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Abstract: Mathematical and signal-processing methods were used to obtain reliable measurements
of the heartbeat pulse rate and information on oxygen concentration in the blood using short video
recordings of the index finger attached to a smartphone built-in camera. Various types of smartphones
were used with different operating systems (e.g., iOS, Android) and capabilities. A range of processing
algorithms were applied to the red-green-blue (RGB) component signals, including mean intensity
calculation, moving average smoothing, and quadratic filtering based on the Savitzky–Golay filter.
Two approaches—gradient and local maximum methods—were used to determine the pulse rate,
which provided similar results. A fast Fourier transform was applied to the signal to correlate the
signal’s frequency components with the pulse rate. We resolved the signal into its DC and AC
components to calculate the ratio-of-ratios of the AC and DC components of the red and green signals,
a method which is often used to estimate the oxygen concentration in blood. A series of measurements
were performed on healthy human subjects, producing reliable data that compared favorably to
benchmark data obtained by commercial and medically approved oximeters. Furthermore, the effect
of the video recording duration on the accuracy of the results was investigated.

Keywords: smartphone sensing; heartbeat rate; blood oxygen concentration

1. Introduction

Recent technological advances in data communication and analysis have provided
humankind with immense power and many opportunities. Constant monitoring of biologi-
cal/vital signals and subsequent rapid analysis by comparison with available data existing
all around the world can contribute to improved healthcare. For example, such systems
could warn of a coming heart attack or a viral infection. According to a recent report from
the WHO, cardiovascular diseases were responsible for an estimated 17.9 million deaths
in 2019 [1], of which more than three-quarters were in low- and middle-income countries.
As the average life span is increasing, it is very important to limit heart diseases and help
people maintain healthy lifestyles. Early detection of abnormalities in vital signals with
simple technological tools at a reasonable cost will have a direct economic and social impact.
People will be able to monitor their health condition at home or while traveling and could
share the information with their physician. Early detection will significantly reduce the
financial cost of treating hypertension and subsequent heart conditions (e.g., coronary heart
disease) and allow people to be socially active until the end of their lives.

Nowadays, most smartphones are furnished with high-resolution cameras with the
possibility of capturing high-definition videos, which can be processed by digital signal-
processing (DSP) algorithms to obtain meaningful information hidden in the recorded
files. The idea of utilizing smartphones to capture bio-signals has attracted the attention
of researchers in various scientific disciplines. Mobile devices have built-in sensors that
monitor bio-signals (e.g., sound, pulsation) which carry important information about
physiological activities and health status. Furthermore, these signals can be communicated
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to the user or a healthcare professional through secured communication channels, mobile
applications, and cloud services.

The use of the smartphone as a medical sensor device would be extremely useful
during major outbreaks of contagious diseases, such as the recent COVID-19 pandemic.
In developing countries or remotely populated areas, where access to medical equipment
(e.g., oximeters, pulse rate monitors, thermometers, etc.) is very limited, mainly due to cost
and availability, smartphones can be used as an alternative device to monitor bio-signals,
such as heartbeat rate and oxygen concentration in the blood. During the COVID-19
pandemic, constant monitoring of oxygen concentration levels in the blood was frequently
demonstrated to be a life-saving practice. In these cases, access to a smartphone capable
of accurately measuring SpO2 and heartbeat rate, using an algorithm embedded in an
app could have helped to save millions of lives in poor and developing countries during
the recent pandemic. Thus, the aim of this work is to develop dedicated algorithms, for
any type of smartphone, able to process bio-signals and produce reliable, accurate and
meaningful information concerning heartbeat rate and SpO2.

More specifically, smartphone cameras have been used to capture videos to monitor
the pulsation of blood flow through arteries and veins [2–9]. These videos were produced
by use of the built-in camera, while the user had their finger firmly attached to the lens.
The LED-based flashlight next to the rear camera was used as the light source in this
measurement setup. The individual frames of the recorded video were shown to carry
information on the pulsating arterial blood flow in the finger. A 30–40 s long video sufficed
for the calculation of the pulse rate. The video was then resolved into its frames, which
were subsequently split into their three principal color components (red, green, and blue).
First, the mean intensity for each frame component was calculated, followed by additional
signal processing, which filtered out the noise and provided smoothing of the signal. Hoan
et al. [7] describe in detail specific algorithms that were used to detect the local peaks of the
pulsating signal and to filter out the noise using a simple moving average filter of seven
coefficients. Their results indicated that 87.5% of their cases produced a relative error of
less than 5%, whereas, for the remaining 12.5% of cases, the relative error exceeded 5%.

Similar work was undertaken by Bolkhovsky et al. [10] who used the smartphone
camera to monitor the index finger, and, hence, to extract the pulse rate using only the
green component of the PPG signal. Specifically, these authors used peak detection on
the pulsating signal to extract a continuous heart-rate signal. Movement artifacts were
manually removed and missed peaks were adjusted accordingly; hence, the approach was
not suitable for real-time monitoring. In addition, the video recorded time was between
two and nine minutes, which is excessive. The measurements were compared against a
five-lead electrocardiogram, showing errors close to 10%.

Lamonaca et al. [11] used an FFT method and a peak-detection approach to extract
the pulse rate of the heart. They concluded that the pulse rate, calculated using frequency-
domain analysis of the PPG signal, was not comparable with the benchmark value if the
video recording time was less than 20 s. Using their proposed peak-detection method, the
results compared favorably with the benchmark data (an error of no more than 2 ppm); how-
ever, only 10 cases were examined, with pulse rates within the normal range (55–78 ppm).

An interesting approach was described by Lagido et al. [12] who used the smartphone
camera to detect patients’ heart rate and rhythm. Specifically, they applied an algorithm
based on the most effective methodologies described in the literature to monitor the heart
rate of 43 subjects with heart failure. Their experimental results indicated an error of 4.75%
compared with data collected from hospital ECGs.

Estimation of the heart rate using recorded videos of the face has also been a subject
of research in recent years. Kwon et al. [13] explored the potential of extracting heart-rate
data from a distance by recording the face using the front-facing camera of a smartphone.
They applied independent component analysis (ICA) to the signal, and then the heart rate
was determined using frequency analysis. The duration of the recording was 20 s and there
were only 10 participants in the study. Comparison was performed against benchmark
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heart rates obtained from ECG signals. The reported maximum error was 7.33% for the
10 cases considered in the study.

Holz et al. [8] proposed the use of the front camera using the smartphone’s display
light as a source of illumination for the finger. This has potential advantages for the
estimation of SpO2 because the narrow-band light emitted from the display in comparison
with the broadband light emitted from an LED flashlight results in higher signal contrast
between the oxygenated and deoxygenated hemoglobin. The unwanted low frequencies
were removed by application of a Gaussian filter with a width of 1 s. Bui et al. [14] recently
introduced add-on hardware for the smartphone camera with optical filters, which can
isolate specific wavelength bands (green band and red band) emitted by the LED flashlight.
In addition, instead of using a traditional linear regression model for the correlation of
the SpO2 with the AC/DC signal ratio, an alternative algorithm was used. The results
indicated that the approach—together with the add-on device—was able to estimate the
blood oxygen saturation within a 3.5% error rate compared to FDA-approved gold-standard
pulse oximetry.

Ding et al. [15] used a singular value decomposition (SVD) method to mitigate the
effect of large motion artifacts on the accuracy of the signal-processing algorithms. To
calculate the oxygen saturation level in blood, they decomposed each color channel into
a band-pass (using a Butterworth filter from 0.7 Hz to 4 Hz) and a low-pass component
(using a Savitzky–Golay filter: 10 s, order 3). Then, a convolutional neural network (CNN)
was applied to improve the SpO2 prediction algorithm. The effect of several parameters,
such as the number of convolutional layers, the input window size and the filter length, was
investigated to determine the optimum combination. However, the total training time for
application of the CNN algorithm was extremely long, rendering the method impractical.
The accuracy and repeatability of the measurements are affected by many factors, including
the size of the finger and its position over the camera, the stability of the finger during
the video-recording process and the illumination level [14,15]. The latter depends on the
ambient light as well as the battery status, which might affect the intensity of the emitted
light from the LED during the recording. If the pressure level of the finger over the camera
is high, the flow of blood through the finger artery is restricted, resulting in miscalculation
of the pulse rate.

The purpose of this study was to investigate different methods with respect to their
accuracy in predicting heartbeat rate and the ratio-of-ratios by considering various time
intervals of video recording. We also considered different filtering methods, controlled
by various parameters, which were optimized through parametric studies to provide
reliable results. The obtained measurement sets were compared with each other to draw
conclusions as to the method providing the most accurate and reliable data, the required
recorded video duration, and the impact of the individual video color components on the
overall accuracy of the predictions.

2. Methodology and Methods of Analysis

RGB component signals obtained from video recording data were processed through
a sequence of optimized filtering techniques to deduce vital health parameters. The filtered
RGB signals were submitted to two individual scan peak identifiers, namely, the local
maximum and gradient methods, which counted the number of local peaks and then
calculated the pulse rate. In addition, the analyzed signal, using the local maximum
method, was resolved into its DC and AC components to calculate the ratio-of-ratios of the
AC and DC components of the red and green signals. Fast Fourier transform was applied
to the filtered RGB signals to extract the signal’s dominant frequency component, which
correlates to the pulse rate. Furthermore, the FFT method was used to compute the ratio-
of-ratios of the red and green signals. The data acquisition and post-processing analysis
for the calculation of the pulse rate and the ratio-of-ratios are shown in the flowchart in
Figure 1.
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Figure 1. Flowchart of the methodology used to obtain pulse rate and ratio-of-ratios.

The aim of this investigation was to obtain accurate and reliable measurements of the
heartbeat pulse rate (PR) and to deduce the oxygen concentration in blood. Consequently,
we processed video recordings created by smartphone built-in cameras to extract important
health parameters of an individual. Smartphone devices ranging from low-budget ordinary
phones to high-tech professional edition smartphones, operating with either Android or
iOS operating systems, were used.

A 15 to 45 s long video was recorded from various healthy human test subjects
(of varying age, finger skin color, skin volume, fat, bone, etc.). Signal noise caused by
background effects, mainly due to the instability of the finger in contact with the camera
lens, was mitigated by rejecting 25% of the initial and final parts of the video. All videos
were recorded at 30 fps from a rear smartphone camera with the flashlight LED on.

The recorded video was then decomposed into its frames; subsequently, each frame
was decomposed into its three principal color components (red, green, and blue). First, the
mean intensity for each frame component was calculated, followed by a moving average
filter to smooth the measurement data. The moving average filter replaces each data point
of a signal with the local average of the surrounding neighboring data points in a sliding
window centered at the point. For example, if a given data point has k points to the left
and k points to the right, for a total window length of L = 2k + 1, the moving average filter
makes the replacement

xs −→ x̂s =
1
L

k

∑
r=−k

xs+r (1)

Based on our investigation, we concluded that the moving average filter provided
a signal with minimum noise when each individual mean was calculated over a sliding
window of length seven across neighboring data elements of the initial mean intensity
calculated for each frame component. Figure 2 (left) shows the same signal intensity
obtained with different moving-average window lengths (e.g., 5, 7, 9, and 12 neighboring
data elements window). Figure 2 (right) shows magnified the red circled peak illustrated
in Figure 2 (left) at frame 880. Figure 2 (right) shows that a sliding window of length seven
across neighboring data elements produced smoother results.
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Figure 2. (Left): Mean intensity followed by a moving-average filter with several sliding window
lengths vs. frame number. (Right): shows, in magnification, the region around the peak at frame 880.

Despite the smoothing effect of the moving-average filter, we still obtained traces of
noise caused by several background factors, e.g., high-frequency modes, external light
sources, and, possibly, low-quality cameras. We wished to achieve smooth oscillatory
signals with distinct local extrema that would enable us to analyze further the signal
obtained by any type of smartphone. To this end, after applying the moving-average filter,
we applied a Savitzky–Golay filter, which smooths according to a quadratic polynomial that
is fitted over each window of the mean intensity obtained by the moving average filter. Our
investigation demonstrated that the Savitzky–Golay filter provided a smoothed/denoised
signal when each least-squares polynomial fit was calculated over a sliding window of
length 20 across neighboring data elements of the mean intensity obtained by the moving-
average filter. Figure 3 (left) shows the same signal intensity obtained with different window
lengths (e.g., 10, 15, and 20 neighboring data elements window). Figure 3 (right) shows
magnified the red circled peak at frame 915. Figure 3 (right) shows that the Savitzky–Golay
filter applied with a 20-element sliding window was more effective than other methods
when the data varied rapidly.

Developing a neat oscillatory signal leads to efficient and accurate calculation of the
heartbeat pulse rate. The calculation of the pulse rate was performed with two equivalent
methods that gave identical results. The main purpose of the use of both methods was
to identify the peaks in the signal and to count their number in each window. Knowing
the number of peaks and the time length of the window, the pulse rate can be readily
estimated. For the first method (the local maximum method), we identified the peaks as
local maximums; in the second method (the gradient method), the peaks were identified by
calculating the gradient at nearby points to the left and right of the evaluation points of
interest. A particular data point was identified as a peak (e.g., a maximum) if the gradient
was positive at three consecutive points before the peak and negative at three consecutive
points following the peak.
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Figure 3. (Left): signal intensity obtained with the moving-average filter applied with and without
the Savitzky–Golay filter (with several sliding window lengths). The red circled peak at frame 915 is
magnified on the right. The red circled peak at frame 915 shows that a sliding window of length 20
across neighboring data elements gives smoother results.

The smoothed mean intensity signal was also processed by fast Fourier transformation
(FFT) to correlate the frequency components of the signal with the pulse rate (FFT method).
The amplitude of the signal in the frequency domain produced peaks in the 0.5–2 Hz range
(Figure 4). The frequency spectrum exhibited a main peak, with maximum amplitude,
the frequency of which approximated the heart pulse rate. A series of experiments were
performed with N healthy subjects, with ages ranging from 17 to 82 years. The peak
frequency fp in Hz was multiplied by 60, to obtain the pulse rate. The results for this
method were compared with the benchmark reading (using a medically approved oximeter)
and the other two aforementioned methods. The relative deviations of the three methods
are tabulated below.
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Figure 4. Typical FFT spectrum from a smoothed mean intensity signal (red channel). The estimated
pulse rate is 67 bpm (1.1195 Hz).

We further decomposed the signal into its AC and DC components. We split the signal
into frame windows (Figure 5) with each frame window limited between two consecutive
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local minimums. The DC component of each individual frame window was defined as
the average value of the signal in the range between the two local minimums. The AC
component magnitude was defined to have the value of the intervening local maximum
between the two local minimums of the respective frame window.
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Figure 5. Schematic diagram representing a random frame window used to calculate the AC and DC
components of the signal.

In our numerical code, we developed a sliding frame window that deduced all the
AC and DC components for the red and green spectral components of the signal. The
blue component of the signal, as is illustrated in the Results section, was excluded from
our study because of its low correlation with the heartbeat pulse rate. The oxygen con-
centration in blood can, in principle, be calculated in a non-invasive way using the photo-
plethysmography technique PPG [6,14], which is based on the differential absorption of
light of two different wavelengths from oxygenated and de-oxygenated arterial blood.

According to the theoretical treatment of the PPG technique, the oxygen concentration
in blood SpO2 can be derived from the ratio-of-ratios R of the AC and DC components,
calculated at two different wavelengths λ1 and λ2 around an isosbestic point. A commercial
fingertip pulse oximeter generally uses two LEDs, generating red (approx. 650 nm) and
infrared light (approx. 950 nm), as well as photo detectors. In this study, the red and green
components (broadband) of the recorded video signals were used instead.

R =
(AC/DC)λ1

(AC/DC)λ2

(2)

SpO2 is usually determined by linear or quadratic regression analysis. In these models,
the ratio-of-ratios R, as given in the above expression, is the independent variable directly
related to blood oxygenation [4,6].

3. Results

A group of 35 volunteers (aged between 17 and 82 years) participated in the testing
phase. Specifically, the PR and blood oxygenation (SpO2) were measured using medically
approved oximeters simultaneously with capture of the video of the index finger directly
attached to the smartphone camera. The video recordings were made for three different
time intervals: 15 s, 30 s, and 45 s. In the following, we discuss the accuracy of the three
methods implemented for the calculation of PR, the impact of the recording time duration
on the results, and the calculation of the ratio-of-ratios, used for the prediction of SpO2,
based on two methods.
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Comparison of the Various Methods for the Heartbeat Rate Calculation

As mentioned in the previous section, the heartbeat rate was calculated based on three
methods: (a) the gradient method; (b) the local maximum method (available as a ready-
made function by Matlab) and, (c) the FFT method. To evaluate the accuracy of each method,
the calculated PR for each individual component of the RGB video signal was normalized
against the benchmark reading obtained from a medically approved oximeter. Specifically,
we used Braun and Beurer oximeters [16]. The video recordings were obtained by three
different smartphones: an iPhone 8 (iOS 16.11), a Samsung Galaxy A22 5G (Android 12)
and a Xiaomi Redmi 9A (Android 10). The reason we used different types of smartphones,
as well as oximeters, was to generate unbiased data that would be insensitive to a specific
brand or operating system.

The recording of the videos was performed by different individuals using the described
smartphones and oximeters. The volunteers who participated in the study placed their
left index finger in the oximeter, used as a benchmark, and their right index finger was
attached directly to the smartphone rear camera with the flashlight always on during the
measurement. The durations of recording were 15 s, 30 s and 45 s. This was performed
to evaluate the impact of the time duration of the video on the accuracy of the results.
It is worth noting that the flashlight required always to remain on during the recording,
otherwise the pulsating signal would be superseded by interference from surrounding
light sources—the main spectral component from the FFT response would then not be
clearly identified from other spectral components caused by other light sources. The same
observation applied to the other two methods, where the pulsating response due to the
actual heartbeat was extremely weak and unidentified.

The first set of measurement data taken by four independent researchers, trained to
the agreed methodology, corresponded to a recording time duration of 45 s. The recorded
videos were analyzed, based on the three previously discussed techniques, using MATLAB.
In Figure 6a, we present the corresponding measurements for the heartbeat rate, normalized
by the average benchmark reading obtained by the oximeter. It is of note that the oximeter
reading, though obtained by a medically approved device, is susceptible to a small degree of
error due to possible movement/mispositioning of the finger or interference by other nearby
sources. In addition, the oximeter’s device manufacturer’s stated accuracy is +/− 1 bpm,
for less than or equal to 100 bpm, and +/− 2 bpm for greater than 100 bpm. The results
for application of the gradient method with corresponding normalized measurements for
45 s are shown in Figure 6a. In this graph, three different color markers correspond to
the three color components of the recorded video. It is clearly shown that the red and
green components were less dispersed from the benchmark average, which was unity,
indicating their increased accuracy compared to the blue component prediction of the
heartbeat rate. This can be also observed from Table 1, which tabulates the average value
along with the standard deviation of the analyzed results. Specifically, the average value
obtained for the three video channels, i.e. red, green and blue, were 1.00, 1.01 and 1.01,
respectively. The corresponding values of the standard deviation were 0.024, 0.040, and
0.096, clearly indicating that the analyzed results based on the blue component were much
more dispersed compared to the other two components, though this was not quite as
evident from the average values, which differed by less than 1%. As a result, the gradient
method, as applied to the 45-s video recordings, provided more reliable and accurate PR
predictions for the red and the green channels.
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(a) Gradient method.
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(b) FFT method.
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(c) Local-maximum method.

Figure 6. Normalized pulse rate (PR) of all participating volunteers; the video recording time in these
graphs corresponds to 45 s.

The FFT and local maximum methods were also applied to the same measurement
dataset. The results of the analysis are shown in Figure 6b,c, respectively. Clearly, the
red and the green channels provided better prediction of the heartbeat rate compared to
the blue channel. As seen from Figure 6b, which corresponds to the FFT method, the
blue markers were more dispersed from the average benchmark reading compared to the
other two color markers. Specifically, the mean values for the red and the green channels
were 1.00 and 0.99, respectively, whereas, for the blue channel, the mean value was 0.95,
indicating a larger deviation from the benchmark reading. The same inference follows
for examination of the results for the standard deviation, which was 0.107 for the blue,
and 0.032 and 0.034 for the red and green channels, respectively. For the local maximum
method, the results were quite similar to those for the other two methods, indicating more
reliable and accurate results for the red and green channels compared to the blue channel.
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More specifically, according to Table 1, the average readings for the three channels were
1.01, 1.01 and 1.07, for the red, green and blue channels, respectively. The corresponding
standard deviation values were 0.046, 0.042 and 0.152, respectively. It can be inferred that
the results from the blue channel were less accurate than for the other two colour channels
for the heartbeat rate.

The experiment was repeated for a shorter duration of video recordings. Specifically,
we conducted the same type of measurements for a video recording duration of 30 s, and,
subsequently, for 15 s. We reduced the video recording time, initially from 45 s to 30 s and
then from 30 s to 15 s to investigate the video duration effect on the accuracy and reliability
of the pulse-rate measurements using the smartphone camera. It is of critical importance to
identify an acceptable (preferably as short as possible) video recording time interval for
which the accuracy of the measurements is not compromised. It is important to emphasize
that the experiments conducted for the three different recording times were independent
of each other, meaning that the procedure was repeated as if it was a new experiment. In
addition, the participating volunteer for each case may not have been the same individual
for all three recording time intervals. The corresponding measurements obtained are shown
graphically in Figures 7 and 8 for 30 and 15 s, respectively. At first glance, it is evident
that the blue triangular markers, which correspond to the blue component of the RGB
signal, are more distant from the benchmark reading. The PR measurements based on
the red and green components were closely concentrated around the benchmark value.
This also applied for the 45 s video recording time. If the average values based on each
individual color component are compared for each of the three implemented approaches
(see Tables 1–3), it can be concluded that the video recording duration had no significant
effect on the accuracy of the methods. This was also evident by comparing the standard
deviation of each method for the three video recording time intervals. This represents
surprisingly good news, as all three methods can provide accurate and reliable PR results
by video recording of the index finger for a short duration of only 15 s.

Table 1. Statistical data for 45-s video recordings.

Color Component (Method) Average Standard Deviation

Red (Gradient) 1.00 0.024
Green (Gradient) 1.01 0.040
Blue (Gradient) 1.01 0.096

Red (FFT) 1.00 0.032
Green (FFT) 0.99 0.034
Blue (FFT) 0.95 0.107

Red (Local max) 1.01 0.046
Green (Local max) 1.01 0.042
Blue (Local max) 1.07 0.152

Table 2. Statistical data for 30-s video recordings.

Color Component (Method) Average Standard Deviation

Red (Gradient) 1.00 0.045
Green (Gradient) 0.99 0.034
Blue (Gradient) 0.95 0.124

Red (FFT) 1.00 0.045
Green (FFT) 0.99 0.041
Blue (FFT) 0.92 0.132

Red (Local max) 1.01 0.049
Green (Local max) 1.00 0.038
Blue (Local max) 1.02 0.137
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Table 3. Statistical data for 15-s video recordings.

Color Component (Method) Average Standard Deviation

Red (Gradient) 1.00 0.050
Green (Gradient) 0.99 0.038
Blue (Gradient) 0.97 0.089

Red (FFT) 0.98 0.038
Green (FFT) 0.98 0.038
Blue (FFT) 0.94 0.143

Red (Local max) 1.01 0.069
Green (Local max) 1.00 0.040
Blue (Local max) 1.03 0.113
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(a) Gradient method.
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(b) FFT method.
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(c) Local-maximum method.

Figure 7. Normalized pulse rate (PR) of all participating volunteers; the video recording time in these
graphs corresponds to 30 s.
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(a) Gradient method.
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(b) FFT method.
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Figure 8. Normalized pulse rate (PR) of all participating volunteers; the video recording time in these
graphs corresponds to 15 s.

In addition to monitoring the heartbeat rate of an individual by use of a smartphone
camera, our initial objectives also included monitoring the SpO2. To calculate the percentage
of blood oxygenation using pulse oximetry, it is first necessary to estimate the ratio-of-
ratios for two colors, as defined in (2). Then, a linear or quadratic regression formula with
calibrated coefficients is used to estimate SpO2. Therefore, our goal was to calculate the
ratio-of-ratios for the red and green color components of the video signal, and, then, to
examine its behavior for different types of phones and participating individuals. All the
participants in this type of measurement had a percentage blood oxygenation between
95% to 99% for the entire duration of the experiment. In other words, the SpO2 reading
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of the commercial oximeter varied by no more than 5% for all measurements. As shown
though in Figure 9, the calculated value of the ratio-of-ratios, using the FFT method and
the local maximum method, varied significantly from individual to individual and from
one phone type to another. Figure 9 shows 19 different measurements, which correspond
to 19 healthy volunteers, and three different types of smartphone. As can be clearly seen,
the variation in the ratio-of-ratios was close to an order of magnitude of three, even though
the benchmark percentage blood oxygenation (obtained by the commercial oximeter) did
not vary by more than 5%. For this reason, we did not implement this type of approach for
the estimation of SpO2, mainly due to the lack of correlation between the ratio-of-ratios
and the actual oxygen concentration level in the blood of an individual. This weakness
in the current methodology can be mainly attributed to the significant variation in the
light intensity of the flashlight during the course of the measurements, in addition to key
hardware differences and technical specifications for the different types of smartphone used
in this investigation. In this study, it was also observed that the intensity of the flashlight
was closely correlated to the smartphone’s battery charge state, which might have affected
the accuracy of the calculation of the ratio-of-ratios for the subjects participating in this
research. In future investigations, we will seek to isolate these technical parameters from
the SpO2 calculation by incorporating the same type of smartphone for all measurements,
while constantly monitoring the state of the battery.

10-3

10-2

10-1

100

 0  5  10  15  20

R
 (
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)

Subject number

Local Max. method
FFT method

Figure 9. Ratio-of-ratios for a group of 19 healthy individuals calculated using the FFT method and
the local maximum method.

4. Conclusions

In this study, we investigated three different methods, along with different types
of filtering techniques, for estimating the heartbeat rate of individuals using solely a
smartphone camera to record a short video of the index finger attached directly to the
camera. The analysis was based on the three color components of the video signal. All
three methods incorporating optimized filtering techniques provided fairly good results
compared to a benchmark reading obtained from a medically approved oximeter available
commercially. Analysis of the three color components clearly showed that the predictions
of the heartbeat rate for the red and green color components were more accurate than that
for the blue component. The video recording duration was also found not to affect the
accuracy of the pulse-rate calculation. We demonstrated that a 15 s recorded video was
adequate for accurate and reliable estimation of the pulse rate based on the red and green
color components. Two of these methods were applied for estimation of the SpO2 by first
calculating the ratio-of-ratios, which is widely discussed in the literature. However, our
calculations showed that the obtained ratio did not correlate with the oxygen concentration
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reading of a commercial oximeter; thus, we did not proceed with the regression analysis.
Future investigations are needed to ensure a reliable approach to the estimation of SpO2
using a smartphone camera.
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