers/carbon nanotube
(TOCFs/CNT) composite with different mixture ratios [65]. TC05 was a humidity sensor
with a TOCF-to-CNT ratio of 30:1, which was first applied for monitoring oral and nasal
respiration separately, as shown in Figure 3a. The change in the response of the curve
of mouth breathing is more pronounced, indicating that more moisture is exhaled by the
mouth than the nose.
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Figure 3. Applications of flexible humidity sensors: (a) the current signal profiles of human nose
breathing and mouth breathing (reproduced with permission from [65]); (b) image of the applica-
tion of the humidity sensor for monitoring human breath (reproduced with permission from [66]);
(c) photos of a SAS diagnosing–treating system with an integrated CEH sensor (reproduced with
permission from [67]); (d) a TiO2/CNC humidity sensor used in a moisturization experiment, in
which a commercial skin moisture detector was used as a reference (marked as “C”) (reproduced
with permission from [68]); (e) schematic illustration of MPHS for detecting exhaled air during speak-
ing (reproduced with permission from [69]); (f) proof-of-concept of non-contact fingertip interfaces
(reproduced with permission from [33]).

A printed flexible humidity sensor made of a cellulose nanofiber/carbon black (CNF/CB)
composite was deployed on a mask to monitor breathing within a relatively narrow space
(Figure 3b) [66]. The frequency of breathing could be analyzed through the change in the
sensor’s resistance profile. Li et al. prepared a self-powered (CEH) humidity sensor using
a graphene oxide (GO)/silk fibroin (SF)/LiBr electrolyte gel in which the power came
from the metal–air redox reaction [67]. The sensor was integrated with signal transmission
and processing module functions as an integrated respiratory monitoring and diagnostic
treatment system, and it could be used for the treatment of sleep apnea (Figure 3c). Wu et al.
used TiO2/nanocellulose to fabricate a humidity sensor for monitoring changes in moisture
in the skin of the arm. The humidity surrounding the arm increases significantly after
wiping and washing; the humidity decreased more slowly on the arm with moisturizer
compared with the one without moisturizer, and it stabilized at 47% RH after a slow
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decrease. The results of the as-fabricated sensor precisely matched that of the commercial
humidity detector (Figure 3d) [68].

Lu et al. made a flexible humidity sensor for speech recognition by anchoring multi-
layered graphene (MG) into electrospun polyamide (PA) 66 [69]. By detecting the water
molecules in the air exhaled by a person during speech, the characteristic peaks of dif-
ferent intensities corresponding to different syllables could be detected, thus enabling
speech recognition (Figure 3e). Gong et al. developed a cerium oxide/graphite carbon
nitride (CeO2/g-C3N4) nanocomposite-based self-powered humidity sensor [70]. The
sensor exhibits the ability to prevent the diseases associated with sedentary activity. Specif-
ically, the CeO2/g-C3N4 humidity sensor was mounted on a cushion that monitored
changes in humidity caused by sedentary behavior and gave a warning when the humidity
was high. Furthermore, the humidity sensor also showed potential for application in
a human–computer interface. Yi et al. fabricated a freestanding humidity sensor from
oxidated carbonized fabric (OCF) and integrated it into control interfaces, such as elevator
buttons and combination locks [33]. The sensor allowed people to use fingertip humidity
to transmit commands and perform operations (Figure 3f).

3. Flexible Strain/Pressure Sensors

The detection of pressure and strain is the first step in perceiving the physical world.
Recently, flexible sensors with the capability to stably sense pressure, strain, and even
arbitrary deformation have garnered immense interest in various fields, such as health-
care monitoring [71], electronic skin [8], medical diagnosis [72], and human–machine
interfaces [73]. The versatility and demands of advanced flexible strain/pressure sensor
technology have necessitated their further investigation and development. A brief sum-
mary of recent studies on strain/pressure sensors, including their structures and physical
characteristics, is provided in Table 2.

3.1. Operating Mechanisms

To detect external pressure (or strain) stimuli and then convert them into electrical
signals, diverse transduction principles have been extensively explored, including, but
not limited to, piezoresistivity [74], capacitance [75], piezoelectricity [76], and triboelectric-
ity [77]. The aforementioned mechanisms have inspired a variety of investigations into
stretchable and flexible strain sensors, and they have enriched the physical foundations of
this field of research.

The piezoresistive effect generally involves the change in the resistance of the material
under externally applied pressure or strain [78]. Generally speaking, the resistance of
material can be expressed by the following equation:

R =
ρL
A

(3)

where ρ, L and A represent the resistivity, length, and cross-sectional area, respectively.
Owing to their simplicity of fabrication, low cost, and easy signal readout, piezoresistive
pressure sensors have become the most widely used [79]. However, there are certain
drawbacks hindering such sensors from wider applications. For example, in an effort to
achieve stretchability, the sensors are mostly fabricated together with flexible substrates or
materials, which may lead to a slower response because of the intrinsic viscoelasticity [80].
Moreover, potential variations in the surrounding temperature could also weaken the
practical performance because of the lack of thermal stability [81].
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Table 2. Summary of the performance of some flexible pressure/strain sensors.

Research Field Innovation Sensitivity/GF Sensing
Range

Response
Time

Cyclic
Stability Ref.

Conductive
materials

Graphene foam 1.16 kPa−1 \ 150 ms >105 [82]
Urchin-like hollow

carbon sphere >10 kPa−1 1 Pa–10 kPa 60 ms >5000 [83]

Graphene/(CNT)
hierarchical networks

GF 197 at 10%
strain 50% strain \ >1000 [84]

Au film and polyaniline
Nanofibers 2.0 kPa−1 <3.5 kPa 50 ms >104 [85]

Structural
engineering

RGD spinosum 507 kPa−1 0–40 kPa 60 ms >5000 [86]
Multiscale and

hierarchical wrinkles GF 1078.1 650% strain \ >3000 [87]

Micropyramid arrays 19 kPa−1 0.05 Pa–80 kPa 48 ms >1000 [88]
Convex microarrays 30.2 kPa−1 0.7 Pa–10 kPa 25 ms >105 [89]
Graded intrafillable

architecture >220 kPa−1 0.08 Pa–360 kPa 9 ms >5000 [90]

Capacitive pressure sensors are generally composed of two parallel electrodes stacked
on two sides of a dielectric layer [91]. The output of a capacitive pressure sensor is the
variation in the capacitance caused by the external compression/tension stimuli. Capacitive
flexible pressure sensors have a simple structure, low power consumption, and high
reliability [92]. The piezoelectric effect generally refers to the generation of electrical
potential as a result of electric polarization when mechanical stress is applied to anisotropic
crystalline materials [93]. This characteristic of certain dielectric materials endows the
sensors with outstanding sensitivity and efficiency [94], enabling effective strain/pressure
sensing. However, such sensors cannot have an equal response to static stress, as the
polarization of internal charges emerges as an instant dynamic process [95].

The triboelectric effect has been widely reported [96]. Charges are transferred and
become concentrated when friction occurs between materials with different electrical
properties, thus leading to a detectable electric signal [97]. In the context of pressure and
strain sensing, the triboelectric effect has been adopted as a promising mechanism for
nanogenerator-based self-powered devices [98]. Therefore, the triboelectric effect can be
regarded as a significant energy source instead of as a negative phenomenon, as it was
previously regarded [99]. Wang et al. pioneered the development of a flexible triboelectric
generator [100] and had a crucial influence on the following related works [101]. It is
noteworthy that development of and research into these kinds of sensors are inseparable
from the discovery and use of triboelectric materials, and their lifetime is greatly affected by
the effects of friction [102]; therefore, further improvements and research are still imperative
for their practical utilization.

3.2. Materials and Structure

The sensing materials and structures significantly influence the performance of strain/
pressure sensors. The selection of appropriate materials must be thoroughly considered
prior to designing the sensor. In this subsection, the sensing materials, including the
nanofiller type, conductive polymers, and the newly emerged 2D materials, are reviewed.

Carbonaceous material and metals are commonly adopted as nanofillers integrated
with a flexible substrate to act as strain/pressure sensors. For example, carbon nanotubes
(CNTs) and graphene nanoplatelets (GNPs) are two representative materials that have at-
tracted extensive attention because of their outstanding properties and various forms [103].
Huang et al. demonstrated a wearable strain sensor based on multiwalled carbon nan-
otubes (MWCNT), which were encapsulated by PDMS to prevent the fragile conductive
filler from stress-induced damage [104]. The sensor exhibited a rapid response of about
20 ms and outstanding stretchability of 73.2% when applied on a complicated structural
surface and human skin. Zhong et al. developed a pressure sensor using wrinkled graphene
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foams as the sensing material, which exhibited excellent mechanical performance, such as
a response time of 150 ms and good stability after 105 loading–unloading cycles [82]. Zinc
chloride was introduced when preparing graphene oxide for the purpose of tuning the
foam structure. The interlayer distance decreased when withstanding compression stimuli;
as a result, the contact area of conductive materials increased, thus leading to a decrease
in resistance. Li et al. developed a hierarchical conductive network by combining CNTs
and GNPs [84]. When a strain was applied, the CNTs acted as bridges between the separat-
ing GNPs, optimizing the electrical connection between the conductive layers, as well as
enhancing the stretchability of the sensor without compromising its sensitivity. Park et al.
developed a stretchable, highly sensitive pressure sensor array that showed promise in the
field of artificial electronic skin and wearable devices [85]. The sensor was fabricated from a
microstructure with PDMS micropillars deposited on Au film and a conductive polyaniline
nanofiber-coated polyethylene terephthalate (PET) substrate (Figure 4a). Pressure caused a
variation in the effective conductive path between the two parts of the sensor, resulting in a
change in resistance. The device exhibited a sensitivity of 2.0 kPa−1 in the pressure range
below 0.22 kPa and a fast response time (50 ms).

In addition to the elastomers, conductive hydrogel are three-dimensional hydrophilic
cross-linked networks of natural or synthesized polymers that can also be used as con-
ductive materials [105]. Hydrogels are soft, stretchable, and biocompatible, showing a
similar biological nature to tissues [106]. Sun et al. demonstrated a hydrogel for which
the performance is enhanced by the integration of oxidized multiwalled carbon nanotubes
(oxCNTs) (Figure 4b) [107], while Yang et al. developed a chitosan-poly (hydroxyethyl
acrylamide) (CS-PHEAA) double-network hydrogel [108]. The doped free ions contributed
to ionic conductivity, while the immobile ones improved the mechanical performance of
the hydrogel (Figure 4c). By virtue of a rigid CS ionic network and a soft PHEAA hydrogen
network, the as-fabricated hydrogel strain sensor achieved outstanding compressibility
(ε = 98%) and superior low-temperature tolerance (as low as −50 ◦C), which were shown
in a frostbite experiment on rats.

MXenes, a family of 2D transition metal carbides, carbonitrides, and nitrides, are newly
emerging representative materials with a hydrophilic surface, as well as adjustable electri-
cal, chemical, and mechanical properties [109]. The accordion-like multilayered structure of
these materials endows them with variable interlayer distances and inter-atomic distances.
As a result, they can exhibit extraordinary conductivity and sensitivity when external
pressure or strain is applied. Cai et al. designed an ultra-thin stretchable pressure sensor
that was fabricated from composites of Ti3C2Tx-type MXene and CNTs (Figure 4d) [110].
The overlapping area of the neighboring Ti3C2Tx layer and the interconnecting conductive
pathways of the CNTs changed under pressure. This sensor exhibited an ultra-high sen-
sitivity (a gauge factor of up to 772.6) and excellent mechanical reliability (>5000 cycles),
indicating the superiority of MXenes.

Optimizing the structure is another feasible method for improving sensors’ perfor-
mance. These structures are usually designed to be bionic or artificially manufactured. The
so-called “bionic type” indicates a structure that has a similar biological shape or imitates
some biological characteristics. Zhang et al. developed a finger-shaped piezoelectric tactile
sensor with exceptional sensitivity (346.5 pC N−1 at 30 Hz), overcoming the defects of
traditional piezoelectric pressure sensors (Figure 5a) [111]. Owing to their slit organs in the
shape of cracks, spiders can sense extremely tiny strains on their cobwebs. Inspired by this
mechanism, Kang et al. first reported a nanoscale cracks-based sensor in 2014 [112]. Amjadi
et al. developed a controllable parallel cracks-based graphite sensor with a large gauge
factor of up to 522.6 [113]. The porous structure is also popular in sensor designs. This was
originally inspired by sponges, which have excellent stretchability and a wide detection
range. Yao et al. developed a new type of cracks-based microstructured pressure sensor
by coating a thin film of graphene oxide nanosheets onto a commercial polyurethane (PU)
sponge, which was then immersed into a hot hydrogen iodide solution to obtain rGO as a
conductive layer [114]. The as-fabricated flexible pressure sensor showed an outstanding
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sensitivity of 0.26 kPa−1 within a low-pressure range (<2 kPa) and had a minimum detec-
tion limit of 9 Pa. Similarly, Golezar et al. fabricated a piezoresistive pressure sensor array
based on reduced graphene oxide coated on a PU sponge [115], which had an excellent
working range of up to 30 kPa and was capable of providing a pressure distribution map.
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The artificially manufactured structures usually involve, but are not limited to, pillars
(Figure 5b) [116], pyramids (Figure 5c) [88], and convex arrays (Figure 5d) [117]. Xiong et al.
designed a type of convex microarray based on polystyrene (PS) microspheres [89]. This
flexible capacitive pressure sensor consisted of Au film electrodes and an ultra-thin PVDF
dielectric layer, and demonstrated a super-high sensitivity of 30.2 kPa−1 for a tiny pressure
range of less than 130 Pa. Yunsik et al. demonstrated a microscale wave-structured capaci-
tive sensor using Ag nanowires as the sensing material (Figure 5e) [118]. This sensor had
very high sensitivity (>3.8 kPa−1) and a fast response time (<150 ms). Zhou et al. developed
a micro/nanoscale hierarchical wrinkle-structured strain sensor [87]. The wrinkles were
generated on the surface of Ecoflex as a result of respective ethanol-assisted solidification
and soaking in petroleum ether. It is worth mentioning that the volatilization of ethanol
during solidification could induce microscale wrinkles, while the nanoscale ones occurred
during the process of Ecoflex shrinking. The as-fabricated sensor could stretch to a strain
of up to 650% and withstand 3000 cycles under a strain of 200%, and had an ultra-high
gauge factor of 1078.1. Bai et al. demonstrated a flexible capacitive pressure sensor based
on a graded intra-fillable architecture (GIA) by pouring a mixture of PVA/H3PO4 onto
commercial sandpaper and peeling it off from the surface of the sandpaper after the curing
process (Figure 5f) [90]. The contact area was greatly enlarged by the use of this structure,
thus contributing to the sensor’s ultra-high sensitivity (Smin > 220 kPa−1) and extremely
high resolution (18 Pa).

3.3. Practical Applications

Flexible strain/pressure sensors have various fields of application [119]. We did not
intend to review all the relevant works in this subsection. For clarity, we emphasized
the practical (or potential) applications of the sensors in the fields of human–machine
interactions (HMI) and healthcare monitoring.

As a crucial technology of HMI, flexible pressure sensors are imperative for enhancing
artificial intelligence and HMI [120]. HMI can be regarded as a bridge between humans
and machines, allowing electronic devices to operate effectively [121]. Flexible sensors are
indispensable detection elements of wearable HMI systems, owing to their strong ability to
collect information [122]. An example is a flexible sensor that behaves in a similar way to
electronic skin, enabling robots to sense their surroundings and spatially detect external
stimuli [123]. Equipped with proper circuits, flexible pressure sensors (FPSs) integrated into
“smart” gloves can imitate human motion and perform remote tasks [124]. Yan et al. used a
new technology, laser direct writing (LDW), to design a flexible high-resolution triboelectric
sensor array (TSA), which displayed real-time motion tracking ability [125]. The self-
powered version could allow an HMI system to wirelessly control personal electronics
(Figure 6a).

In the field of healthcare monitoring, sensors are capable of detecting both small and
large changes in compression/tension because of their high gauge factor and stretchability.
For example, when deployed onto skin, a variety of physiological activities, including
vibration of the throat muscles [126], the bending of fingers [77] and knees [127], the wrist
pulse [128], and even vigorous sports [129], can be monitored through the application of
these sensor. As a supplementary method in the field of medicine, FPSs are promising candi-
dates for monitoring a patient’s breath, pulse, and heart rates or other physiological indices.
Boutry et al. developed a flexible pressure sensor using biodegradable materials for the
wireless monitoring of blood flow [130]. Unlike previously reported implantable devices,
this sensor disappears after an extended usage period, thus reducing the risk of trauma.
The key technology has been demonstrated in experiments on rats. In addition, Alex et al.
developed an electronic strain sensor for estimating the size of tumors (Figure 6b) [131].
Compared with the traditional methods of diagnosis, such as bioluminescence and CT, that
may have a risk of toxicity, economic issues, or concern about radioactivity, the application
of such sensors, which was clinically validated in a rat experiment, paves the way toward
new diagnostic technology without creating the aforementioned problems.
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4. Perspectives and Conclusions

Considering that most electronics and sensors must be applied in scenarios where
arbitrarily curved interfaces exist, the mechanical properties of a sensor (specifically, the
flexibility) are essential for improving its adaptability to fit the irregular surface. Fur-
thermore, flexible sensors have a wider selection of materials, much easier fabrication
procedures, and much lower manufacturing costs than conventional rigid-substrate sen-
sors, thus holding significant promise for extensive innovative applications in various
fields, including disease prevention, healthcare monitoring, and artificial electronic skin.
This point can be illustrated by the market share of flexible sensors and related products.
IDTechEx reported that the markets for wearable and printed sensors are expected to reach
USD 5.5 billion and USD 8 billion by 2025 [17], while the market for flexible sensors is
expected to be larger than that of wearable and printed sensors, because the former have
wider areas of application.

Flexible humidity sensors are regarded as the fastest-growing sensor types, and flexible
strain/pressure sensors are among the most sophisticated sensor types [17]. These two
types were selected as representative examples to demonstrate the rapid advances in
the sensing materials, structures, and processing approaches. However, some challenges
remain for the development of more advanced flexible sensors in future research. First, for
flexible sensors that are deployed on human skin or other body organs, the biocompatibility
and appropriateness of the materials need to be thoroughly analyzed; for example, long-
term usage of gas-impermeable or toxic materials may cause irritation and inflammation of
the skin [132]. Second, improvements in both the mechanical performance (e.g., elasticity
and robustness) and electrical signals (e.g., sensitivity) should be considered, rather than
making a trade-off between these two. Third, fully functional flexible electronics that consist
of different sensors in a limited space may increase crosstalk, minimizing the dimensions of
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the sensing elements, and integrating them with functional components such as transistors
may address the aforementioned issues without weakening the signals’ readout. Finally,
the slower development of rigid-substrate power and digital communication modules has
created poor compatibility with flexible electronics, reflected by difficulties in the seamless
integration of multiple advanced functional electronic components.

Throughout this review, we have presented the working mechanisms of humidity
sensors and strain/pressure sensors, and the popular materials, structures, and fabrica-
tion methods of the sensors. Moreover, some representative examples of the sensors that
respond to HMI, physical, and biological signals were described, possibly inspiring re-
searchers to continue to develop innovations in advanced sensing materials, superior
structures, and better fabrication processes. From the perspective of future develop-
ments, flexible sensors need to be highly reliable, stable, robust, accurate, and durable,
as well as involving simple and low-cost manufacturing processes. Future achievements
will bring us closer to an electronic era in which our perceptions can be extended with
limitless possibilities.
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