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Abstract: A haptic sensor coupled to a gamepad or headset is frequently used to enhance the sense
of immersion for game players. However, providing haptic feedback for appropriate sound effects
involves specialized audio engineering techniques to identify target sounds that vary according to
the game. We propose a deep learning-based method for sound event detection (SED) to determine
the optimal timing of haptic feedback in extremely noisy environments. To accomplish this, we
introduce the BattleSound dataset, which contains a large volume of game sound recordings of game
effects and other distracting sounds, including voice chats from a PlayerUnknown’s Battlegrounds
(PUBG) game. Given the highly noisy and distracting nature of war-game environments, we set the
annotation interval to 0.5 s, which is significantly shorter than the existing benchmarks for SED, to
increase the likelihood that the annotated label contains sound from a single source. As a baseline,
we adopt mobile-sized deep learning models to perform two tasks: weapon sound event detection
(WSED) and voice chat activity detection (VCAD). The accuracy of the models trained on BattleSound
was greater than 90% for both tasks; thus, BattleSound enables real-time game sound recognition in
noisy environments via deep learning. In addition, we demonstrated that performance degraded
significantly when the annotation interval was greater than 0.5 s, indicating that the BattleSound with
short annotation intervals is advantageous for SED applications that demand real-time inferences.

Keywords: deep learning; sound event detection; haptic feedback; voice chat activity detection

1. Introduction

Sound is a very common and straightforward method for increasing the level of
immersion in games [1]. In recent times, haptic sensors coupled to a gamepad or headset
have been frequently utilized for game feedback to deliver sound as physically represented
feelings [2,3]. However, providing haptic feedback for appropriate sound effects requires
specialized audio engineering techniques to detect target sounds in real-time. Furthermore,
numerous considerations, such as when to deliver feedback and eliminate distracting
noise-like sounds, must be made [4]. The most straightforward approach for recognizing
target game effects is to obtain the signal directly from the game engine. Major video game
manufacturers, including Sony and Microsoft, integrate their gamepad software into their
PlayStations, enabling direct communication with game engines. When a predetermined
signal is received, haptic sensors linked to the gamepad provide feedback. However, this
strategy cannot be applied to non-negotiated games. Another approach is to filter the
target sound using acoustic characteristics, such as frequency and volume [5]. You et al.
introduced sound-specific vibration interfaces that provide haptic feedback in response to
low-frequency and loud sounds (e.g., gunshot) [6]. Similarly, Lee et al. pioneered haptic
interfaces for mobile environments, which convert low-pass filtered sound into vibrations
for an interactive and realistic physical sensation [7]. Although filter-based methods enable
the integration of haptic devices into a previously unconsidered variety of games, they
are not as precise as direct communication. In addition, game sounds are mixed with many
sound effects from different sources; as a result, simply filtering the target sounds by frequency
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or volume is insufficient. For instance, when a low-pass or volume filter is employed to filter
the game sound, a loud voice chat may often be confused with gun sounds [5].

To address the aforementioned issues, we propose using deep learning to detect
target sounds in video games. By training on a large dataset of game sounds, deep
learning can accurately detect specific sounds in noisy environments while still maintaining
generalizability (Figure 1). Sound event detection (SED) is a technique for identifying
and extracting specific sounds from large volumes of audio input [8–10]. We believe that,
with the appropriate dataset, deep learning can be used for SED to detect game effects
such as gunshots and explosions. Additionally, voice activity detection (VAD) can be
used to filter out voice chat, which is often misclassified as target sounds. VAD involves
detecting voice from the audio input, and deep learning algorithms such as long short-term
memory (LSTM) have been shown to have high success rates for this task [11–13]. Both
SED and VAD techniques involve training deep neural networks using large annotated
audio datasets that are specialized for the target domain.

Figure 1. Example application of the BattleSound to automatic sound-specific haptic feedback genera-
tion by detecting a target weapon sound and a filtering distracting sound, such as voice chat.

The construction of large audio benchmarks has facilitated the development of deep
learning methods for sound detection, such as the AudioSet dataset, which contains over two
million human-labeled 10-second sound clips and 632 audio event classes [14]. However,
many of these benchmarks are limited to simple applications, such as environmental and
bird sound classification, and are not representative of real-world scenarios, such as noisy
video game environments [15]. There is a need for sound benchmarks that accurately
represent these environments. To fully exploit the advantages of deep learning for game
sound detection, we constructed the BattleSound dataset, which contains a large number of
game audio clips and annotations of game effects. Each audio clip was collected from the
PlayerUnknown’s Battlegrounds (PUBG) game [16], a battle royale game that features a variety
of sound effects, including weapons, vehicles, footsteps, and voice chat. We annotated the
audio clips into three categories: WEAPON, VOICE, and MIXTURE. Samples labeled as
WEAPON and MIXTURE were utilized for weapon sound event detection (WSED) and
samples labeled as VOICE and MIXTURE were utilized for voice chat activity detection
(VCAD). We developed baseline models for the WSED and VCAD tasks using mobile-
sized deep learning models [17,18]. This was to demonstrate that haptic feedback can be
generated when a weapon sound is detected via WSED, whereas VCAD detects voice to
avoid misclassification as a weapon sound, which results in unwanted haptic feedback.

The primary characteristics that differentiate WSED and VCAD from SED and VAD
are intra-class variations and noisy environments. The PUBG game features a diverse range
of user voices representing a variety of nationalities, genders, ages, weapons, and other
distracting sounds. Owing to these variations within classes, it is difficult for deep learning
models to learn the optimal hyperplane for classifying inter-class samples. PUBG sets
approximately 100 players simultaneously against each other until a player or team remains.
This indicates that numerous audio clips contain a mixture of sounds from multiple sources,
which complicates the task of identifying the target sounds. Furthermore, because both
tasks must be completed concurrently with game play, deep learning on a mobile device
must make real-time inferences from short audio clips. However, as described in Table 1,
existing benchmarks [14,19–28] contain audio clips annotated with a large interval (i.e., low-
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resolution). Hence, numerous samples contain mislabeled frames that do not correspond
to the correct labels, as illustrated in Figure 2. Previous studies refer to this as the weak
label problem [11–13,29,30]. Yu et al. asserted that large portions of the VAD dataset
contained incorrectly labeled frames, resulting in a degradation of VAD performance [11].
Cho et al. [12] and Ghosh et al. [13] also criticized the lack of correctly labeled frames
in massive datasets and proposed recurrent-based architectures to deal with incorrectly
labeled frames by using sequential information. Similarly, we demonstrate that incorrectly
labeled frames confuse the sound classification network; hence, a strongly labeled dataset is
required for an accurate model, especially in real-time applications and noisy environments.

Table 1. Description of the existing audio benchmark dataset. SED, ESC, and VCAD denote the
sound event detection, environmental sound classification, and voice chat activity detection.

Dataset Total Length
(Hours)

Annotation Interval
(Seconds) Number of Classes Task

AudioSet [14] 5790 10 632 SED
Freefield1010 [19] 20 10 2 SED
ToyADMOS [20] 180 10 3 SED
Chime-home [21] 6.5 4 7 SED
GunShot [31] 50 2 2 SED

URBAN-SED [22] 28 10 9 ESC
SINS [23] 200 10 9 ESC
UrbanSound [24] 27 4 10 ESC
ESC [25] 17 5 10 ESC
TUT Acoustic Scene [26] 24 10 10 ESC

BattleSound (Ours) 6.7 0.5 3 WSED and VCAD

Figure 2. Visualization of the randomly selected sample from the audio benchmark dataset. The black
arrow indicates the region annotated as target sound; the red colored region indicates mislabeled
parts such as non-target sound annotated as target or vice versa.

In the construction of BattleSound, we focused on the interval between annotations
to improve the sound detection performance in noisy game situations. It is necessary to
annotate a large number of audio clips with a short interval (i.e., high-resolution), which is
referred to as a strong label. However, there are no concrete rules to define the criterion
for a strong label. If the interval between annotations is too short, the target sound may
not be included; if it is too long, confused frames may be included, reducing the reliability
of the label. Salamon et al. [24], Foster et al. [21], and Kumar et al. [29] argued that a
chunk size of 4 s is the optimal balance of the trade-off between the temporal resolution
of annotation and human labor. However, based on this study, we discovered that a 4 s
interval between annotations is insufficient for real-time WSED and VCAD tasks. Given



Sensors 2023, 23, 770 4 of 17

that annotation tasks are performed by humans, the human auditory system must be
considered. Rosen et al. discovered that although auditory information occurs at 20–
40 millisecond (ms) intervals, syllabicity and prosodic phenomena occur at 100–200 ms
intervals or longer [32]. Furthermore, homologs in the left hemisphere preferentially extract
information from short temporal integration windows (20–40 ms), whereas homologs in
the right hemisphere preferentially extract information from long integration windows
(150–250 ms) [33]. Consequently, we established a 500-ms threshold for a strong label,
which enables the human annotator to make a judgment based on approximately two
syllables of sound.

Finally, we assess the performance of various deep learning models on BattleSound
and emphasize the benefits of BattleSound’s short annotation intervals for real-time game
sound event detection. Our main contributions can be summarized as follows:

• We proposed a significant amount of high-resolution game sound benchmarks, Battle-
Sound, which includes a variety of different voice, gun, and explosion sounds.

• Using deep learning models trained on BattleSound, voice chat and weapon sounds
can be recognized in real-time, enabling automated processes for sound-specific
feedback production.

• Based on the human auditory system, we established the 0.5 s criterion for a strong
label and demonstrated that strongly labeled audio data can significantly improve
performance in real-time WSED and VCAD.

The remainder of this paper is organized as follows. In Section 2, previous works related
to constructing large-scale game sound benchmarks were described. In Section 3, we describe
the pipeline used to construct the BattleSound and its characteristics. Sections 4 and 5 present
experimental results assessing the performance of deep learning models on BattleSound and
discuss the findings. Finally, in Section 6, we provide a summary of this study.

2. Related Works
2.1. Audio Dataset

The development of deep learning methods for sound detection is facilitated by the
construction of massive audio benchmarks [14,19–28,31,34]. Gemmeke et al. created an
efficient pipeline for generating massive audio datasets from YouTube and provided Au-
dioSet, which contains 632 audio event classes and 2,084,320 human-labeled 10 s sound
clips [14]. As ImageNet [35] contributed significantly to the development of image-based
deep learning models [36–38], AudioSet contributed significantly to the development of
audio-based deep learning models [39–42]. The UrbanSound [24] dataset contains 27 h
of urban environmental sounds, the SINS dataset [23] contains 200 h of environmental
sound, and the LibriSpeech [27] dataset contains 1000 h of speech corpus (Table 1). Al-
though these datasets contain sufficient audio data, they are limited to simple applications
(e.g., environmental and bird sound classifications), which are not applicable to real-world
scenarios [15]; hence, there is a dearth of sound benchmarks that accurately represent noisy
game environments.

2.2. Sound Event Detection (SED)

Sound event detection (SED) is the task of identifying and classifying specific sounds
within an audio signal. It is a challenging problem due to the wide variety of sounds that
can occur in real-world environments and the presence of noise and other interfering factors.
SED has numerous applications, including sound-based monitoring and surveillance, audio
content analysis, and audio-visual scene analysis.

There are various approaches to SED, including traditional methods [5–7] that rely
on hand-crafted features and machine learning algorithms and more recent deep learning-
based approaches [8–10,43,44]. Traditional methods often extract features, such as spectral
and temporal information, from the audio signal and use these features as input to a classi-
fier such as a support vector machine or decision tree. Deep learning-based approaches,
on the other hand, typically involve training a neural network on large amounts of anno-
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tated audio data and using the trained network to classify audio signals. SED has been
applied in various fields, such as identifying bearing faults in noisy industrial environ-
ments using deep neural networks [8], recognizing the cow sound [45,46], and detecting
respiratory diseases in patients’ voices [9,10]. More recently, advanced methods such as
self-supervised learning [43,44], which uses large amounts of unlabeled audio data for
pre-training a model, and multi-task learning [47], which involves a joint learning approach
for sound event detection and localization, have been utilized to improve SED performance.

2.3. Voice Activity Detection (VAD)

Voice activity detection (VAD) is the task of identifying periods of speech or non-
speech in an audio signal. It is a common pre-processing step in many speech-processing
systems, as it can help to separate speech segments from noise and other interfering sounds.

Cho et al. [12] and Ghosh et al. [13] analyzed the characteristics of voice that distin-
guishes it from other sounds and filtered the voice using pre-calculated features. Yu et al.
utilized a deep learning algorithm known as long short-term memory to improve the
performance of the VAD task by training the network to extract meaningful voice features
from large audio samples [11]. In recent years, self-supervised learning techniques have
also been applied to VAD, using large amounts of unlabeled audio data for pre-training the
model [48]. These approaches have shown promising results for VAD, particularly in noisy
and reverberant environments.

3. BattleSound Dataset

PUBG is a battle royale game in which 100 people compete on an island with a variety
of weapons and strategies. Owing to the absence of strict constraints, each player has a
wide range of options in the game. For instance, a player can actively combat enemies
with a bomb and a rifle, whereas another can drive a car, boat, and tank toward strategic
areas. We constructed the BattleSound by aggregating numerous types of sounds from
PUBG and categorizing them as VOICE, WEAPON, and MIXTURE. VOICE denotes the
voice recorded from Team Voice, which is a communication tool for the team members;
WEAPON denotes the effect sound of weapons such as guns and bombs; and MIXTURE
refers to the combined sound of VOICE and WEAPON. Certain voice conversations and
weapon sounds may overlap during battles, resulting in distinct representations that make
it challenging to identify a single voice or weapon sound.

3.1. Dataset Characteristics

Table 2 summarizes the basic statistics of BattleSound. A total of 25,367 samples with
a duration of 3.52 h can be used as target samples (VOICE and MIXTURE) for voice chat
detection. Similarly, 26,142 samples with a total duration of 3.62 h can be used as target
samples (WEAPON and MIXTURE) for the weapon sound detection. BattleSound contains
a sufficient number of samples for the real-time sound event detection using deep learning.

Table 2. Basic statistics of the BattleSound.

VOICE WEAPON MIXTURE

count 21,904 22,679 3463
length 3.05 h 3.14 h 0.48 h

Figure 3 depicts the various types of audio signals included in BattleSound. During the
battle, players shoot the gun from a variety of angles and distances. Figure 3a illustrates the
variation in sound signal produced when the same type of gun is fired at distances ranging
from 25 to 400 m. Figure 3b depicts the variation in gun types observed when players shoot
a variety of different types of guns at the same distance. Within the 4 s clips, shotguns and
sniper rifles are fired only once; however, machine guns can be fired nearly 20 to 40 times
within a brief interval. Owing to the interaction of several conditions (e.g., distance, angle,
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and gun type), WEAPON samples exhibit a high degree of variation. Similarly, VOICE
samples exhibit a high degree of variation, as multiple players speak concurrently and each
player produces a unique sound with a unique utterance speed. As players communicate
with their teams (2–4 players) via voice chat, some VOICE clips include a single speaker,
whereas others feature several speakers with overlapping sounds, as depicted in Figure 3c.

(a) WEAPON samples depending on the distance

(b) WEAPON samples depending on the weapon types

(c) VOICE samples depending on the number of speakers and utterance speed

Figure 3. Visualization of the variations in BattleSound samples. (a,b) show the variation in the
WEAPON samples depending on the distance and weapon types, respectively. (c) shows the variation
in VOICE samples depending on the number of speakers and their utterance speed.

3.2. Data Collection

The BattleSound is a collection of audio files from PUBG that have been crawled
from YouTube. We collected YouTube video clips containing the keywords “PUBG” or
“battle ground” in the title in both English and Korean. In crawling the clips, we used two
distinct strategies to remove irrelevant files prior to human annotation. First, only files
with a duration of less than 16 min were considered candidates for human annotations.
Because the average duration of the PUBG was 17 min, files longer than 17 min were more
likely to contain sounds that were not from the PUBG. Second, three human annotators
pre-screened crawled videos to ensure that they contained only PUBG-related content and
not distracting elements, such as advertisements and TV show clips. Subsequently, a total
of 1038 video clips (55-h) were selected, and each clip was segmented (n = 513,006) into
clips with a 0.5 s interval for the following human annotations. All files were downloaded
at a sampling rate of 48 kHz and subsequently downsampled to 16 kHz using the AudioSet
protocol [14]. As illustrated in Figure 4, BattleSound contains clips ranging in length from a
few seconds to 15 min.
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Figure 4. Histogram of the audio clips’ length included in the BattleSound.

3.3. Human Annotation

Almost all segments contain a single sound when crawled files were segmented at
a 0.5 s interval, which is a significantly higher resolution than the existing benchmark
(Table 1). Thirty-six annotators manually listened to and labeled entire segments every
0.5 s using our labeling software. The software was designed to run entirely on a keyboard,
allowing annotators to quickly and easily label large numbers of audio samples. Audio
files were segmented and played consecutively using a predefined interval (0.5 s in our
studies). When a single audio segment was played, annotators were required to press a key
that indicated the presence of a label. By repeating the aforementioned procedure for each clip,
all audio files were annotated, and the resulting files were saved as a NumPy array. Labeling
10 s audio clips with a 0.5 s interval required an average of 15 s. Our labeling software, along
with the BattleSound dataset, code, and demo videos, can be downloaded from our project
page (https://sites.google.com/view/battlesound (accessed on 9 January 2023)).

3.4. Validation and Quality Assessment

Owing to the uncertainty associated with annotations, we validated them twice to
ensure accurate labeling. First, 36 annotators validated the entire segment to ensure that each
label corresponded to a specific piece of audio content. Second, four artificial intelligence
researchers with a thorough understanding of this project scrutinized all annotation files
and corrected mislabeled and unlabeled cases. Six and half hours of clean target segments
(VOICE, WEAPON, and MIXTURE) were constructed after the validation process (Table 2).
The constructed dataset exhibited 100% quality from 100 randomly selected segments for each
category, as determined by the AudioSet quality assessment process [14].

3.5. Audio Data Representation

For each BattleSound clip, we provided three different audio representations that are
common in the SED and VAD. The following is a detailed description of the procedures
used to convert an audio signal into other representations.

1. Audio Signal is the simplest form of sound and consists of a 1D waveform array,
which indicates the amplitude of sound in each time stamp. All the samples in the
BattleSound has a 16-kHz sampling rate. Training and validation for each sample
(xsignal) was 0.5 s, and xsignal has a dimension of 1 × 8000.

2. Spectrogram is a visual representation of sound created by applying short-time
Fourier transformation (STFT) to the audio signal. STFT is a Fourier-related transform
used to estimate the sinusoidal frequency and phase content of particular parts of the
changing signal.

STFT(x) =
N−1

∑
n=0

x[n] · W[t] (1)

xspec = STFT(xsignal) (2)

https://sites.google.com/view/battlesound
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xsignal and xspec denote the 1D audio signal and 2D spectrogram, respectively. x[n]
and window function (W[t] = e(−j2π f n)) denote a part of raw signal and window
function, respectively. Those are utilized to calculate the spectrum, where t and n
indicate the time and frequency bins, respectively. We utilized the STFT parameters of
a 500 ms window length, 25 ms hop length, and 512 bins. The converted spectrogram
(xspec) of the single sample had dimensions of 1 × 257 × 41.

3. Mel-spectrogram is generated by applying mel-filter to the spectrogram. Humans
perceive frequencies more sensitively to a lower frequency range than a linear scale.
By imitating the nonlinear characteristics, a mel-filter (Hm(k)) was proposed for the
human-like representation of sound.

Hm(k) =



0 k < f (m − 1)
k− f (m−1)

f (m)− f (m−1) f (m − 1) < k < f (m)

1 k = f (m)
f (m+1)−k

f (m+1)− f (m)
f (m) < k < f (m + 1)

0 k > f (m + 1)

(3)

Mel-filter banks produced by the function of mel-filters (Hm(k)) were used to extract
frequency domain features. Here, f (m) is the Hertz function calculated from the mel
(m), and the mel-filter banks are collections of mel-filters for different k. Filters are
densely situated in the low-frequency region compared to the high-frequency regions
to emphasize the differences in the low-frequency region.

xmel = Hm(k) ∗ xspec (4)

The mel-spectrogram was generated by passing the input spectrogram into the mel-
filters calculated using Equation (4). Here, xmel indicates mel-spectrogram. In this
study, we utilized mel-filters with 41 mel-coefficients to the frequencies ranging
between 300 and 8000 Hz after conversion into the spectrogram. The dimension of
the converted mel-spectrogram (xmel) was 1 × 41 × 41.

4. Experiments
4.1. Task Definition

BattleSound contains a large amount of audio content recorded from game environ-
ments with a 0.5 s annotation interval. To fully exploit the advantages of BattleSound,
we developed baseline models for the following two tasks: real-time voice chat activity
detection (VCAD) and weapon sound event detection (WSED). For both tasks, 80% of the
samples were utilized for training, and the remaining was used for validation.

Real-time voice chat activity detection (VCAD) is a task that identifies voices in the
streamed audio input. Typically, two to four players forming a team can communicate via
voice chat while playing PUBG. Because multiple players speak concurrently and loudly,
several parts of the recorded voice contain noise and overlapping sounds. In addition,
weapon sounds are frequently mingled with voices, making them difficult to distinguish.
To recognize the voice in the streamed audio input, we developed a VCAD model using
deep learning. The VOICE-and MIXTURE-labeled samples in the BattleSound were con-
sidered target voice samples, whereas the samples labeled with WEAPON were used as
non-target samples.

Weapon sound event detection (WSED) is a task that entails real-time detection of
weapon sounds, such as gun and bomb from streamed audio input. For a realistic feeling,
numerous game devices provide visual or haptic feedback in response to game effects,
such as shooting or striking. If the game’s effects can be detected via sound, the timing
of the feedback delivery can be determined automatically. Therefore, we developed a
deep learning model capable of detecting weapon sounds from streamed audio. We used
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the WEAPON-and MIXTURE-labeled samples in BattleSound as target samples and the
VOICE-labeled samples as non-target samples.

4.2. Baseline Methods

Convolutional neural networks (CNN) have been widely applied to a variety of
classification tasks, including 1D signal analysis [11,49,50] and 2D imaging analysis [51–53].
CNN has the advantages of extracting spatial information from the inputs by sliding the
fixed size of kernels with trainable weights. For the time-series input, such as audio signal,
understanding the temporal features is also important for the classification; recurrent neural
network (RNN) and long short-term memory (LSTM) have widely been utilized to extract
the temporal features from the time-series input and perform the classification using those
features. In this study, we established baseline models using CNN [17] and CRNN [18],
which combines the LSTM model after the CNN model, and utilized the two different
representations of sounds as input (1D audio signal and 2D mel-spectrogram image).

Because our tasks should work in real-time, mobile-sized CNN [17] and CRNN [18]
were utilized. For all models, only three convolutional blocks were utilized, as suggested
by Sehgal et al. [17]. These models are comparable with the edge devices because of the
small number of parameters: 27,542 for 1D CNN, 394,870 for 1D CRNN, 373,122 for 2D
CNN, and 220,802 for 2D CRNN. In real-time applications, all models classify the audio
input every 25 ms using the recently streamed sound of 0.5 s. The detailed structures and
parameters are presented in Tables 3 and 4.

Table 3. Model specification of 1D and 2D CNNs. k: kernel size, s: stride, p: padding size, BN: batch
normalization, out_dim: output dimension.

(a) The structure of 1D CNN, which inputs the audio signal

Layer Name Composition Output Size

Input - 1 × 8000

Conv1 10 Conv1D(k = 25, s = 3, p = 12) + BN + ReLU 10 × 2667

Max-pool1 MaxPool1D(k = 2) 10 × 1333

Conv2 20 Conv1D(k = 25, s = 3, p = 14) + BN + ReLU 20 × 446

Max-pool2 MaxPool1D(k = 2) 20 × 223

Conv3 40 Conv1D(k = 25, s = 3, p = 16) + BN + ReLU 40 × 78

Max-pool3 MaxPool1D(k = 3) 40 × 26

Flatten Flatten 1040

Linear FC(out_dim = 2) 2

(b) The structure of 2D CNN, which inputs the mel-spectogram image

Layer Name Composition Output Size

Input - 1 × 41 × 41

Conv1 10 Conv2D(k = 5, s = 2, p = 2) + BN + ReLU 10 × 21 × 21

Conv2 20 Conv2D(k = 5, s = 2, p = 2) + BN + ReLU 20 × 11 × 11

Conv3 40 Conv2D(k = 5, s = 2, p = 2) + BN + ReLU 40 × 6 × 6

Flatten Flatten 1440

Linear FC(out_dim = 256) 256

Linear FC(out_dim = 2) 2
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Table 4. Model specifications of 1D and 2D CRNNs. k: kernel size, s: stride, p: padding size, BN:
batch normalization, out_dim: output dimension. Since LSTM model’s inputs are time-series data
(channel × time), frequency domain parts of the mel-spectrogram are viewed as a channel dimension
in order to match time-series forms.

(a) The structure of 1D CRNN, which inputs the audio signal

Layer Name Composition Output Size

Input - 1 × 8000

Conv1 64 Conv1D(k = 25, s = 3, p = 12) + BN + ReLU 64 × 2667

Max-pool1 MaxPool1D(k = 2) 64 × 1333

Conv2 64 Conv1D(k = 25, s = 3, p = 14) + BN + ReLU 64 × 446

Max-pool2 MaxPool1D(k = 2) 64 × 223

Conv3 64 Conv1D(k = 25, s = 3, p = 16) + BN + ReLU 64 × 78

Max-pool3 MaxPool1D(k = 3) 64 × 26

LSTM 64 Bi-LSTM 128 × 26

Linear FC(out_dim = 2) 2

(b) The structure of 2D CRNN, which inputs the mel-spectogram image

Layer Name Composition Output Size

Input - 41 × 41

Conv1 64 Conv1D(k = 5, s = 2, p = 2) + BN + ReLU 64 × 21

Conv2 64 Conv1D(k = 5, s = 2, p = 2) + BN + ReLU 64 × 11

Conv3 64 Conv1D(k = 5, s = 2, p = 2) + BN + ReLU 64 × 6

LSTM 64 Bi-LSTM 128 × 6

Linear FC(out_dim = 2) 2

4.3. Label Resolution Adjustment

BattleSound includes high-resolution annotations on all samples to ensure superior
performance in real-time applications. To assess the efficacy of high-resolution labels, we
downsampled the labeling resolution from 0.5 to 2, 4, and 8 s and compared baseline
performance across resolutions. To perform the downsampling, we used a sliding window
with the length of the target resolution, which can be slid without overlapping. If a window
contains at least one target sound, all frames contained within the window are labeled
with the target sound. It is expected that the mislabeled frames included in the window
will degrade the performance of the baseline tasks, particularly in real-time applications.
To ensure a fair comparison, only the training samples were downsampled, whereas the
validation samples were strongly labeled (0.5 s interval). To compare the performance
based on label resolution, we trained a 2D CNN model with mel-spectrogram inputs of
equal length to the resolution; for the evaluation, validation samples of length 0.5 s are
repeated in order to match the length of input samples to train samples.

5. Results
5.1. Weapon Sound Event Detection Results

As a baseline, we compared the WSED performance of CNN and CRNN mod-
els for two distinct representations (1D audio signal and 2D mel-spectrogram image).
In general, weapon sounds and voice exhibit distinct patterns in the frequency domain
(Figures 5 and 6); highly activated regions exist throughout the frequency domain of the
weapon sound, whereas voice samples exhibited highly activated regions primarily in the
low-frequency domain; the mel-spectrogram highlighted the frequency domain features,
indicating that the 2D models outperformed the 1D models. In addition, the accuracy of the
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CNN models exceeded that of the CRNN models by 0.6% for 1D signals and 0.5% for 2D
mel-spectrogram images in the Table 5. Typically, weapon sounds exhibit short-duration,
repetitive patterns; hence, the CNN model, which has an advantage in capturing local
spatial patterns, can demonstrate superior performance even more so than the CRNN.
The CNN model that inputs the 2D mel-spectrogram images attained an average accuracy
of 96.02% and enabled mobile-sized deep learning models to detect weapon sounds from
the streamed audio inputs in real-time.

Figure 5. Samples of the BattleSound. We presented three different types of sound representations:
audio signal, spectrogram, and mel-spectrogram. The VOICE sample exhibited highly activated
regions primarily in the low-frequency domain, as depicted in the first column, whereas the WEAPON
sample had highly activated regions through the frequency domain, as depicted in the second column.
The differences between the VOICE and WEAPON samples in the low-frequency domain were well
captured in the mel-spectrogram.

Figure 6. Architectures of deep learning models which use the raw signal and mel-spectrogram as
input, respectively. They are used to detect voice or weapon sounds.
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Table 5. The performance of the various mobile-sized deep learning models on WSED and VCAD
tasks. CNN [17], CRNN [18], and Energy Filter [5] were utilized for the baseline models. For all
models except the Energy Filter, we calculated the 5-times averaged accuracy on each task. Bold text
means highest score.

Task Model Representation Accuracy (%)

WSED

CNN Signal (1D) 93.01 ± 0.34
CRNN Signal (1D) 92.42 ± 0.23
CNN Mel-spectrogram (2D) 96.02 ± 0.08

CRNN Mel-spectrogram (2D) 95.51 ± 0.07

VCAD

Energy Filter Signal (1D) 64.86
CNN Signal (1D) 92.40 ± 0.63

CRNN Signal (1D) 93.63 ± 0.32
CNN Mel-spectrogram (2D) 95.67 ± 0.29

CRNN Mel-spectrogram (2D) 96.37 ± 0.68

5.2. Voice Chat Activity Detection Results

We assessed the VCAD performance of the CNN and CRNN models for two distinct
representations as a baseline. In addition, we evaluate the filter-based method on the
VCAD task to highlight the efficacy of deep learning models. The energy filter [5] is a
frequently used statistical model for VAD. It calculates the representative energy levels
of voices and filters out other sounds with a lower energy level than the voice. However,
this method frequently confuses the weapon samples of BattleSound with the voice. This is
because weapon samples commonly have high energy levels owing to their high decibels in
low-frequency regions; as a result, deep learning models trained on BattleSound significantly
outperformed the energy filter [5] (64.86%). Similar to the WSED problem, 2D models
performed better than 1D models in the VCAD task because mel-spectrogram images well
represent the frequency domain’s properties. In contrast to the WSED task, the CRNN
model outperformed the CNN model for both representations; because speech sounds have
a long duration, the CRNN models that can capture both spatial and temporal features
beat the CNN models that just concentrated on capturing local features. The CRNN model
with 2D mel-spectrogram inputs attained an average accuracy of 96.37% and enabled
mobile-sized deep learning models to detect voice from streamed audio inputs in real-time.
We attached the confusion matrices for WSED and VCAD in the Figure 7.

Figure 7. Confusion matrices for the WSED (top row) and VCAD (bottom row) tasks for four different
models: 1D CNN, 1D CRNN, 2D CNN, and 2D CRNN. For each matrix, the rows represent the ground
truth labels, and the columns represent the predicted labels. Dark blue represents the high scores.
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5.3. Multi-Class Voice and Weapon Sound Event Detection

In our dataset, we have previously proposed two tasks: VCAD and WSED, which are
formulated as two-way classification tasks, classifying sounds into target and non-target
labels. However, it is also possible to evaluate a model on all available classes in the
dataset in order to classify VOICE, WEAPON, and MIXED sounds using a single model. In
Table 6, we present the results of this multi-class classification task. Similar to the two-way
classification settings (VCAD and WSED), we find that 2D models perform better than 1D
models, likely due to the well-represented features of mel-spectrogram images compared to
1D signals. The CNN model with 2D mel-spectrogram inputs achieved an average accuracy
of 94.25%, demonstrating the ability of mobile-sized deep learning models to detect voice
and weapon sounds simultaneously from streamed audio inputs in real-time.

Table 6. Performance of mobile-sized deep learning models on multi-class voice and weapon sound
event detection. CNN [17] and CRNN [18] were utilized as baseline models. The accuracy is
calculated as the average over 5 runs. Bold text means highest score.

Model Representation Accuracy (%)

CNN Signal (1D) 90.45 ± 0.33
CRNN Signal (1D) 88.78 ± 0.41
CNN Mel-spectrogram (2D) 94.25 ± 0.16

CRNN Mel-spectrogram (2D) 92.28 ± 0.15

5.4. Effects of Label Resolution on Sound Detection Performances

In Table 5, we demonstrated that our BattleSound dataset, with high-resolution labeling,
enables mobile-sized deep learning models to detect target sounds in real-time. When
we visualized the BattleSound samples with the different resolutions (2, 4, and 8 s), we
found that a significant proportion of the samples were non-target sounds (Figures 8 and 9).
These non-target frames, also known as confused frames [11], can make the supervised
learning process more difficult. To analyze the effects of confused frames on the supervised
learning process, we used GradCAM [54], a visualization technique that identifies the
parts of an input image that are most important for a given prediction made by a CNN.
GradCAM results of 2D CNN models trained with low-resolution labels showed that the
model not only concentrates on the target frames but also on the confused frames (colored
red in Figure 10). This effect becomes more pronounced as the resolution degrades; as
a result, for the WSED task, the 2D CNN model accuracy declined by 21.8% when the
resolution degraded from 0.5 to 8 seconds, and for the VCAD task, the 2D CNN model
accuracy degraded by 24.6% under the same conditions (see Table 7). These results suggest
that high-resolution labeling is beneficial for learning the distinguishing characteristics for
sound detection tasks that require real-time inferences.

Table 7. WSED and VCAD performance of our 2D CNN model when the label resolution is down-
sampled to 2, 4, and 8 s. Bold text means highest score.

Task Resolution (s) Accuracy (%)

WSED

0.5 96.02 ± 0.08
2.0 93.58 ± 0.19
4.0 88.85 ± 0.82
8.0 75.06 ± 3.69

VCAD

0.5 95.67 ± 0.29
2.0 83.34 ± 0.52
4.0 75.24 ± 1.12
8.0 72.17 ± 1.08
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Figure 8. Audio signal samples depending on the label resolution. The black arrow denotes the
frames identified as the target sound in the high-resolution labels. The parts omitted by the black
arrow are non-target frames, often known as confused frames, which were incorrectly included due
to the low-resolution labeling. As the resolution declines, a greater proportion of confused frames
are present.

Figure 9. Mel-spectrogram samples depending on the label resolution. The black arrow denotes
the frames identified as target sounds in the high-resolution labels. The parts omitted by the black
arrow are non-target frames, often known as confused frames, which were incorrectly included due
to the low-resolution labeling. As the resolution declines, a greater proportion of confused frames
are present.

Figure 10. GradCAM results depending on the label resolution. Figure 9’s mel-spectrogram samples
were utilized for the GradCAM analysis. Red-colored regions represent highly activated features,
whereas blue-colored parts represent less active features. The black arrow denotes the frames
identified as target sound in the high-resolution labels.

6. Conclusions

We introduced the BattleSound dataset, which contains a large volume of high-resolution
voice and weapon sounds. Using the BattleSound, we developed deep learning models
for voice chat activity detection (VCAD) and weapon sound event detection (WSED) and
achieved high performance in identifying target sounds, thereby enabling the generation
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of real-time sound-specific feedback. Furthermore, we demonstrated that annotation in-
tervals are crucial factors affecting sound detection performance, particularly in noisy
environments. The BattleSound is the first high-resolution game sound benchmark that
focuses on sound-specific feedback generation by detecting the target sound via WSED
and filtering the distracting sound via VCAD. Our study establishes a foundation for
constructing a game sound dataset with high-resolution labeling and deep learning models
for sound-specific feedback generation that can be widely applied to other game industries.
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