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Abstract: Vital signs estimation provides valuable information about an individual’s overall health
status. Gathering such information usually requires wearable devices or privacy-invasive settings.
In this work, we propose a radar-based user-adaptable solution for respiratory signal prediction
while sitting at an office desk. Such an approach leads to a contact-free, privacy-friendly, and easily
adaptable system with little reference training data. Data from 24 subjects are preprocessed to extract
respiration information using a 60 GHz frequency-modulated continuous wave radar. With few
training examples, episodic optimization-based learning allows for generalization to new individuals.
Episodically, a convolutional variational autoencoder learns how to map the processed radar data
to a reference signal, generating a constrained latent space to the central respiration frequency.
Moreover, autocorrelation over recorded radar data time assesses the information corruption due to
subject motions. The model learning procedure and breathing prediction are adjusted by exploiting
the motion corruption level. Thanks to the episodic acquired knowledge, the model requires an
adaptation time of less than one and two seconds for one to five training examples, respectively. The
suggested approach represents a novel, quickly adaptable, non-contact alternative for office settings
with little user motion.

Keywords: vital sign sensing; respiration signal; artificial neural networks; meta-learning; radar;
FMCW; few-shot learning; autocorrelation; variational autoencoder; signal processing

1. Introduction

Estimating a person’s vital parameters has always been an important research topic, as
it allows tracking of health status and preventing some diseases and potential accidents [1,2].
Vital signs include the breath wave, heartbeat, body temperature, and blood pressure. The
main focus of research is the heart wave, which gives direct information about how a
person’s heart is working and can help prevent life-threatening events such as a heart
attack or arrhythmia. The breath signal can instead provide information on how the
lungs are behaving. The breath wave shape can highlight if the subject is undergoing
a hyperventilation episode or if the airways are obstructed due to an allergic reaction
or a physical blockage [3,4]. The estimation of vital parameters is usually performed to
diagnose a health problem caused by some often acute symptoms. On the other hand,
continuous vital sign monitoring could predict and prevent the worsening of respiratory
and cardiovascular diseases, which account for 32% of worldwide deaths per year [5]. Vital
parameter estimation can be performed over days with portable ambulatory devices such as
the Holter monitor for electrocardiogram (ECG). For long-term measurements intended for
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prevention, however, ambulatory machines are not versatile due to cost, maintenance, and
the limitations of user activities. To counter this, wearable devices capable of monitoring
multiple vital parameters at the same time and reporting abnormalities have emerged over
the years [6,7]. Many wearable devices, such as smartwatches, proved to help predict vital
anomalies, but they also have the intrinsic need to be continuously worn. This can be
hard in the case, for example, of bulkier devices for breathing sense, which can be worn
by newborns or elders. Many solutions are therefore moving toward non-contact sensing
techniques [8].

Some non-contact solutions employ camera sensors. Through video signal processing,
it is indeed possible to extract parameters such as heart rate (HR) and respiration rate (RR),
which can be particularly useful in clinical or telehealth consultations [9,10]. The use of camera
sensors, however, can be inadequate in many applications, leading, especially in long-term
monitoring, to serious privacy concerns. The use of thermal sensors can be employed to
partially overcome this problem [11,12]. Yet, thermal measurements are sensitive to heat
and weather conditions and are not employable in all contexts. For contact-free sensing of
vital parameters, ultrasound systems can be an excellent privacy-friendly solution [13]. High-
frequency systems such as radar or Wi-Fi may have additional advantages, such as a much
greater spatial range and the ability to pass through surfaces [14–16]. WiFi-based solutions can
be very accurate in estimating vital signs [17,18] but often require systems with transmitting
(Tx) and receiving (Rx) antennas placed in separate devices, contributing to higher power
consumption than radar. Remarkable among the various radar modulations is the frequency
modulated continuous wave (FMCW), which enables simultaneous estimation of the relative
range, velocity, and angle of arrival of targets placed in the sensor’s field of view (FoV) [19,20].
The ability to sense static components, thanks to the frequency modulation of chirp signals sent
from the Tx channels of the FCMW radar, can enable privacy-friendly tracking of targets in
the FoV. Further, thanks to the micro-Doppler effect, radar can also sense small and periodic
displacements generated as vital signs [21]. The collected information, preprocessed in
phase, is particularly corruptible by continuous user movement. Nevertheless, non-contact
vital parameter estimation can be employed in relatively static settings, such as an office,
even for multi-person sensing [22].

Raw radar data are inherently difficult to interpret and often require artificial intel-
ligence (AI) techniques to filter useful information rather than pure signal processing or
computer vision. Many state-of-the-art solutions use Kalman filters to reduce measured
noise in vital signs or to update the specific parameter band-pass filter limits for estimates
and uncertainties of chosen state variables [23–25]. However, given the Kalman filter
assumptions, it is necessary to selectively filter out corrupted data caused by random
user movements to avoid corrupting subsequent vital sign estimates [23]. Other solutions
employ machine learning (ML) approaches to predict vital parameters in the form of time
series [26] or to extract relevant information, such as arrhythmia detection [27]. In other
cases, the interest is more in estimating the number of peaks in time than in reconstructing
the vital signs. In [28], to decrease prediction latency, the solution uses an artificial neural
network (ANN) exclusively to predict the presence of heart peaks from raw radar data
using labeled ECGs. Although all AI-listed solutions enable accurate reconstructions of
vital parameters or estimation of target variables, they all require a large dataset of training
data on various subjects for such an achievement. While tested in various contexts and
for new users, many solutions may not easily fit users with unconventional vital signs or
in new recording positions and angles. To address the big data need, a specific branch
of ML called Meta-Learning (Meta-L) is gaining momentum [29]. In Meta-L, the goal is
context generalization. An algorithm learns to solve various tasks via episodes, leveraging
the accumulated experience and only a little new available data to adapt faster in new
contexts. Usually, in each episode, the model tries to address an N–ways task, where N
represents the number of classes (one per regression) and k–shots, or k examples per class.
Generally, tasks are sampled from the same domain, and episodic learning often occurs
in two phases. In an inner step, the learning algorithm learns to solve a given task by
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exploiting support (S) examples. In an outer step, the ability to generalize to new tasks is
estimated and tuned using query (Q) examples. In optimization-based algorithms, such as
model-agnostic meta-learning (MAML) [30], the learning algorithm parameters update is
performed using gradient descent in both episodic steps.

In this paper, we present a user-adaptable FMCW radar solution based on signal
processing and Meta-L for breath signal estimation. The approach was tested in an office
desk-workplace with a single person in the FoV. The ideal user-radar board distance is
up to 40 cm. This non-contact solution is employable when the user under test performs
some actions characterized by little movements, such as laughing, talking, or using the
keyboard, but leads to better performances in idle scenarios. Continuous detection of
the user-radar range enables user tracking and radar preprocessing adaptation. Through
prior information acquired via Meta-L, the algorithm is adaptable to a new person with
a single or few training examples. The episodic training is designed to extract the breath
information from the radar data while minimizing the contribution of the detected motion
corruption due to the user’s actions. Data are collected for short sessions at the desk-
workplace, from 24 different users at 2 ranges of distances, up to 30 cm and 40 cm. Among
all the users, 14 are selected for training and 10 for testing. Radar data are gathered via the
FMCW 60 GHz radar system with 1 Tx and 3 Rx, while a breath-sensing belt is used as a
reference. In a single 30-second session, the collected radar data are first preprocessed in
frequency to extract the range information of a single target user. The phase signal, which
contains the breath information, is then unwrapped for a selected set of range bins, which
are dynamically adjusted over the sessions. A multi-output ANN trained episodically in
1–, 5–, and 10–shots aims to predict the user’s breath signal from the phase signal. The
ANN maps, via a convolutional variational autoencoder (C-VAE), the radar phase to the
belt reference signal, constraining the generation of latent space to the central frequency
(Fc) of breath. The overall topology scheme is depicted in Figure 1. A series of two-band-
pass digital biquad filters selectively filter the breath signal information according to the
predicted Fc. The autocorrelation of the extracted signal, performed with a sliding window,
allows estimating per session the level of corruption due to user motion. The corruption
information is thus employed in both episodic training and prediction to improve ANN
performance by fetching the most valuable information available in motion-corrupted
sessions. The main contributions of this paper are as follows:
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Figure 1. For each learning episode, a training subject is randomly sampled. For each training shot,
the radar phase information is mapped to the reference belt signal (ref.) via a C-VAE. Through
a dense layer, the ANN also tries to regress the extracted respiration Fc, learning from the ideal
belt Fc. The latent space mapping is thus constrained to the Fc, whose estimate is also used in the
prediction phase.
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1. Implementation, to the best of our knowledge, of the first few-shot user-adaptable
radar-based breath signal sensing solution.

2. Development of a specialized radar data preprocessing pipeline that dynamically
tracks the user’s position relative to the board.

3. Design of a cost function that constrains the generation of the latent space of a C-VAE
to the respiration Fc in a multi-output ANN.

4. Development of a corruption-based sample weighting approach that guides the
breathing signal estimation in the presence of user motion.

2. Related Works

In this section, we first investigate methods for non-contact estimation of the breath
signal, focusing mainly on high-frequency solutions that are AI-oriented. We then discuss
vital sign-sensing approaches that employ Meta-L techniques.

Alizadeh et al. [31] used a 77 GHz FMCW radar to extract vital parameters from a
patient lying down on a bed in a non-contact vital sign sensing solution. In this work, vital
signs are estimated by purely signal-processing-based methods. An initial fast Fourier
transform (FFT) is performed to extract the range information of the subject from the radar
board. The Fc of the vital signs is estimated on the unwrapped phase signal downstream of a
second FFT that calculates the vibrations, leading to the generation of a range-vibration map.
The vital signs are then extracted via a band-pass filter. This method allows reconstruction
of breath rate 94% similar to a reference signal but places the major constraint that the only
non-stationary features in the range-vibration map are the biological activities. This makes
the solution only applicable when the subject under test is idle. Wang Y. et al. [32] proposed
two different methods of vital signal estimation from phase information extracted from
data collected with a 77 GHz FMCW. These methods, namely the Compressive Sensing
based on orthogonal matching pursuit (CS-OMP) algorithm and the Rigrsure Adaptive
soft threshold noise reduction based on discrete wavelet transform (RA-DWT), separate
and reconstruct breathing and heartbeat signals instead of the more traditional band-pass
filtering. Although the results obtained are very similar to those obtained with contact-
based reference sensors, there is still the inherent constraint that the subject has to remain
stationary in front of the radar system. Iyer et al. [27] developed a solution that uses Fourier
series analysis on data collected by a 77 GHz FMCW radar to extract the vital signs of an
individual from various orientations. Although the paper mainly focuses on the heartbeat
for detecting arrhythmias using an ANN, the breath rate (BR) and the breathing wave
are also estimated. The latter is obtained through a digital biquad band-pass filter whose
parameters are invariant to the user or recording session. A filter that is not selective
enough can lead to noisy predictions with many falsely detected breath peaks due to
motion. Lee et al. [33] implemented a solution that detects the vital parameters of multiple
subjects in the FoV using a 24 GHz FMCW Doppler radar. Doppler phase information
is combined with range measurements obtained by parametric spectral estimation to
distinguish multiple targets even beyond the theoretical range resolution limit. Likewise,
in this approach, a band-pass filter with relatively wide bandwidth is utilized, which
may not be adequate in all contexts. Lv et al. [34] used a much higher frequency FMCW
120 GHz radar system to estimate the vital signs of eight volunteers. The solution mainly
focuses on acquiring the heartbeat signal, utilizing a notch filter to filter out the respiratory
harmonics in the spectrum of interest. This is mainly conducted to overcome the problem
of overlapping and interference of breathing and heart harmonics in some measurements.
As also mentioned by the authors, the classical FFT approach does not guarantee the correct
prediction of vital parameters in motion-corrupted scenarios. Gong et al. [35] illustrate an
FMCW-based solution for vital sign estimation that also seeks to address the problem of
sensing even in the presence of motion. The approach combines direct FMCW sensing for
static instances with an indirect vital sign prediction based on motion power estimation.
Two sub-long short-term memories (sub-LSTMs) are used to estimate the RR; they first
classify the motion patterns and then estimate the RR. The method is robust even with some
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random movement patterns, such as lifting an arm, in new environments, and with new
users. However, the variation in RR is estimated and not the respiratory signal, which can
give additional information about a user’s health quality. It is also not specified whether the
users were allowed to speak during the recordings or whether this activity was taken into
account. Wang D. et al. [36] proposed an interesting comparison in vital sign estimation
between impulse radio ultra-wideband (IR-UWB) and FMCW radar. While radar FMCW
needs phase information to extract vital signs, IR-UWB uses distance information. The data
of both radar topologies are processed with a relatively standard approach that employs
a band-pass filter. The IR-UWB achieves a better estimate and signal-to-noise ratio (SNR)
but needs to send many pulses to distinguish the signal from noise. A high pulse rate
per second also requires a high-speed analog-to-digital converter (ADC) which increases
cost and hardware design complexity compared to the FMCW. For the FMCW, on the
other hand, a narrow instantaneous bandwidth allows the use of lower-speed ADCs. In
addition, multiple-input-multiple-output (MIMO) topologies for FMCWs allow multiple
target locations and real-time monitoring. Rana et al. [37] presented a system that processes,
via short-term Fourier transformation (STFT), the data collected from a UWB radar to
extract vital signs. Data are collected in various areas of the house. The UWB recordings
are complemented by a multi-class support vector machine (MC-SVM) that distinguishes
vital signs when different activities are performed in the available locations. This approach
shows preliminary results of how it is possible to recognize specific user activities with
little training data. This could also potentially be used to improve the estimation of activity-
related vital signs. Khan et al. [38] illustrated a channel state information (CSI) based
WiFi sensing solution to track the vital signs of a patient. With the features extracted from
the collected data, the health status of patients is estimated through four types of ML
algorithms via classification. These algorithms are K-nearest neighbor (KNN), decision
tree, random forest, and support vector machine (SVM). The presented feature extraction
approaches make it possible to preserve valid information by decreasing the dimension of
the individual examples collected and simplifying the task of ML algorithms.

As far as we know, there is only one source for video-based physiological measurement
that uses Meta-L and few-shot learning to estimate vital parameters. Liu et al. [39] proposed
a Meta-L-based approach for personalized video-based non-contact cardiac pulse and heart
rate monitoring. Thanks to the episodic training of MAML, the approach requires only
18 seconds of video for customization to new scenarios with different users, sunlight,
and indoor illuminations. The solution, evaluated in two benchmark datasets, yielded
substantially superior performances compared to state-of-the-art approaches.

3. System Description and Implementation

This section gives a general overview of the system, a description of how the data
acquisition system is set up, details on radar system configuration, and the main prepro-
cessing steps.

3.1. General Overview of the Proposed Framework

The proposed framework is depicted in Figure 2. For a Meta-L solution, a dataset as
small and diverse as possible is generated. Specific information about the breath dataset for
Meta-L is given in Section 3.7. The recordings from the respiration belt, which serves as a
reference sensor, and the FMCW radar are collected synchronously over 30 s sessions using
the recording setup described in Section 3.3. The preprocessing, as depicted in Section 3.4,
aims to unwrap the phase information, reconstructing the displacement generated by user
breathing. During dataset generation, the radar-based respiration signal Fc is estimated by
calculating the maximum correlation between the radar phase and belt reference down-
stream of a double biquad band-pass filter (Sections 3.5.1). The entire Meta-L stage is
presented in Section 4. From the estimated breath signal, it is also possible to calculate
the instantaneous breaths per minute (bpm) and the amount of corruption per recording
session caused by user motion (Section 3.6).
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Figure 2. The diagram shows the main steps of the implementation. For a chosen scenario (room and
user), several data sessions with synchronized radar and a reference respiration belt are collected.
For multi-output ANN, the labels consist of belt reference signals and the central breath frequencies,
estimated from the pure belt reference. The data from fourteen users are then used to train an ANN
episodically using Meta-L, while the data from the remaining ten users are solely used for testing.

3.2. Radar Board and Configuration

The chosen radar system for this application is the XENSIV™ 60 GHz BGT60TR13
FMCW, manufactured by Infineon Technologies AG [40]. The radar board is a miniaturized
and low-power frequency modulated solution with a center frequency f0 of 60 GHz and a
bandwidth of approximately 6 GHz, which allows for a high range resolution of approx-
imately 2 cm. In sensing applications within 5 m, the power consumption is reduced to
only 5 mW thanks to an operation-optimized duty cycle. Further, by exploiting the micro-
Doppler effect through phase analysis, it is possible to capture periodic displacements over
time, such as vital signs, well below the 2-cm range limit [21]. The BGT60TR13C has three
Rx channels and one Tx channel, all embedded in the package. Additionally, to enable
accurate estimation of targets’ azimuth and elevation angles of arrival (AoAs) in the FoV,
the Rx antennas are positioned orthogonally to each other. With an f0 of 60 GHz and a
single Tx channel, such a board provides a less expensive and lower-frequency solution
than many cutting-edge non-contact high-frequency vital signs systems. The evaluation
board with the sensor board mounted on top is shown in Figure 3.

(a) (b) 

Figure 3. The BGT60TR13 radar system (a) delivers filtered, mixed, and digitized information from
each Rx channel. The BGT60TR13C radar (b) is mounted on top of the evaluation board.

The BGT60TR13C generates chirps, which are a series of linearly frequency-modulated
signals with a bandwidth of Bw centered on f0. Each chirp lasts tc and is made up of a
predetermined number of ns samples. In use, the data gathered from the Rx channels
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are mixed with a Tx reference and digitized with 12-bit resolution. The generated output
signal is referred to as intermediate frequency (IF). Radar data are frequently compressed
into frames for additional preprocessing, with each frame carrying the IF for a series of
Nc chirps. For an FMCW modulation, the theoretical range resolution ∆r and maximum
detection range Rmax are calculated using the following formulas:

∆r =
c

2Bw
, (1)

Rmax =
∆r
2

ns , (2)

where c indicates the speed of light in the air. For the application of breath sensing at the
workplace desk, a theoretical Rmax of 50 cm would be sufficient. However, a theoretical
maximum distance of about 3.75 m was selected for compatibility with other use cases
and for future works. In the preprocessing, though, only the range bins where the user
is detected are processed. The selected ∆r instead is roughly 37.5 cm, which enables user
identification from the surrounding clutter (static targets). The set values of Bw and ns are
accordingly 4 GHz and 200. For appropriate phase analysis, we also chose tc and Nc values
of 150 µs and 2, respectively. To acquire around 20 frames per second, a frame repetition
time ( f ps) of 50 ms was chosen. Additionally, a 2 MHz ADC sampling rate Fs was used.
All the values selected for the radar board configuration are outlined in Table 1.

Table 1. BGT60TR13C radar board, parameters configuration for breath sensing.

Symbol Quantity Value

NTx number of transmitters 1
NRx number of receivers 3
Nc number of chirps 2
ns samples per chirp 200
f0 center freq. 60 GHz
Fs sampling freq. ADC 2 MHz
f ps frames per second 20 Hz
tc chirp time duration 150 µs
Bw bandwidth [58, 62]→ 4 GHz

3.3. Recording Setup

The recording setup, shown in Figure 4, is consistent with the chosen application, i.e.,
at-desk workplace monitoring at short distances (up to about 40 cm). The BGT60TR13C
radar system is mounted on the front of the desk, and the Go Direct ® respiration belt [41]
is placed at the level of the users’ diaphragm. The belt is used as a reference to measure
displacement in N (Newtons). We chose to use this belt as a reference since it is employed
in other state-of-the-art work for benchmarking with radar solutions such as [35,36]. As
reported in these works, the belt has a force resolution of 0.1 Newton. This resolution
allows displacements generated by breathing to be distinguishable in the presence of user
motion. Although we consider the belt as a reference, such a sensor may also be subject to
motion corruption. In the specific use case at the desk workplace, many of the movements
made by users have little impact on a chest-mounted wearable sensor. A practical example
may be typing on the keyboard. Other movements, such as bending the back, can also
degrade the belt signal. In our work, however, we impose the constraint that the belt signal
is the ground truth, unaffected by motion corruption noise. The data gathered by the
respiration belt and radar system have been synchronized during the recordings. The
data from the two sensors were synchronized frame by frame using a global time stamp
generated at the laptop level. The gathering and synchronization have been performed
with an Intel® Core i7-8700K CPU. Data collection was performed for 24 healthy users with
an age range of up to about 35 years. All users agreed in advance to participate in data
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collection. The data were collected and stored as anonymously as possible, without tracking
names or other characteristics that could be used to identify an individual. The data will
not be made public. The users were told to behave as normally as possible, performing
actions such as laughing, joking, and using the keyboard and mouse. Many users also
chose to watch a video during data collection to avoid respiratory bias due to recording.
For each user, 20 sessions of 30 s each were collected. Two desks in different offices and
two distance ranges were chosen. The desks used are of the same type and height (about
76 cm). However, data were collected in two different environments to avoid the potential
overfitting of ML models on a single location. A total of 10 sessions per user were collected
at a distance from the radar board to the person’s chest of up to 30 cm and another 10 up to
about 40 cm. With the 10 min allotted to each user, a total of 4 h of data was collected.

Copyright © Infineon Technologies AG 2020. All rights reserved. 62020-09-28             restricted
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Figure 4. Recording Setup. A synchronized radar system and respiration belt are used to col-
lect 10 30-second sessions per user and distance. The distance ranges used in data collection
(up to 30 or 40 cm), refer to the distance between the chest and the radar board.

3.4. Radar Phase Signal Extraction

Thanks to the micro-Doppler effect [21], it is possible to extract the breath information
from the unwrapped phase signal derived from the raw radar data. The preprocessing
pipeline for the application is shown in Figure 5. The preprocessing can be divided into the
following steps:

• Raw radar and respiration belt data are collected synchronously for a session. The
chosen frame rate per session is 660 (Nm), which is 10% higher than the theoretical
frame rate of 600 (20 f ps * 30 s). Longer sessions for either sensor are interpolated,
whereas shorter ones are zero-padded. The belt signal is used as a reference estimation
in the Meta-L training phase. Subsequent preprocessing steps involve the radar
signal only.

• The IF signal is computed channel-wise, for the three Rx, for each radar frame. The in-
formation is organized in a 3D matrix, with the x-axis representing fast time (samples),
the y-axis representing slow time (chirps), and the z-axis representing channels.

• The average value is subtracted from the sequence of 660 frames so that the potential
direct current (DC) offset is subtracted.

• Over slow time and channels, the radar-sensed information derives from the same
recorded event. Rather than using a single channel or single chirp, we use the averaged
information over both axes for the next steps. Intrinsically, given the equal importance
of the information in the chirps and their respective channels, the averaged information
will be more robust to the noise.

• A 1D FFT is performed along fast-time to retrieve the range information.



Sensors 2023, 23, 804 9 of 28

• From the range information, it is possible to estimate the user’s position frame-wise,
select the set of meaningful range bins, and subtract the clutter in each (Section 3.5).

• The phase information is calculated for the selected bins. Frame-wise, only the bin
range with the highest mean squared error (MSE) to the estimated clutter is chosen
(Section 3.5).

• The phase beyond (−pi, pi) is then unwrapped using a phase discontinuity thresh-
old approach.

• Because users had freedom of action during the recordings, the Fc estimated from the
radar phase by frequency analysis may not coincide with the central respiration Fc.
For this reason, Meta-L is used to map the radar phase to the computed ideal belt Fc
(Section 3.5.1).

• Comparison between radar-estimated breath signal and respiration belt is performed
on normalized signals between zero and one, calculating MSE and estimating instan-
taneous bpm along the session (Section 3.6).
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Figure 5. Preprocessing pipeline. First, the phase information is unwrapped from the raw radar data.
The respiration signal and Fc are then estimated by Meta-L, exploiting only in the training phase the
data collected with the respiration belt.

3.5. Range Bins Selection and Clutter Removal

Relevant radar information is only contained in a limited range of bins that reflect the
user’s position relative to the radar board. Let SR(m, s) with m ∈ [0, Nm] and s ∈ [0, ns]
be the radar signal with range information on the x-axis and slow time on the y-axis. The
maximum bin range is calculated ∀ m as follows:

max
s
|SR(m, s)| . (3)

Around the maximum detected, 12 range bins are also processed for phase information
extraction. The boundary range bins are dynamically updated via a moving average of
eight frames. The dynamic adaptation avoids abrupt changes in the range under process
due to instantaneous noise. Clutter is computed only for the selected bins s, frame-wise
∀ m ∈ [0, Nm], using the moving target indication (MTI):

SR(s)new = α SR(m, s) + (1− α) SR(s)old ; (4)

where α ∈ [0, 1] is set to 0.4 and SR(s)old is the average over the preceding s bins. The
value of α was chosen empirically, noting that values less than 0.2 gave too much weight to
previous clutter contributions, while values greater than 0.6 depended too much on the
current radar signal. Only the bin range with the highest peak-to-clutter information is
extracted, which corresponds theoretically to the subject position at a given time. The MSE
between SR(m, s) and the new clutter SR(s)new is calculated. The maximum MSE value
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corresponds to the highest peak-to-clutter. Two examples of the user range over session
time are depicted in Figure 6.
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Figure 6. Lines in yellow indicate the defined range bin limits and, in red, the detected maximum bin
per frame. Range plotting is generated after clutter removal. In (a), the subject did not move much
during the session. In (b), the range limits vary according to the user’s distance from the radar board.

3.5.1. Central Frequency Estimation and Labeling

The respiration rate can be estimated by spectral analysis in a given session, for
example, by analyzing the power spectrum and taking the maximum peak in a given
frequency range. Such a method is often employed for radar data recorded in idle conditions
but is more of a challenge in the presence of user motion. The respiration bandwidth and
Fc also depend strongly on the physiology and characteristics of the individual. Therefore,
we propose using Meta-L to estimate the Fc in a user-adaptable manner, using the central
frequency extracted from the respiration belt as a reference label. The reference Fc is
obtained from the belt signal power spectrum by locating the frequency corresponding to
the maximum peak in the limit range [0.1, 0.5] Hz, corresponding to 6 and 30 bpm. Section 4
describes how the proposed method estimates radar-based breathing signal learning from
both the reference belt signal and relative Fc. The radar-based breathing signal is then
computed by applying a sequence of two biquad band-pass filters to the unwrapped phase
signal with the estimated Fc. The employed filter is a second-order digital recursive linear
infinite impulse response (IIR) containing two poles and two zeros. A time representation
of the filter can be described as follows:

O[n] = a0 I[n] + a1 I[n− 1] + a2 I[n− 2]− b1 O[n− 1]− b2 O[n− 2] , (5)

where n is the time step; I the input vector; O the output vector, and a0, a1, a2, b0, b1, b2,
the filter parameters according to the type. These latter parameters depend on the Fc
selected for a given session. The formulas are provided in Appendix A. Each of the two
cascaded biquad filters has a quality factor Q of

√
2 and a sampling frequency ( f s) of 20 Hz,

corresponding to the f ps. The characteristics of the filter are outlined in Figure 7.

3.6. Breaths per Minute Estimation and Corruption Detection

Along with the collected data session, the instantaneous bpm can be assessed via a
sliding window. This information may also be useful in radar sessions that have been
partially corrupted by motion and contain less respiration information. The sliding window
is dynamically computed per session proportionally to the average distance between
peaks. By leveraging this window, it is also possible to estimate the instantaneous motion
corruption by comparing the signal with itself through autocorrelation. The corruption
information is used to weight the training samples in Meta-L and improve the predictions,
as explained in Section 4.



Sensors 2023, 23, 804 11 of 28

Copyright © Infineon Technologies AG 2020. All rights reserved. 8

2020-09-28             restricted

10 9 8 7 5 6 4 
Frequency [Hz] 

3 2 1 

Frequency response 
of a bandpass filter at  

0.33Hz 

0 

0.2 

0.4 

0.6 

0.8 

1 

-0.2 
0 

G
ai

n 

(a) (b) 

Input

=×

+

+
I(n) 

I(n-1) 

O(n) 𝑏𝑜

𝑏1

+

Output

×

I(n-2) × 𝑏2 
+ 

+ 
−𝑎1

 × O(n-1) 

+
−𝑎2

 × 
O(n-2)

 

Figure 7. Band-pass bi-quadratic filter. The diagram (a) depicts the linear flow of the biquad filter,
where the output O(n) at time instant n is determined by the two previous input I and output O
values. Instead, a gain vs. frequency plot of a biquad band-pass filter obtained for a Q of

√
2 and f s

of 20, over an Fc of 0.33 Hz, is shown as a reference in (b).

In a recording session, the sliding window is defined as twice the average distance
between the detected peaks of the radar phase signal after band-pass filtering. The win-
dow length is, therefore, about two whole cycles of breathing, intended as sequences of
inhalation and exhalation. Because the estimated peaks for radar and belt may not match,
a specific sliding window is calculated for each of the two signals. An example of the
belt and radar respiration signal with computed sliding window is shown in Figure 8.
In this instance, the respiration Fc for the radar signal is ideally extracted from the belt
and has not yet been estimated by Meta-L. Local peak time shifts are visible in the plot
between the radar and belt signals. These shifts are caused by two main reasons in the
radar signal. First, the belt signal already contains the breathing information, whereas the
radar requires multiple preprocessing steps. These steps, including the biquad filter, cause
global shifts in the extracted information. In addition, the respiration belt is connected to
the individual during recordings, while the radar is connected to the desk. As a result,
millimeter-scale user displacements along the session can contribute to local shifts in the
radar respiration signal peaks with respect to the belt. Discrepancies in amplitude, on the
other hand, can be caused by ambient noise and the extracted phase, which is very sensitive
to small displacements. Corruption is also visible in the radar signal at the beginning of the
session. As it is not present in the belt signal, it was most likely caused by arm movements,
which are mostly undetectable by the wearable sensor on the chest.

The instantaneous bpm value is estimated as the number of peaks within the sliding
window throughout the session. Because two different sliding windows are calculated
for radar and belt, the length of the x-axis bpm estimate (number of samples minus the
length of the sliding window) may not match in all the sessions. Autocorrelation along the
session is used to estimate corruption, with a window about one and a half times as long as
a breathing peak (three-quarters of a bpm sliding window). The correlation of the signal
with itself gives a measure of how similar and periodic it is over time. A flag variable, by
default set to zero, is set to one when the maximum autocorrelation goes below a threshold.
This threshold is adjusted dynamically for the length of the sliding window. Empirically,
this value is, for normalized sessions between 0 and 1, set to 0.001 times the sliding window
length. On user-collected test examples, a magnitude less than 0.001 or greater seems to
lead to over- or underestimation of corruption, respectively. The instantaneous bpm and
corruption flag are plotted in Figure 9 for the same session as in Figure 8.



Sensors 2023, 23, 804 12 of 28

0 5 10 15 20 25 30
Seconds [s]

0.4

0.2

0.0

0.2

0.4

Am
pl

itu
de

 N
or

m
al

ize
d

Breath Wave Radar (Ideal Fc) vs Belt Reference 

Belt 
Radar Window     
Radar Peaks 

Radar 

Figure 8. Example of sliding window generation for instant bpm estimation on a recorded session
The radar signal has been filtered using the ideal belt, Fc. The radar, as opposed to the belt, is not
connected to the user during recordings, but to the desk. This results in the local shift of signal
breathing peaks due to the millimeter movements of the user. The window (in purple in the plot) is
shown paler on the two peaks closest to the calculated peaks’ mean distance. It is also possible to
notice some slight corruption at the beginning of the session due to user motion.
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Figure 9. Comparison of instantaneous bpm between respiration belt and radar (with ideal Fc) for
a recording session. The x-axis corresponds to the difference between the number of frames in the
session and the sliding window length. The radar signal corruption flag variable is plotted in green.
At the beginning of the session, the radar signal is motion-corrupted (as shown in Figure 8) and thus
does not lead to a reliable bpm. On the other hand, for the workplace use case, the reference belt
signal is more robust to motion. In this case, the motion performed was the movement of the hands
toward the desk.

3.7. Breath Meta-Dataset

The Breath Meta-Dataset for training and testing the Meta-L algorithm contains data
collected from 24 different healthy users up to 35 years old. Specific information on setup
and data collection is provided in Section 3.3. For each session collected, the unwrapped
radar phase signal (Meta-L input), the respiration belt signal, and the corresponding ideal
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respiration Fc (Meta-L outputs) are saved. All signals are interpolated or sampled to have
a length of 660 samples for the 30-second recording. Both radar phase and belt signals are
normalized between zero and one and translated in the interval by their average. Fourteen
users were randomly selected for episodic Meta-L training, whereas the other ten were used
for testing. The breath signal is highly dependent on an individual’s characteristics and
the presence of motion. A subject-wise two-component t-distributed stochastic neighbor
embedding (t-SNE [42]) of the radar phase signal for all data collected is shown in Figure 10.
All radar signals for t-SNE representation were filtered with a series of 2 band-pass filters
with respiration frequency Fc fixed at 0.33 Hz and Q at 0.8. As can be seen from the
figure, under t-SNE assumptions, two components do not seem to be sufficient to show
user-specific characteristics. This emphasizes how complex the interpretation of radar data
is to extract features in an unsupervised manner for such an application.
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Figure 10. Two-component t-SNE representation of the Breath Meta-Dataset radar data. The circles
represent the training users, while the crosses represent the testing users for the Meta-L. No user-
specific feature clusters are visible under the t-SNE assumptions. The t-SNE was obtained with a
perplexity of 20 and 7000 iterations [42].

4. Proposed Method

In this section, we describe the algorithm and topology we chose to generate the
user-adaptable Meta-L model on the Breath Meta-Dataset. We propose an episodic learning
approach by exploiting Meta-L and a C-VAE for regularized feature extraction. Once
trained for generalization, leveraging a few examples gathered via the reference respiration
belt, the model enables the fast adaptation of the non-contact radar sensing solution to a
new user. To partially overcome the problem of motion corruption in sessions, we also
present an optimized loss function (Section 4.3) that makes use of the corruption estimation
method presented in Section 3.6.

4.1. Episodic Breath Signal Estimation

For the episodic breath signal estimation approach, we use the optimization-based
MAML second-order algorithm (MAML 2nd) [30]. Let R be the set of training episodes.
A task Tr is sampled for each r ∈ R, corresponding to a single training user. During the
episode, a model learns to map the unwrapped radar phase x to the reference data of the
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respiration belt xbelt using k shots of support. The model learns by minimizing the binary
cross-entropy (BCE), as follows:

BCE(x, xbelt) = −x log(xbelt)− (1− x) log(1− xbelt), (6)

with variables x and xbelt in [0, 1].
Radar features are encoded in a normally distributed variable z ∼ N (µx, σx) using a

C-VAE topology. The µx and σx variables represent the mean and standard deviation for a
given latent space dimension and input x, respectively. In addition, the Kullback–Leibler
(KL) divergence [43] is used to ensure that z is close to a reference N (0, 1) distribution.
Although KL divergence allows regularization of latent space approaching a standard mul-
tivariate normal distribution, C-VAE could learn to extract unnecessary information from
the unwrapped radar phase. Such information includes, for example, displacements caused
by user motion during sessions or noise. To overcome this, the latent space generation is
constrained by breathing information. This is achieved by minimizing the MSE between
ideal Fc extracted from the belt (y) and ŷ predicted via a single-neuron dense layer with
the linear activation function.

Adding up the three components, the loss function L is defined as follows:

L(x, xbelt, y, ŷ) = BCE(x, xbelt) + KL[N (µx, σx),N (0, 1)] + K ||y− ŷ||2, (7)

where K equal to 1000 is an equalization coefficient aimed at adjusting the magnitude of
the MSE. The same loss function is also used in the outer step of Meta-L, on a query sample,
given for the same task Tr. The loss function terms are represented in Figure 11.
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Figure 11. Graphical representation of single-episode learning with C-VAE. The unwrapped radar
phase is mapped to the respiration belt signal using the signal reconstruction term. The regularization
term makes the latent space closer to a standard multivariate normal distribution. Fc regression
allows the parameterization to depend on the respiration signal.

For a fixed training strategy, model generalization is assessed based on the ability to
perform better on new tasks as episodes progress. This is performed by evaluating the
model after each outer step on two evaluation tasks Tr and one Tv sampled by the training
and test users, respectively. Box plots are constructed based on the loss values obtained
for sequences of episodes. As the episodes progress, the mean loss should decrease,
and the box plots’ interquartile range (IQR) and whiskers should also get smaller. This
represents the ideal training behavior in Meta-L. Such factors, when also observed on the
tasks Tv, highlight how generalization occurs even on test users, never observed in the
training phase.

4.2. Proposed C-VAE-Based Topology

The chosen C-VAE topology takes the unwrapped radar phase x as an input and
returns two outputs. Decoder-side, the network attempts to reconstruct the xbelt reference
signal from the variable z. The ideal Fc, also extracted from the belt reference, is regressed
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from the latent space, with a single-neuron dense layer and linear activation function. The
encoder contains two sequences of convolutional blocks that extract features from x. The
decoder, on the other hand, tries to reconstruct xbelt starting from z with two deconvolution
blocks and up-sampling. The C-VAE topology is shown in Figure 12 with an indication
of layers and their parameters. The strategy of mapping the unwrapped radar phase to
the belt signal attempts to counteract the problems of amplitude discrepancy and local
peak time shift described in Section 3.6. The latent space generated during training, in
fact, depends on the belt signal, which is gathered directly from the sensor attached to the
individual’s lower chest.VAR

Decoder: 

reconstruction

2D Conv. Kernel: 3x3, Stride: 2

Input (𝑥)

Encoder: features extraction

Latent 

Space

(Unwrapped Radar 

Phase Φ)

VAR Output 

(𝑥𝑏𝑒𝑙𝑡)

(Respiration Belt Signal)

32 6464

Ideal Fc – Belt ( ො𝑦)
1

ReLU

32

Dense (Linear)Decoder

Flatten

𝒇

Figure 12. Chosen C-VAE topology. The latent space representation is constrained by both the
reconstruction of x with respect to the xbelt reference and the ideal Fc of breathing y. The decoder
layers are an up-sampled mirror version of the encoder layers.

The dimension of the latent space can considerably impact the model’s performance.
In our experiments, we chose a dimension of 32 as the trade-off between performance
and topology size. In total, the chosen topology has 739,074 parameters, all of which are
trainable. Some examples of generated latent space in relation to different inputs are shown
in Figure 13.
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Figure 13. Examples of latent space generation. Examples of radar phase input (a) and generated
latent spaces (b), size 32, are shown. The latent spaces are obtained after the model generalization
training. Each 8 x 8 representation consists of the mean values µ and the standard deviations σ.
Starting from the top of the representations toward the right, the first 32 pixels represent µ values,
while the last 32 are those of σ.
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4.3. Corruption-Weighted Loss and Breathing Estimation Formulation

Even though C-VAE is set up to get information about breathing by predicting the
Fc, there is still a problem when the user is moving. Radar data sessions may, in fact, be
highly corrupted by motion noise and not contain the necessary respiration information.
In such cases, mapping the unwrapped radar phase to the belt signal is not an effective
choice. With the amount of predicted corruption motion and taking advantage of the
method described in Section 3.6, a higher priority can be given to estimating the Fc than
to reconstructing the ideal signal. The corruption rate for each session can be estimated
by summing frame-wise ∀ m ∈ [0, Nm] the corruption flag variable c(m). The greater the
motion corruption, the greater the contribution of Fc in the Loss Function L must be over
the signal reconstruction term.

The L can then be adjusted as follows (L∗):

L∗ = τ BCE(x, xbelt) + KL[N (µx, σx),N (0, 1)] + γ K ||y− ŷ||2, (8)

where τ = 1
∑ Nm

m c(m)
, and γ = 1− τ.

The τ values are obtained during Meta-L training and are normalized per epoch to
the training batch size. Consistently, the reconstructed breathing signal via the C-VAE
topology can be corrected using the two estimated outputs x̂belt and ŷ and the predicted
corruption level for the single session. An adjusted estimate x̂∗ of the radar-based breathing
signal can be given by the following formula:

x̂∗ =
τ x̂belt + γ ε biquad(x, ŷ)

τ + γ ε
(9)

where biquad(x, ŷ) represents the filtered version of x, with the estimated ŷ as Fc
(Section 3.5.1) and ε set to two, makes the contribution of ŷ even more dominant in the
presence of motion corruption.

4.4. Information about Experiments

All experiments have been conducted by minimizing the loss function L∗, training
the C-VAE model with latent dimension 32. As described in Sections 4.1 and 4.3, the loss
function includes a contribution to the FC as well as a contribution to the reconstruction of
the respiration signal. The latter imposes normalized signals in the range [0, 1]. The loss
consequently has no unit of measurement but can be understood as an absolute value to be
minimized with respect to zero. The optimizer chosen is Adam, with β1 and β2 equal to 0
and 0.5, respectively. The training is performed on 3000 episodes at 4 epochs per episode.
For 1–shot experiments, the batch size is one, and for 5– and 10–shot experiments, it is 5.
The inner learning rate is set to 18e− 4 for the 1–shot experiments and 8e− 4 for the 5–
and 10–shot experiments to avoid episodic overfitting. The chosen outer learning rate is
17e− 4. Each experiment is performed three times. The performance of the C-VAE model
is evaluated in terms of mean L∗ as episodes progress, adaptation time on new users, and
single inference time on a new sample. For the loss evaluation, we also present a confidence
value. This value represents the 95 % confidence that the true mean is included in the
distribution. In general, the lower this value, the more stable and precise a given type of
experiment is. The adaptation time per user corresponds to the time required by the Meta-L
model to complete an entire training episode via a simple first-order gradient descent.
Optimization is performed for a specific number of epochs and batches by minimizing
the loss of L∗ over k training shots. For the adaptation time estimation, we chose four
epochs of training with first-order gradient optimization. The other hyperparameters
remain unchanged from the Meta-L training procedure. Single-sample inference time is
calculated at the end of each adaptation training, on a random sample of tests for a given
user. This value is consequently independent of the number of training shots selected in the
adaptation. At the end of each adaptation test episode, the model parameters are restored
to the values learned during the Meta-L training.
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5. Results and Discussion

This section presents the results of Meta-L experiments on the Breath Meta-Dataset. The
experiments were carried out with the optimization-based algorithm (MAML 2nd), for 1–,
5– and 10–shots (Section 5.1). Without, to the best of our knowledge, any state-of-the-art
Meta-L solutions for breath sensing, we compare our method to other state-of-the-art
Meta-L algorithms, taking advantage of our proposed C-VAE topology (Section 5.3). We
then show in an ablative study the benefits of using motion corruption estimation in the
loss function and the model performance with various latent dimensions (Section 5.2).

All experiments were performed on Intel® Core i7-8700K CPU, and DIMM 16 GB
DDR4-3000 module of RAM.

5.1. Results on MAML Second Order

All results presented represent the average of the results achieved in the various
repetitions. The model performance was evaluated every 300 episodes, creating a box
plot on the collected loss values in the evaluation loop over 10 test examples per class
(Section 4.1). The episodic learning trend on a 1–shot experiment is shown in Figure 14.
As the episodes progress, L∗ decreases, as well as the IQR and whiskers. While learning
from only one example per user, the model can generalize better thanks to prior acquired
experience. This behavior is observable not only for Tr tasks but also for Tv test tasks, which
are unobserved in episodic learning.
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Figure 14. MAML 2nd 1–shot experiment, Box Plots. Learning trends of Meta-L, box plots versus
episodes (evaluation loop) for the Breath Meta-Dataset. The box in (a) depicts the trend for users in
the training set (Tr tasks). In (b), the trend for the users of the test set (Tv tasks)is shown. The box’s
mid-line represents the median value, while the little green triangle represents the mean.

Box plots are an effective way to assess the progress of episodic learning but do not
reveal the underlying distribution of the L∗ variable. The histograms built on L∗ for a given
interval of episodes can help estimate the distribution and assess the generalization. The
histograms corresponding to the box plots generated for the first and last 300 episodes of a 1–
shot experiment are depicted in Figure 15. The bottom plots represent the density histogram
of the L∗, while the Gaussian approximation of the box plots with their respective quartiles
is shown in the middle plots. The histograms do not undergo a Gaussian distribution.
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At the beginning of episodic learning, the distribution is usually multimodal because of
the different learning complexity between tasks. In the last learning step, the histograms
typically feature a positive skewness toward the zero of the L∗. This behavior occurs thanks
to the generalization of information acquired episodically.
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Figure 15. MAML 2nd 1–shot experiment histograms for the first (a) and last (b) set of 300 episodes.
The box plots in the topmost plots also contain outliers as small circles outside the whiskers. The
mid-plots show an approximation to the Gaussian distribution. The lower plots show the true
histograms, which do not underlie a Gaussian distribution. The q1 and q3 represent the first and
third quartiles, respectively.

The values of L∗ obtained for MAML 2nd experiments for 1–, 5–, and 10–shots on test
users are presented in Table 2.

Table 2. MAML 2nd experiments, average L∗ over the last 300 episodes of test tasks Tv evaluation,
averaged over 3 repetitions with 95% confidence intervals.

Loss / N–Shots 1–Shot 5–Shots 10–Shots

L∗ 84.11 ± 6 83.92 ± 1 83.39 ± 1

As can be seen from the table, as the number of shots increases, there are no significant
reductions in the mean loss for new users. Experiments with 5– and 10–shots, however,
show a lower 95 % confidence value, and thus higher precision. This attests that in some
cases, a single training example with different characteristics from others gathered may
not be sufficient to generalize on the test. The generalization strategy allows the model to
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extract a substantial amount of breath signal information, independent of the number of
shots, as illustrated in Figure 14. Many user data sessions are corrupted by motion and
limit the increase in performance of the C-VAE model as the number of training examples
increases. However, by relating the loss L∗ to the average breathing rate per 30 s session,
a specific learning behavior can be observed. The box plots generated according to the
respiration rate for all test users are shown in Figure 16. The respiration rate between 7 and
9 represents a standard human breathing rate. As can be seen in the figure, the base of the
box plots is not uniform over the RR range. In fact, most of the collected examples have a
number of respiration peaks that are close to or equivalent to the standard value. Between
1 and 4 and 12 and 14, there are only 4 and 5 examples, respectively. On the other hand, for
a respiration rate between 7 and 9, there are about 30 instances per class. This motivates
the choice of the box plot construction. By fitting the model to each test user separately
after episodic learning and using the remaining sessions as tests for each fit, it is possible to
obtain the model behavior as a function of the RR. With the 1–shot fit, the model is more
accurate at reconstructing breath signals between 7 and 9 peaks per 30 s. For lower or
higher rates, the model performs less well in reconstruction, resulting in an increased loss.
This behavior can be due to two main reasons. The first is that motion corruption may not
have allowed the identification of the correct breathing peaks in the test sessions. Motion
corruption results in the erroneous identification of breathing patterns and subsequent
missed learning. The second is that the model did not have enough reference examples
for low and high rates during generalization learning. Because of this, a few examples of
training for a new user may not be sufficient for adaptation. For the 5– and 10–shots fit, the
model seems to be able to tackle low or high RR situations better, but it performs slightly
less well than the 1–shot model for standard RRs. This may be mainly caused by motion
corruption in many sessions for all users. Although the L∗ is defined to address such a
problem, additional training examples may not contain enough information to overcome
motion corruption.

Figures 17 and 18 show examples of prediction after test user adaptation of MAML
2nd 1–shot. In both figures, the top plots represent the breath signal prediction while
the bottom plots represent the instantaneous bpm estimation. The prediction of breath
signals is obtained using the x̂∗ formula (Equation (9)). Figure 17 depicts two examples
of correct breath signal prediction throughout the session. In the example (a), there is
almost no corruption due to user motion for most of the session. In accordance with
Figure 16 for 1–shot, this example falls within the range of 12—14 beats for 30 s. Even
so, the algorithm leads to a quite accurate bpm estimation, with an average gap between
the belt reference and the estimated radar, of three beats. The presence of many detected
peaks often corresponds to much motion corruption for radar. In this case, however, many
peaks are also visible in the belt reference. The example (b), which is part of the samples
in the range 7–9 peaks, is characterized by more radar signal corruption with respect
to (a). Nevertheless, the robust formulation of L∗ allows the extraction of peak position
and bpm despite the presence of motion corruption. However, for both plots, there are
discrepancies in time shift and peak amplitude between radar and belt. As described in
Sections 3.6 and 4.2, the proposed C-VAE topology tries to mediate these challenges but
still cannot perfectly reconstruct the belt reference signal. In general, incorrect detection
of radar peaks can result in erroneous local predictions of the bpm. In both plots, the
corruption flag correctly predicts the motion in correspondence to the false peaks detected.
Figure 18 instead shows two edge examples with a relatively low (a) and high (b) belt
reference number of peaks per session. In both cases, the model leads to quite different
results from the reference ones. Although the bpm estimate does not deviate much from
the reference, peaks are detected at incorrect times. For (a), the combination of just a few
breathing peaks and motion corruption makes correct prediction challenging. One way
to potentially solve this issue would be to collect a lot of edge data and train the model
episodically to generalize better in such scenarios. In the example (b), the user breathed
much more frequently than in the other sessions, including the training one. This leads
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to the model’s inability, given the prior acquired knowledge, to generalize to the user
scenarios with only one training shot. The time shift between radar peaks is also not seen
as corruption by the specific flag, as it is probably not caused by motion.
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Figure 16. Loss (L∗ ) as a function of the number of detected breathing spikes over the 30 s sessions
for the 10 test users. The base of the box plots with non-uniform ranges was chosen so as to have at
least 4 examples for the least common classes (1–4 and 12–14). The upper plot is obtained by fitting
the 1–shot Meta-L model (a) to new users, while the middle and lower plots are obtained by 5– (b)
and 10– (c) shots adaptation, respectively. For the first two plots, the circles that lie outside the box
plots whiskers represent the outliers. Plot (c) shows no visible outliers.

Table 3 lists the adaptation time for a new user, varying the number of shots in
milliseconds using L∗. The procedure of estimating the adaptation time to new users is
explained in Section 4.4. Given four epochs of learning per single user, the algorithm
requires a gradually increasing adaptation time as the number of shots increases. Indeed,
compared to a 1–shot, the adaptation time is roughly 3 and 7 times longer for 5– and
10–shots. Since the mean L∗ does not decrease much for 5– or 10–shots (less than 1%),
the 1–shot model can be considered the best trade-off. On the other hand, for the 1–shot
experiments, there is a bigger variation in the confidence value (up to 5 %). For this reason,
we decided to show the 1–shot outcomes in the single-experiment analysis.
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Figure 17. Standard prediction examples obtained post 1–shot test user-adaptation with MAML
2nd. The top plots show the prediction x̂∗ versus the respiration belt reference, while the bottom
plots display the estimated bpm and corruption flag. Legends, which also apply to the plots on the
right, are placed in the plots on the left. An example of optimal prediction with radar information
characterized by little motion corruption is shown in (a). The respiration signal is recovered even in
the presence of some corruption, as in (b), thanks to the L∗ formulation.

Table 3. MAML 2nd experiments, average adaptation time over the last 300 episodes of test tasks Tv

evaluation, averaged over 3 repetitions using L∗, in milliseconds.

Time N–Shots 1–Shot 5–Shots 10–Shots

Adaptation Time [ms] 797 2,614 5,877

The single inference time for MAML 2nd experiments , as discussed in Section 4.4, is
independent by the number of shots used for user adaptation. Accordingly, we calculated
an average value over all repetitions of the 1–, 5– and 10–shots experiments, already
averaged over the last 300 test evaluations of each. The computed value of single inference
time for MAML 2nd is 4.30 ms.

5.2. Ablation Study

To show the real benefits of robustness to motion corruption, it is also important to
compare it with training that does not take this information into account when figuring
out the loss function. This can be conducted by comparing the results obtained with L∗,
with the loss L presented in Section 4. The average values over three experiments for loss
comparison are given in Table 4. As can be seen from the results, the mean L∗ turns out to
be less than half despite the fact that the two formulated losses are characterized by the
same magnitude for the three components to minimize. Moreover, the 95 % confidence
shows that the loss L does not become more accurate as the number of shots increases.
Probably, without limiting the learning for corrupted training examples, as for L∗, the
model also learns information that is not useful for respiration estimation.. Aside from the
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values, restricting feature extraction to pure breathing information improves learning and
model prediction by incorporating the amount of motion corruption in loss formulation.
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Figure 18. Edge prediction examples obtained post 1–shot test user-adaptation with MAML 2nd.
The top plots show the prediction x̂∗ versus the respiration belt reference, while the bottom plots
display the estimated bpm and corruption flag. Legends, which also apply to the plots on the right,
are placed in the plots on the left. In (a), there are six visible peaks in the belt signal (blue), while in
(b) there are thirteen peaks. In these examples, the algorithm performs less well than in standard
cases. This is mainly due to the lack of edge data as prior knowledge during episodic learning. In the
bpm estimation in the example (a), a shorter estimate can be seen for the belt than for radar. This is
due to the computation of two distinct windows between radar and belt, as explained in Section 3.6.

Table 4. MAML 2nd experiments, average L and L∗ over the last 300 episodes of test tasks Tv

evaluation, averaged over 3 repetitions, with 95% confidence intervals.

Loss / N–Shots 1–Shot 5–Shots 10–Shots

L (No Corrupt.) 226.30 ± 5 224.53 ± 5 221.97 ± 5
L∗ (Corrupt.) 84.11 ± 6 83.92 ± 1 83.39 ± 1

Another important feature to analyze is how the performance of the chosen C-VAE
topology varies as a function of the model size. This can be accomplished by varying
the size of the latent space, which represents the size of the extracted features. MAML
2nd 1–shot experiments were carried out with latent space values ranging from 16 to 128.
Table 5 shows the values of L∗ and the number of trainable parameters as a function of the
latent dimension. The mean L∗ reaches the minimum for a latent dimension of 32, which
was also selected for all experiments in Section 5.1. A latent dimension of 16 seems to not
be enough to extract all useful breathing features from the radar phase. A dimension of
64 brings similar mean values to 32 at the expense of twice as many parameters. Looking
also at the values at 95%, both a latent space of 64 and 128 lead to a visible degradation of
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precision. This means that the features extracted for many of the evaluation episodes, tend
to overfit the training data and thus fail to generalize well to test users.

Table 5. MAML 2nd 1–shot experiments, average L∗ and trainable parameters with varying latent
dimension. The L∗ values are obtained over the last 300 episodes of test tasks Tv evaluation. The
results are provided with 95% confidence intervals, averaged over 3 repetitions.

Parameters /
Latent Dim. 16 32 64 128

L∗ 86.75 ± 5 84.11 ± 6 84.31 ± 14 85.19 ± 34
Trainable Params. 382,658 739,074 1,451,906 2,877,570

5.3. Results on Various Optimization-Based Algorithms

Using the same C-VAE topology, the performance of MAML 2nd Order can be com-
pared to that of other cutting-edge Meta-L algorithms.

We propose comparing MAML 1st (first-order model) [30], Reptile [44], and an
improved in-training stability version of MAML based on some contributions from Antoniu
et al. [45]. We call MAML +, the stabilized version of MAML that incorporates multi-step
loss optimization (MSL), derivative-order annealing (DA), and meta-optimizer learning rate
cosine annealing (CA). We trained such algorithms following the same episodic training
and evaluation setup as defined in Section 5.1, for MAML 2nd. Reptile episodic training
was carried out with a batch size of 2 and an inner learning rate of 3× 10−5. The outer
step weight update has been conducted with a meta step size of 0.4. For MAML+, a
value of 1.7× 10−5 is chosen as the initial value for the outer step learning rate before
cosine annealing.

The average accuracy values for test users over three repetitions of the experiment
are given in Table 6. For 1– and 5–shots, MAML algorithms perform better than Reptile.
MAML 2nd produces the lowest average value of L∗ for a single shot, allowing for better
reconstruction of respiration signals. For 5–shots, the MAML+ algorithm guarantees the
best average result. The latter, however, lacks precision, leading to a broad 95% confidence
interval in the 10–shot approach and even decreasing the learning rate in the inner step.
Most likely, second-order learning, coupled with training that tends to be more selective
as episodes progress, leads the model to give more weight to motion corruption features.
This leads to instability when multiple training samples are employed and thus decreases
performance. MAML 2nd and MAML 1st are tied as the algorithms with the lowest mean
L∗ for 10 shots. For all algorithms except Reptile, it can be seen that there is no marked
decrease in the mean L∗ as the number of shots increases. By having more data available,
this behavior could be countered by using only the least corrupted data for training.

Table 6. Optimization-based experiments comparison, average L∗ over the last 300 episodes of test
tasks Tv evaluation, averaged over 3 repetitions with 95% confidence intervals.

Algorithm N–Shots 1–Shot 5–Shots 10–Shots

Reptile 100.02 ± 2 90.78 ± 2 86.95 ± 1
MAML 1st 86.52 ± 5 83.68 ± 1 83.45 ± 1
MAML+ 85.86 ± 10.7 82.9 ± 3 88.16 ± 15

MAML 2nd 84.11 ± 6 83.92 ± 1 83.39 ± 1

The adaptation procedure adopted for the other algorithms is the same as that of
MAML 2nd, illustrated in Section 4.4. As the algorithms vary, only the procedure for
computing the generalization parameters in the Meta-L stage changes. The parameters in
the evaluation phase are algorithm specific, but the adaptation always employs first-order
gradient optimization. This means that the adaptation time is independent of the chosen
algorithm, since what changes are only the values of the parameters. Thus, there is no
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real difference in adaptation time between the chosen algorithms with respect to the value
provided in Section 5.1. The same is true for the single-sample inference time.

6. Conclusions

In this paper, we present a user-adaptable and non-contact solution for respiration
signal estimation using a 60 GHz FMCW radar. This system is mainly intended for office
work-desk applications in a distance range of 20 to 40 cm, characterized by little user
motion. This solution, while not as accurate as user-contact estimation approaches, shows
how radar can potentially be employed to non-contact monitor respiration rates. The
episodic learning approach eases the system’s adaptation to new users through short
model adaptation sessions. The estimated respiratory rate may be used for anomaly
detection related to the specific user to whom the system is tailored. Thanks to a variational
autoencoder, the topology employed can extract respiration features from the radar phase
signal, using as a reference for reconstruction, the signal collected with a respiration belt.
Although the belt could be used on its own for respiration estimation, it would not allow
non-contact estimation. Through this approach, the belt can serve only in user-specific
learning to enhance radar predictions. The cost function of the model is suitably modified
by constraining feature generation to the respiration information, to avoid learning motion
corruption information. In addition, a direct estimation of corruption in the collected data
sessions allows for improved learning and model estimation in breath signal generation.
The whole system presented represents the first step toward a possible non-contact solution
for estimating multiple vital parameters that is adaptable quickly and has cutting-edge
performance for new users. The radar solution by sensing millimeter displacements could
also be used for estimating cardiac signals or the presence of muscle tremors caused by
potential diseases.

Although this solution offers several innovative advantages, it also has the disad-
vantage of relying, only during adaptation, on a breathing belt used as a reference. We
placed the constraint so that such a reference sensor depends little on degradation caused
by user motion. The generated models also do not perform particularly well for users with
respiratory rates significantly higher or lower than the standard 7 to 9 beats per 30 s. This
is mainly due to only a few reference examples available in meta-learning, not enough for
proper generalization. Radar information is also easily corrupted by long movements in the
recording sessions Further, the use of multiple training examples for user adaptation results
in improvements for out-of-standard respiratory rates but can degrade performance within
the standard range itself. Therefore, substantially motion-corrupted sessions should still
be discarded and not used for adaptation. Sensor fusion systems and discarding corrupt
sessions could improve performance under these circumstances.

Future work will focus on benchmarking the presented approach against other non-
contact solutions, comparing the Meta-Learning solution with transfer learning and adapt-
ing the system to other environments, such as outdoors. An additional important aspect
that will be analyzed is the variation in model performance per user and bpm as the level
of motion corruption in the sessions changes. Another intriguing possibility would be to
test and improve the solution on users with respiratory dysfunction in order to assess its
benefits and drawbacks.
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Appendix A. Biquad Filter Parameters Computation

A biquad band-pass filter is used for filtering the respiratory signal. A temporal
representation of the filter is given in Equation (5). The parameters a0, a1, a2, b0, b1, b2
depend on the central frequency FC, the sampling frequency f s, and Q the quality factor.
Q determines the sharpness of the filter. Let ω be the amount of degrees to advance the
periodic signal per sample:

ω = 2πFc/ f s. (A1)

Let η be a function of ω with respect to the Q value:

η =
sin(ω)

(2Q)
. (A2)

For a biquad band-pass filter, the time parameters can be calculated with the follow-
ing formulas:

a0 = 1 + α, (A3)

a1 = −2cos(ω), (A4)

a2 = 1− α, (A5)

b0 = α, (A6)

b1 = 0, (A7)

b2 = −α. (A8)
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continuous-wave Doppler radar using artificial neural networks. Sensors 2020, 20, 2351. [CrossRef]

29. Hospedales, T.; Antoniou, A.; Micaelli, P.; Storkey, A. Meta-learning in neural networks: A survey. IEEE Trans. Pattern Anal.
Mach. Intell. 2021, 44, 5149–5169. [CrossRef] [PubMed]

30. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the
International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 1126–1135.

31. Alizadeh, M.; Shaker, G.; De Almeida, J.C.M.; Morita, P.P.; Safavi-Naeini, S. Remote monitoring of human vital signs using
mm-wave FMCW radar. IEEE Access 2019, 7, 54958–54968. [CrossRef]

32. Wang, Y.; Wang, W.; Zhou, M.; Ren, A.; Tian, Z. Remote monitoring of human vital signs based on 77-GHz mm-wave FMCW
radar. Sensors 2020, 20, 2999. [CrossRef] [PubMed]

33. Lee, H.; Kim, B.H.; Park, J.K.; Yook, J.G. A novel vital-sign sensing algorithm for multiple subjects based on 24-GHz FMCW
Doppler radar. Remote Sens. 2019, 11, 1237. [CrossRef]

34. Lv, W.; He, W.; Lin, X.; Miao, J. Non-contact monitoring of human vital signs using FMCW millimeter wave radar in the 120 GHz
band. Sensors 2021, 21, 2732. [CrossRef]

35. Gong, J.; Zhang, X.; Lin, K.; Ren, J.; Zhang, Y.; Qiu, W. RF Vital Sign Sensing Under Free Body Movement. Proc. Acm Interact.
Mob. Wearable Ubiquitous Technol. 2021, 5, 1–22. [CrossRef]

36. Wang, D.; Yoo, S.; Cho, S.H. Experimental comparison of IR-UWB radar and FMCW radar for vital signs. Sensors 2020, 20, 6695.
[CrossRef]

37. Rana, S.; Dey, M.; Brown, R.; Siddiqui, H.; Dudley, S. Remote Vital Sign Recognition through Machine Learning augmented UWB.
In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), Institution of Engineering and
Technology, London, UK, 9–13 April 2018.

38. Khan, M.I.; Jan, M.A.; Muhammad, Y.; Do, D.T.; Mavromoustakis, C.X.; Pallis, E. Tracking vital signs of a patient using
channel state information and machine learning for a smart healthcare system. In Neural Computing and Applications; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 1–15. [CrossRef]

39. Liu, X.; Jiang, Z.; Fromm, J.; Xu, X.; Patel, S.; McDuff, D. MetaPhys: few-shot adaptation for non-contact physiological
measurement. In Proceedings of the Conference on Health, Inference, and Learning, Online, 8–10 April 2021; pp. 154–163.

http://dx.doi.org/10.1109/JSEN.2019.2949435
http://dx.doi.org/10.3390/s20051454
http://www.ncbi.nlm.nih.gov/pubmed/32155838
http://dx.doi.org/10.1109/JSEN.2020.3036039
http://dx.doi.org/10.1109/COMST.2019.2934489
http://dx.doi.org/10.1109/JIOT.2020.3004046
http://dx.doi.org/10.1109/LSENS.2020.2983706
http://dx.doi.org/10.3390/s17020290
http://dx.doi.org/10.1109/ACCESS.2021.3068480
http://dx.doi.org/10.1109/JERM.2019.2923673
http://dx.doi.org/10.3390/s22093106
http://dx.doi.org/10.3390/s20082351
http://dx.doi.org/10.1109/TPAMI.2021.3079209
http://www.ncbi.nlm.nih.gov/pubmed/33974543
http://dx.doi.org/10.1109/ACCESS.2019.2912956
http://dx.doi.org/10.3390/s20102999
http://www.ncbi.nlm.nih.gov/pubmed/32466309
http://dx.doi.org/10.3390/rs11101237
http://dx.doi.org/10.3390/s21082732
http://dx.doi.org/10.1145/3478090
http://dx.doi.org/10.3390/s20226695
http://dx.doi.org/10.1007/s00521-020-05631-x


Sensors 2023, 23, 804 28 of 28

40. AG, I.T. XENSIV™ 60GHz Radar Sensor for Advanced Sensing. 2021. Available online: https://www.infineon.com/cms/en/
product/sensor/radar-sensors/radar-sensors-for-iot/60ghz-radar/bgt60tr13c/ (accessed on 28 October 2022).

41. Vernier. Go Direct® Respiration Belt. 2020. Available online: https://www.vernier.com/product/go-direct-respiration-belt/
(accessed on 8 November 2022).

42. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
43. Joyce, J.M. Kullback-leibler divergence. In International Encyclopedia of Statistical Science; Springer: Berlin, Germany, 2011;

pp. 720–722.
44. Nichol, A.; Achiam, J.; Schulman, J. On first-order meta-learning algorithms. arXiv 2018, arXiv:1803.02999.
45. Antoniou, A.; Edwards, H.; Storkey, A. How to train your MAML. arXiv 2018, arXiv:1810.09502.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.infineon.com/cms/en/product/sensor/radar-sensors/radar-sensors-for-iot/60ghz-radar/bgt60tr13c/
https://www.infineon.com/cms/en/product/sensor/radar-sensors/radar-sensors-for-iot/60ghz-radar/bgt60tr13c/
https://www.vernier.com/product/go-direct-respiration-belt/

	Introduction
	Related Works
	System Description and Implementation
	General Overview of the Proposed Framework
	Radar Board and Configuration
	Recording Setup
	Radar Phase Signal Extraction
	Range Bins Selection and Clutter Removal
	Central Frequency Estimation and Labeling

	Breaths per Minute Estimation and Corruption Detection
	Breath Meta-Dataset

	Proposed Method
	Episodic Breath Signal Estimation
	Proposed C-VAE-Based Topology
	Corruption-Weighted Loss and Breathing Estimation Formulation
	Information about Experiments

	Results and Discussion
	Results on MAML Second Order
	Ablation Study
	Results on Various Optimization-Based Algorithms

	Conclusions
	Appendix A
	References

