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Abstract: Mobile mapping technologies, based on techniques such as simultaneous localization
and mapping (SLAM) and surface-from-motion (SfM), are being vigorously developed both in
the scientific community and in industry. They are crucial concepts for automated 3D surveying
and autonomous vehicles. For various applications, rotating multiline scanners, manufactured, for
example, by Velodyne and Ouster, are utilized as the main sensor of the mapping hardware system.
However, their principle of operation has a substantial drawback, as their scanning pattern creates
natural gaps between the scanning lines. In some models, the vertical lidar field of view can also
be severely limited. To overcome these issues, more sensors could be employed, which would
significantly increase the cost of the mapping system. Instead, some investigators have added a
tilting or rotating motor to the lidar. Although the effectiveness of such a solution is usually clearly
visible, its impact on the quality of the acquired 3D data has not yet been investigated. This paper
presents an adjustable mapping system, which allows for switching between a stable, tilting or fully
rotating lidar position. A simple experiment in a building corridor was performed, simulating the
conditions of a mobile robot passing through a narrow tunnel: a common setting for applications,
such as mining surveying or industrial facility inspection. A SLAM algorithm is utilized to create
a coherent 3D point cloud of the mapped corridor for three settings of the sensor movement. The
extent of improvement in the 3D data quality when using the tilting and rotating lidar, compared to
keeping a stable position, is quantified. Different metrics are proposed to account for different aspects
of the 3D data quality, such as completeness, density and geometry coherence. The ability of SLAM
algorithms to faithfully represent selected objects appearing in the mapped scene is also examined.
The results show that the fully rotating solution is optimal in terms of most of the metrics analyzed.
However, the improvement observed from a horizontally mounted sensor to a tilting sensor was the
most significant.

Keywords: lidar; dense point cloud; SLAM; 3D reconstruction; 3D data quality; surface density

1. Introduction

Simultaneous localization and mapping (SLAM) represents one of the most significant
computational problems for any 3D reconstruction. It can be applied to autonomous cars
and robotics inspection missions to solve specific tasks, in particular map generation and
obstacle detection. The most promising data source for performing these tasks is application
of the lidar distance measurement method. Although many 3D-mapping lidar systems
have been developed and are used in various applications, the quality and accuracy of
the generated 3D point clouds and 3D geometries often remain insufficient, particularly in
complex or unstable environments. However, one of the most rapidly growing fields of
application for mobile mapping systems is underground mining, as the speed and possible
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automation of performing such measurements enables the rapid acquisition of dense 3D
data for vast underground structures. For these reasons, constant improvement is needed
in measurement system construction and point cloud data processing. New approaches to
the analysis and methodological assessment of the 3D data quality are also required. One
promising solution, improving the hardware side of the mapping system, is the design of a
spinning lidar sensor with an additional module that rotates the sensor around another axis.
This actuated lidar design, in which a scanner is combined with an actuation mechanism
to scan a 3D volume rather than a single line, has already been used in numerous mobile
robot SLAM applications [1].

Therefore, the main objective of our study was to quantitatively and qualitatively
assess the influence of a well-known approach using lidar rotation on the accuracy and
value of a 3D point cloud using an inspection robot in a test environment mimicking an
underground mine tunnel. The paper is structured as follows: first, in Section 2.1, the
state of the art is investigated. The scope of the investigation includes use of a rotating
lidar in mobile or stationary mapping and point cloud accuracy and quality assessment
methods, in particular, with respect to SLAM applications in underground environments.
Then, in Section 2.2, the design of an adjustable mapping system, developed for this
investigation, is presented. The SLAM data-processing workflow is described in Section 2.3,
and our approach to assessing the quality of the results with the metrics utilized for this
purpose is explained in Section 2.4. Next, in Section 2.5, the experimental setup used in
this study is described. The results obtained from the experiments undertaken are first
presented and analyzed in global terms in Section 3.1, and, then, considering local point
cloud quality in Section 3.2. Finally, a summary of the research, as well as final thoughts
and recommendations for implementing SLAM in underground environments, is presented
in Section 4.

2. Materials and Methods
2.1. State of the Art

The data acquisition strategy for autonomous vehicles and inspection robots using the
lidar system needs to be based on an understanding of specific environmental parameters,
such as the presence of a variety of dynamic or static obstacles, ensuring the highest
possible level of accuracy in the scanned data. Measurement systems with rotating lidar
sensors enable the capture of dense and close-to-spherical data about the surrounding
environment [2]. Thus, numerous research groups and companies have been engaged in
the development of methods to increase the resolution of the mapped space with rotating
2D and/or 3D lidar systems. With respect to the academic state-of-the-art, comprehensive
reviews can be found in the literature, focusing both on pure lidar SLAM [3] and on more
sophisticated, fusion-based, methods [4]. Many commercial, user-oriented devices are also
available on the market. An extensive, but not exhaustive, list of such solutions includes
handheld scanners, such as GeoSLAM Horizon, GreenValley LiGrip, SatLab Cygnus and
Leica BLK2GO, backpack solutions, such as Kaarta Stencil and Leica Pegasus, and complete
mapping systems for UGVs and UAVs, such as Emesent Hovermap ST. The wide range of
rapidly appearing and evolving SLAM systems on the market makes it difficult to provide
a fully comprehensive list.

The design of a dual 2D/3D lidar mapping system and a six-degrees-of-freedom (DOF)
interpolated odometry, where 2D lidar is used to enhance 3D solid-state lidar performance
used on a ground vehicle platform, can be found in [5]. The design of a spring-mounted
3D range sensor that reduces irregular vibrations of the measurement deck is described
in [6]. In [7], a method for focusing on specific regions of interest using a secondary rotation
motor to receive high-density measurements of the surroundings with a mobile robot
platform is presented. The authors tested how, by decreasing the secondary rotation speed
in the specific region, the point density in this area could be increased. The authors of [8]
developed a new system (named Art-SLAM) to perform point-cloud-based graph SLAM.
The proposed system is capable of achieving real-time performance, maintaining high
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accuracy, and can also efficiently detect and close loops in the trajectory, using a three-phase
algorithm. A similar method, focusing on the correction of a local point cloud alignment, is
described in [9].

Construction of the scanning actuation mechanism can have an impact on different
positions of the rotation center of the lidar mirror and construction itself; thus, sufficient
calibration methods are needed. The description of an automatic calibration method
for the actuated lidar can be found in [10]. An extension of the following calibration
methods for multiple spinning laser scanners with the support of inertial/global navigation
systems is presented in [11]. The results of the evaluation of an automated algorithm and a
spinning/rolling lidar system for continuous-time trajectory estimation, taking into account
inter-sample pose errors to handle data distortions, are described in [1]. The drawback
of using a high-density dataset is its size; thus, compression frameworks and algorithms
are needed. For example, reference [12] describes a detailed investigation of a geometry
compression method created for a spinning lidar point cloud.

Point cloud accuracy and data-quality assessment are amongst the most important
factors for the creation of reliable, error-free methods used in laser scanning. To tackle
the recurrent problems of misregistration, outlier detection and over-completeness, a
comparison of several methods is needed. In [13], the use of mobile indoor 3D scanning
methods are described, which are applied to a dozen different scanned locations, using
five commercial indoor mapping prototypes with respect to error metrics, which do not
operate on a manually given proximity scale, but on different proximity scales. High-
dense point cloud analyses include simplification methods, which enable significant size
reduction, while retaining sufficient variability of the geometry. Well-known algorithms
exist that combine incremental/hierarchy clustering or iterative simplification [14]. Surface
reconstruction using a robust diagnostic algorithm for more resistant outlier detection and
a technique for plane-fitting applying a minimum covariance determinant are presented
in [15]. In [16], this is used as an alternative approach for the assessment of local surface
damage in civil structures. In the same way, photogrammetry-based 3D mapping of road
distress detection is considered for use with unmanned aerial vehicles in [17].

With regard to the underground mining environment being investigated in the present
study, SLAM solutions and applications in real or artificial spaces need to be considered.
Underground workings are characterized by significant irregularities in the surrounding
geometries and by dustiness that can affect the performance of the mobile system and
the quality of measurements obtained. The results presented in the studies referred to
below confirm that SLAM-enabled laser scanning represents a promising method for
underground mining tunnel mapping and examination. One of the first studies that
indicated the potential for high-resolution 3D-mapping of an underground mine involved a
cart-mounted 3D-laser-scanner setup and an automatic 3D-modeling method [18]. Similarly,
reference [19] reported a method for solving the SLAM problem with six DOF for the
accurate volumetric mapping of an abandoned mine.

The authors in [20] proposed and tested a graph SLAM optimization method in
an underground mine laboratory based on a generalized iterative closest point (GICP).
In [21], a system for continuous high-resolution mapping and exploration of underground
spaces, with virtual-reality visualization capabilities that can be used in mobile robot rescue
operations, was presented. The investigation described in [22] demonstrated a SLAM
solution capable of accurately mapping underground mines at kilometer scales, using a
spinning 2D-laser scanner and an industrial-grade inertial measurement unit mounted
on a light vehicle. Finally, reference [23] analyzed the quality of SLAM-based mobile
laser scanner (MLS) data for the accurate and efficient geotechnical monitoring of the
underground mine environment. In addition, the applicability of real-time 3D SLAM
based on normally distributed transform (NDT) and pose-graph optimization for complex
underground space scenarios after disasters was examined in [24]. A broad assessment
of handheld laser scanners for mine surveys and the validation of results with terrestrial
laser scanners for reference data are presented in [25]. A summary of successful SLAM
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approaches for surveying underground environments, based on experiences from the
DARPA Subterranean Challenge, is presented in [26].

The literature review highlighted that there are still gaps to be filled with respect to
evaluation methods for comparing the results (i.e., 3D point clouds) produced with different
SLAM systems, with respect to both the hardware and the software used. Developing such
methods would assist in choosing suitable solutions for selected use-case environments,
optimizing the cost of scanning, system complexity and data size and quality. This study
aims to tackle this challenge.

2.2. Adjustable Mapping System Design

The purpose of developing an adjustable mapping system for this study was to
enable additional, controlled rotation of the lidar device around its longitudinal axis. In
consequence, the effective field of view (FoV) of the sensor can be gradually increased,
almost up to the point of a full-spherical FoV (excluding occlusions caused by the sensor
mounting and the robot). The adjustability of the proposed system is controlled by the
operator, who can easily change the range of lidar rotation using control software options
on the remotely connected tablet. In this research, we utilized these options to emulate three
different strategies for lidar head mounting, which have been used in various commercial
solutions and research prototypes. The details of the system configuration are presented in
the following paragraphs.

In this study, a 16-line Velodyne VLP-16 lidar is used. The sensor is mounted on
a rotating module, mounted above the set of sensors designed for inspection purposes
Figure 1a. The rotational movement is carried out using a Dynamixel AX-12A servo drive
from Robotis. During movement, the desired angle range changes with a resolution of
0.29◦. The supply voltage of the device is 12 V. The feedback signal of the current angular
position is used to dynamically generate the rigid body transform between the lidar and
the robot base reference frame. This allows the mapping to be performed in the robot frame
and provides an initial estimate for transformations between consecutive lidar positions in
a global frame of reference, computed by the SLAM algorithm.

(a) Sensor suite installed on the robot (b) Data-reading system structure

Figure 1. Adjustable mapping system for the mobile robot.

A block diagram of the data-acquisition system with the actuator module is shown in
Figure 1. Data from the lidar is sent to a computer via an Ethernet interface using a user
datagram protocol (UDP). Simultaneously, the data on the current inclination angle of the
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actuator is transferred to the computer via the USB port of the actuator module using a
half-duplex UART converter. The system is integrated with the Robot Operating System
(ROS) environment and dedicated software was developed for handling the components.
The software uses ROS dynamic reconfiguration parameters, which enable the setting of
a stable given position of the sensor throughout the measurement session or continuous
spinning of the lidar around the longitudinal axis of the robot in a given range. Due to
the limitations caused by the wiring, the maximum rotation range was limited to between
−90◦and 90◦, where the neutral horizontal position of the sensor was considered to be 0◦.
The control software was written using the Python language. The power supply of the
system was integrated with the robot power system. Suitable voltages for powering the
data acquisition computer, the lidar and the actuator module were obtained with DC/DC
step-down converters, set to the appropriate output voltage. The scheme of the module is
presented in Figure 2.

Figure 2. Lidar rotation module scheme. Θ1 represents inner laser rotation around the vertical axis
and Θ2 denotes external rotation of the entire sensor around its longitudinal axis using an actuator.

2.3. 3D Lidar SLAM

In this study, several steps of point cloud acquisition are taken to obtain coherent and
noise-free global point clouds. The aim is to ensure the highest quality of results from
the different methods tested so that the comparison outcomes would not be affected by
external factors or imperfect execution and repetition of the experiment. The parameter
values in each step are universally chosen and kept consistent for each case. Although
their method-specific tuning could potentially improve the accuracy of results, it might
significantly influence the data density and, thus, introduce bias into one of the most
important aspects of the analysis.

First, the robot trajectory is estimated in real time with the SLAM system, consisting
of A-LOAM lidar odometry [27], scan context loop closure detection [28,29] and GTSAM-
based pose-graph optimization [30–32]. A schematic overview of the method used is
presented in Figure 3, where different factor graph elements are denoted as symbols
with relevant connections between them. Lidar odometry, as the crucial element of the
system, provides transformation estimates between the sensor reference frame and a global
reference frame. The transform is calculated with a frequency of 10 Hz (equal to the lidar
data acquisition frequency) based on extraction of feature points, creating edge lines and
planar patches, and identifying correspondences between features found in consecutive
point clouds. An initial guess is provided by the tf broadcaster [33], which receives the
current actuator inclination angle and uses it to calculate the transform from the lidar frame
to the robot base frame. The SLAM workflow is based on open-source implementation of
SC-A-LOAM [28,29], with the addition of using rotation module feedback to provide an
initial guess of the lidar pose transformation and to prevent distortion of the point clouds.
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Figure 3. Scheme of utilized SLAM algorithm.

An important part of the applied SLAM algorithm is correction for motion distortion
of point clouds. The lidar used in the study acquires 360◦ 3D point clouds in constant
motion, revolving internally around its z-axis. One revolution (a sweep) takes 0.1 s and
an aggregated set of point coordinates is sent by the sensor to the PC. However, when
the scanner is in motion, the points acquired between the start and the end of the sweep
have a slightly different frame of reference. This results in aggregating in each point cloud
points acquired from slightly different positions, introducing a systematic error into the
measurements (Figure 4). Since the individual point acquisition timestamps are known,
it is possible to correct for the sensor ego-motion, provided that at least an approximate
motion of the sensor during the sweep is known. Lidar odometry is utilized to reproject
the points to the mutual reference frame of the point acquired at the end of the sweep.

Figure 4. Illustration of point cloud motion distortion in a simple room seen from the top view. Raw
point cloud in red; undistorted points in blue.

Lidar odometry provides a quick and constant, but preliminary, sensor pose estimate.
It is susceptible to long-term drift, especially with respect to orientation in the 3D space.
With a rotating sensor, such as that used in the study, this could cause unacceptable
mapping results, with common errors occurring, such as double walls or rotated corridors.
To prevent this, loop closure detection and pose-graph optimization are included in the
software system. In our test measurements, we did not have explicit loop closures in terms
of returning to the same place the robot visited earlier. Therefore, Scan Context++ was
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used to additionally bind the trajectory after each full resolution of the actuator. The point
clouds acquired at the same actuator inclination angle are/were similar due to the low
speed of the robot. The resulting matches between scans are added as a constraint to the
pose graph and optimized with GTSAM, reducing the drift of the odometry algorithm.

Then, clusters of points representing dynamic objects are removed in post-processing
using removert [34]. This step enables reduction in noise of the point clouds and exclusion
of moving objects accidentally appearing in the lidar field of view, such as the robot operator
or the robot itself. Although the filtering procedure may slightly influence the density of
the analyzed point clouds, due to the different level of robot ego-noise present in the three
compared SLAM approaches, this step is necessary to allow comparison of the resulting 3D
data. To minimize the influence of this step on the comparison, parameters of the filtration
in all three cases were kept consistent. An example of the effect of applying removert to our
data is presented in Figure 5. The noisy points are present in the central part of the scanned
environment, just above the floor. They are caused by the robot elements occasionally
coming into the lidar field of view. After applying the removert algorithms, this noise is
successfully eliminated. In the last stage of 3D data preparation, point clouds from every
scenario are cropped to the same area of interest to eliminate points that lie outside the
surveyed corridor.

Figure 5. Point cloud before (left) and after filtering (right).

2.4. Metrics for Quality Assessment of 3D-Scene Reconstruction

Evaluating the quality of 3D point cloud data acquired with a mobile mapping system
is not a straightforward task. Many metrics have been proposed and used to assess the
accuracy of SLAM measurements, such as the absolute trajectory error (ATE), the relative
trajectory error (RTE) and the relative position error (RPE) [35,36]. However, they focus
on positioning accuracy in the global context, that is, the angular and linear drift of the
algorithm in the long term, and do not convey information regarding the short-term quality
of the measurements. Nevertheless, there are other important aspects of 3D-data quality,
such as completeness, density and local coherence. In the context of extracting information
about specific objects from the point cloud, e.g., during inspection or classification, they
provide a more viable insight into the quality of geometry reconstruction [37], and, thus,
constitute the centerpiece of this study.

One of the metrics that can be used to estimate the local quality of a point cloud
is its density. This simply describes the number of measured points per chosen unit of
reference: a volume or a surface. For this study, since the mapped area primarily contains
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approximately planar surfaces, surface density was calculated with respect to Equation (1)
and analyzed.

SD =
N

ΠR2 (1)

where: N—number of neighboring points in the radius R around the analyzed point.
Data density provides information about the spatial distribution of points and their

number, characterizing the redundancy of the measured geometry. However, this metric
does not convey information on the noise level of the analyzed point cloud. To address this,
another component was introduced to the analysis, namely, object reconstruction quality,
that is, how accurate the measured geometry is of a single object in the scanned scene.

For evaluating the object reconstruction quality, i.e., the local consistency of a point
cloud, several objects were chosen as samples. They were manually identified in each
point cloud and compared between different tested lidar SLAM configurations. For planar
objects, such as walls, doors or floor, surface variation [38,39] (also named “change of
curvature” in other reports [40]) was calculated according to Equation (2). This metric
has been utilized in several investigations [15,16] to describe and identify local surface
deviations on the basis of point cloud data. The metric uses local descriptors of points in the
form of a covariance matrix of their neighborhood, which can be geometrically interpreted
as their eigenvectors with associated eigenvalues (Figure 6). The radius, in which the
neighboring points were included for calculation of the covariance matrix, was selected as
5 cm to provide detailed information, while still being above the value of the lidar ranging
accuracy. Moreover, for perfectly planar objects, it was possible to additionally perform a
least-square plane fit to introduce a single-number statistic for evaluation of local geometry
consistency [41].

SV =
λ3

∑3
i=1 λi

(2)

where λ1,2,3—eigenvalues (in descending order) of a covariance matrix calculated for the
set of coordinates of neighboring points in radius R.

Figure 6. An example subset of a 3D point cloud with corresponding eigenvectors scaled by
their eigenvalues.

In the cases of two distinctive objects in the study area, namely a ceiling lamp and a
trashcan, such analysis would not be meaningful since their geometry is more complex
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than a plane. To account for this, for all objects, point cloud resolution was additionally
compared by listing the number of points per object.

The last analyzed aspect of the point clouds acquired with SLAM is their completeness.
Since the raw number of points is heavily influenced by noise and redundant measurements,
other metrics need to be utilized for this purpose. Such a metric should describe a unique
volume of space, containing any measured points. Two data structures commonly used
in 3D-data processing have this property: a voxelgrid and an octree. Both divide a 3D
space into a regular volumetric grid of boxes. For the voxelgrid, the size of a single voxel is
fixed, and an octree contains a multiresolutional representation of the scene, sequentially
dividing cells at each level into octants [42,43]. To assess the completeness of scanning the
test environment, a number of occupied voxels and octree cells were compared between
the tested approaches. Voxelgrid resolution was selected at the levels of 5, 10 and 20 cm
based on the expected accuracy of the point cloud acquisition. Octree cells were counted at
each of the levels from 1 to 12. An example of an octree volumetric representation is shown
in Figure 7.

Figure 7. Example volumetric visualizations of an octree at levels: 3, 5, 7 and 9

2.5. Data Acquisition Setup

Several experimental data acquisitions were performed with a wheeled mobile robot
(Figure 8, powered by a Robot Operating System (ROS, [44]). Each measurement scenario
was carried out in the same corridor, approximately 40 m long, at the Wroclaw University
of Science and Technology. The corridor contained several obstructions in front, above
and on the sides of the robot, including recesses, doors and the wall above the lintel,
creating occlusions for the lidar. Such conditions were chosen to simulate the problems
with measurement coverage when scanning narrow linear objects, such as underground
tunnels. In each case, the robot followed approximately the same straight path, through
the middle of the corridor. Three common ways of utilizing the lidar sensor for SLAM
were considered:

1. Sensor in fixed horizontal position, i.e., horizontal lidar;
2. Sensor rotating in the full range from −90◦to 90◦, i.e., rotating lidar;
3. Sensor rotating in the limited range from −45◦to 45◦, i.e., tilting lidar.

During the tests, the adjustable mapping system was responsible for keeping the stable
position of the sensor in the first case and smoothly rotating it in the other cases. The system
feedback for the inclination angle was monitored in real time to ensure that no sudden
changes in the sensor inclination occurred and that the system worked correctly. Three raw
measurement datasets were recorded as .rosbag files and later processed with the previously
described SLAM workflow. Point sets were prepared for the analysis from consecutive
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measurements, with a horizontal, rotating, and tilting lidar containing, respectively, 1.9, 5.9
and 4.1 million points.

Figure 8. Robot during the measurements.

3. Results and Discussion

All the obtained point clouds were visually inspected. The topology and main dimen-
sions of the corridor measured in the point cloud matched the ground truth, which led to
the conclusion that the results of each measurement session succeeded in creating a valid
3D representation of the analyzed area. However, further analysis showed discrepancies
between the results for different methods.

3.1. Analysis of the 3D Data Density

First, the density of the point clouds was examined. For each point, a value of the
density of its surroundings was calculated and represented in a 3D view with an identical
color scale. The results are shown in Figures 9–11. The mean densities and corresponding
standard deviations were computed and are summarized in Table 1. The histograms with
kernel density estimator approximations of the analyzed density values are shown in
Figure 12.

Table 1. Density statistics in points per m2.

No Point Cloud Mean Surface
Density Standard Deviation

I Horizontal lidar 8978 5249
II Rotating lidar 10,230 5146
III Tilting lidar 7581 3967

In the 3D visualization of the point clouds (Figure 9), it can clearly be seen that a
horizontal lidar did not provide measurements of the whole area due to its limited field
of view. The most noticeable difference is located just at the starting point of the test. The
density of the point cloud in this case is moderate and slightly higher at the walls at the
height of the lidar during the measurements. However, examination of the histogram in
Figure 12 shows its great variability. The distribution has three modes, one at a density
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of approximately 1000 points per m2 (while the mean is roughly equal to 9000 points per
m2), which indicates that there are areas with significantly lower data coverage. This
phenomenon is not observed in the distributions of the datasets from a rotating lidar or
a tilting lidar. These are much smoother and exhibit a left skew towards higher density
values. The 3D views in Figures 10 and 11 of point clouds acquired with a rotating sensor
and a tilting sensor also indicate good measurement coverage, although the former has a
density higher by almost 35%, as illustrated in Table 1.

Figure 9. Point cloud density—horizontal lidar.

Figure 10. Point cloud density— rotating lidar.

Figure 11. Point cloud density—tilting lidar.
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Figure 12. Distributions of surface densities per point.

To further investigate the differences in the density of the point clouds, histograms of
the points’ z-coordinates were plotted using absolute and relative values. They are shown
in Figures 13 and 14. While Figure 13 can be used to directly compare results from different
methods to answer the questions such as, “Which method will generate the most dense
point cloud and with how large deviations?”, Figure 14 is better suited to describe the
internal properties of each method, i.e., “How well does the examined method represent
different areas, such as the floor, walls and ceiling?”. The former question is important in
terms of selecting the measurement method for a specific use case, while the latter can be
utilized to set expectations and plan measurements with an already selected method, e.g.,
due to hardware limitations.

The graph in Figure 13 generally indicates lower data density of the horizontal lidar
measurements at every height compared to the density of the other point clouds. However,
from 1.5 to 2.5 m above the ground level, i.e., at the level of the sensor mounting point, the
density is similar to the other methods examined for utilizing the lidar for SLAM. Another
mode of distribution is located at the ground level, representing good coverage of the floor
area. This peak is not present at the higher elevation, implying weak coverage of the ceiling
with the measurements. These issues are further exaggerated in Figure 14, which highlights
the limitation of the lidar placed horizontally on the robot. In a narrow, high corridor, this
method resulted in an unevenly dense point cloud, where areas of the floor and walls at the
level of the sensor position were overrepresented in comparison to areas not well-covered,
such as the ceiling. The other two methods, while differing in absolute values (Figure 13),
are characterized by very similar distributions of relative point counts per height. This
indicates that both methods are suitable for measurements of confined linear spaces, similar
to the test corridor, in terms of providing an evenly dense and complete point cloud.

A similar conclusion can be reached when analyzing point clouds downsampled by
the voxelgrids and octrees, for which the number of cells occupied for each method are
shown in Figures 15 and 16, respectively. At low voxelgrid resolutions and low octree
levels, all the point clouds contain a similar number of points, although the dataset acquired
with a rotating sensor is always the most numerous, followed by the tilting and horizontal
lidar methods. However, the higher the resolution and the octree level, the more visible
the difference between each method. At the highest analyzed resolution, the difference
between the rotating and tilting lidars also becomes significant: the former dataset contains
17% more 5 cm voxels and 44% more occupied octree cells at its 12th level.
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Figure 13. Distribution of points along the z-axis—absolute values.

Figure 14. Distribution of points along the z-axis—relative values.

Figure 15. Number of voxels for different voxelgrid resolutions.
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Figure 16. Number of occupied octree cells at each level from 1 to 12 (log scale).

3.2. Local Point Cloud Quality

In the previous subsection, the three analyzed point clouds were compared in the
global context, i.e., metrics were computed and examined for the whole dataset at once,
describing their overall spatial distribution, completeness and density. In contrast, this
subsection focuses on the examination of a few selected objects of interest located in the test
area. This analysis aims to highlight the deviations in the quality of the 3D reconstruction
of these objects between different methods. Six objects chosen for the detailed selective
analysis are marked with red boxes, annotated from (a) to (f), in Figure 17.

Figure 17. Objects selected for point cloud quality evaluation.

To begin with, the reconstruction quality of objects (a), (c), (e), and (f) was investigated,
since they consist mostly of planar objects. Consecutively, they are: a vertical surface
located high, a vertical surface at the same level as the measurement system, an area of
the floor at the mid-section of the measurement area and a door at the side wall in the
corridor. Their point clouds, colored by the calculated surface variation per point, are
presented in Figures 18–20. For objects (a) and (f) a huge influence of the occlusions is
visible in measurements with the horizontal sensor, resulting in parts of the objects not
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being mapped. Surface variation values for the above-mentioned objects were similar for
all tested methods. Horizontal lidar acquisition was characterized by the most extreme
discrepancies of surface variation in most cases, with the areas of low values mixed with
clusters of moderate and high outlier values. Rotating lidar produced point clouds that had
the most coherent surface variation in cases (a), (e), and (f), but the tilting sensor achieved
the best results in the case of object (c).

Figure 18. Point cloud surface variation comparison—objects (a) (left) and (e) (right).

Figure 19. Point cloud surface variation comparison—object (c).

Local accuracy of the final point clouds was assessed using a least-squares plane fit for
objects (a), (c) and (e). The results are listed in Table 2. The most consistent method was the
rotating lidar, which achieved the maximum standard deviation of plane fit residuals of
36 mm, which is not much greater than the sensor ranging accuracy (30 mm). Although
the residuals for horizontal and tilting lidar were also at an acceptable level, each method
achieved a roughly 50% increase in the residuals’ standard deviation compared to the
rotating lidar (for objects (a) and (c)). A noteworthy observation is the high compliance of
the results for object (e)—visible in all parts of the floor.
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Figure 20. Point cloud surface variation comparison—object (f).

Table 2. Standard deviations of the least-squares plane fit residuals

No Measurement Type Plane Fit σ [mm]
(a) (c) (e)

I Horizontal lidar 47 28 20
II Rotating lidar 30 36 12
III Tilting lidar 42 52 14

Objects (b) and (d), which had more complex geometries, were analyzed only in a
simplified context. Their point clouds are shown in Figures 21 and 22, respectively. In the
visualizations, the differences between the completeness of the 3D object reconstruction
using various methods are clear: the horizontal lidar did not acquire dense and complete
point clouds of those objects, while the rotating and tilting lidars successfully provided
sufficient 3D data to represent a complete object. For object (b), the difference between the
rotating and the tilting sensors is more noticeable than for object (d), which is caused by
the unfavorable placement of object (b) for the tilting sensor in the tested configuration (i.e.,
tilting of the sensor did not direct its field of view much to the ceiling).

Figure 21. Point cloud resolution comparison for object (b)—isometric views.

Figure 22. Point cloud resolution comparison for object (d)—isometric views.

The completeness of 3D data in the context of object reconstruction, as well as the
point cloud density, can be additionally summed up with a simple metric—the point count
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per object. Such an overview is presented in Table 3. Analyzing this metric, it can be seen
that the rotating lidar acquired the most points in all cases. Compared to the horizontal
lidar, it obtained from 40% more points up to seven times more points in the cases of the
complex objects (b) and d)). Compared to the tilt sensor, the rotating lidar acquired roughly
50% more data, but, for object (b), the discrepancy increased to 150% more points in favor
of the rotating sensor.

Table 3. Comparison of the number of points per object.

No Measurement Type Points per Object
(a) (b) (c) (d) (e) (f)

I Horizontal lidar 38,113 836 64,347 1432 6013 23,576
II Rotating lidar 86,618 5874 90,425 6289 44,671 38,065
III Tilting lidar 55,151 2286 70,834 4415 25,727 20,222

4. Conclusions

Different aspects of the 3D-data quality of three common hardware solutions utilizing
a 3D lidar scanner for the SLAM problem were investigated. Multi-metric comparison
was conducted to analyze factors such as local surface density and variation, plane recon-
struction accuracy and numbers of octree cells, voxels and points per mapped object. This
analysis enabled us to obtain insights into the behavior of SLAM in tunnel-like conditions,
especially with respect to key aspects of inspection and mapping robotic missions in con-
strained, underground environments. Similarly to the method described in [13], in the
future, our approach could be extended by performing multi-scale, multi-metric analysis
of the presented metrics, using software components with use of the ROS operating system
and the hardware setup described. This would enrich the results, especially when carrying
out such a comparison for scenes of greater scale.

Increasing the complexity of the system through introduction of an actuator to rotate
the spinning lidar around another axis greatly increased the data density and completeness,
and did not negatively impact the point cloud local coherence. Although the sensor rotating
in its full range generally obtained the best results, a tilting sensor achieved results that
were not much worse and provided significant improvement over the static, horizontal
placement of the lidar. Depending on the metrics analyzed, generally, the performance of
the rotating lidar was from 35% to almost 50% better than that of the tilting lidar. The tilting
lidar obtained a smoother data density distribution and almost 200% better completeness
(based on voxelgrid and octree cell counts) than the horizontal lidar, while still maintaining
comparable plane fit accuracy and mean data density. Choosing the right tool for the
selected measurement site will depend on the dimensions of the structure, notably its
height and width. The presence of objects causing numerous occlusions, common for
underground mining environments, would also favor the selection of one of the actuated
lidar mounts.

During inspection missions in underground mines, a massive amount of 3D data
is collected with SLAM to be used for both navigation and 3D analysis. In the case of
the latter, completeness of different object representations in the point cloud is crucial to
enable machine learning algorithms to perform classification successfully and to correctly
distinguish different objects of interest, which can then be processed with specialized,
use-case-targeted algorithms. Therefore, given the results presented in Section 3.2, sensor
solutions providing data denser than regular line scanners are desired. Although in this
study an actuated line scanner proved to be effective, similar devices, e.g., solid-state
lidars, should provide substantial improvement in data density. On the other hand, their
limitations often include a reduced field of view, which may negatively impact coverage of
the scanned area.
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