
Citation: Tong, M.; Li, S.; Wang, X.;

Wei, P. Inter-Satellite Cooperative

Offloading Decision and Resource

Allocation in Mobile Edge

Computing-Enabled

Satellite–Terrestrial Networks.

Sensors 2023, 23, 668. https://

doi.org/10.3390/s23020668

Academic Editor: Guanding Yu

Received: 17 November 2022

Revised: 25 December 2022

Accepted: 3 January 2023

Published: 6 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Inter-Satellite Cooperative Offloading Decision and Resource
Allocation in Mobile Edge Computing-Enabled
Satellite–Terrestrial Networks
Minglei Tong 1,2 , Song Li 3 , Xiaoxiang Wang 1,2,* and Peng Wei 1,2

1 School of Information and Communication Engineering, Beijing University of Posts and Telecommunications,
Beijing 100876, China

2 Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts
and Telecommunications, Beijing 100876, China

3 School of Information and Control Engineering, China University of Mining and Technology,
Xuzhou 221116, China

* Correspondence: cpwang@bupt.edu.cn

Abstract: Mobile edge computing (MEC)-enabled satellite–terrestrial networks (STNs) can provide
task computing services for Internet of Things (IoT) devices. However, since some applications’
tasks require huge amounts of computing resources, sometimes the computing resources of a local
satellite’s MEC server are insufficient, but the computing resources of neighboring satellites’ MEC
servers are redundant. Therefore, we investigated inter-satellite cooperation in MEC-enabled STNs.
First, we designed a system model of the MEC-enabled STN architecture, where the local satellite and
the neighboring satellites assist IoT devices in computing tasks through inter-satellite cooperation.
The local satellite migrates some tasks to the neighboring satellites to utilize their idle resources. Next,
the task completion delay minimization problem for all IoT devices is formulated and decomposed.
Then, we propose an inter-satellite cooperative joint offloading decision and resource allocation
optimization scheme, which consists of a task offloading decision algorithm based on the Grey Wolf
Optimizer (GWO) algorithm and a computing resource allocation algorithm based on the Lagrange
multiplier method. The optimal solution is obtained by continuous iterations. Finally, simulation
results demonstrate that the proposed scheme achieves relatively better performance than other
baseline schemes.

Keywords: mobile edge computing; satellite–terrestrial networks; inter-satellite cooperation;
offloading decision; resource allocation

1. Introduction

With the development of space technology and communication technology, the num-
ber of satellites in space has increased dramatically. In the future 6G network, satellite
networks can be used as supplements to terrestrial cellular networks to achieve seamless
full-domain coverage [1]. In addition, the satellite mobile system also has high viability
when disasters happen [2]. When terrestrial network entities are destroyed by natural
disasters, such as earthquakes and typhoons, people can rely on satellites to access services.
Therefore, for remote areas that are not covered by terrestrial networks or disaster areas
where terrestrial networks are destroyed, satellite networks can replace or assist terrestrial
networks to provide services to users. The integration of satellite networks and terrestrial
networks, i.e., satellite–terrestrial networks (STNs), has received extensive attention from
the academic world and the industrial world [3]. STNs have advantages such as wide
coverage, strong robustness, and strong damage resistance.

Since the rise in popularity of smartphones and Internet of Things (IoT) devices,
various applications have been emerging endlessly in people’s daily life. Some of them,

Sensors 2023, 23, 668. https://doi.org/10.3390/s23020668 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020668
https://doi.org/10.3390/s23020668
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0915-5992
https://orcid.org/0000-0002-3018-3958
https://orcid.org/0000-0002-2924-2295
https://doi.org/10.3390/s23020668
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020668?type=check_update&version=1

Sensors 2023, 23, 668 2 of 17

such as interactive games, face recognition, and augmented reality, require large amounts
of computing resources [4]. Due to the physical size limitation and energy supply con-
straints, the computing capacity of devices is limited [5]. IoT devices compute tasks of
these applications locally, which significantly imposes delay and reduces the quality of
the experience.

Mobile edge computing (MEC) provides information technology and cloud computing
capabilities within the radio access networks, which are extremely close to users [6]. Edge
servers are modular and miniaturized because they host cloud services that are scaled to
the edge [7]. MEC servers can be deployed at multiple locations, such as base stations (BSs),
access points, and satellites. Computation offloading technology makes it possible for users
to utilize the computing capabilities at the edge of the network [8]. Due to MEC, the delay
can be reduced and the quality of service can also be improved [9].

In this paper, we consider applying MEC technology to STNs, i.e., MEC-enabled STNs.
Low earth orbit (LEO) satellite constellations can achieve seamless global coverage [10].
Moreover, LEO satellite networks have advantages of short satellite–terrestrial transmission
distance and low construction cost. In addition, LEO satellite IoT can complement and
extend terrestrial IoT to better achieve IoT applications, such as environmental monitoring,
marine monitoring, and border control [11]. MEC servers can be deployed at LEO satellites
to handle computing tasks from devices [12]. For remote areas with sparse users and
insufficient terrestrial network coverage, such as mountainous areas and islands, offloading
tasks to satellites is the only option. Compared to the computing resources of MEC servers
deployed at BSs, the computing resources of MEC servers deployed at satellites are less
due to the satellite payload constraints. Therefore, a single LEO satellite’s MEC server may
sometimes be insufficient to assist all IoT devices in computing tasks.

For sparsely populated areas where IoT devices are widely spaced, such as deserts
and oceans, inter-satellite cooperation is an effective coping approach. Sometimes, the
computing workload is distributed unevenly in different space, which leads to the fact
that some MEC servers may need to handle tasks more than their computing capabili-
ties, whereas some other MEC servers still have surplus computing resources [13]. The
LEO satellites launched recently are equipped with laser terminals, which can establish
inter-satellite links (ISLs) with neighboring satellites [14]. For example, in the BeiDou
system, ISLs can be established between two satellites if they are visible [15]. Similar to BS
cooperation in terrestrial networks, multiple LEO satellites can also achieve cooperation,
which compensates for the insufficient computing resources of a single LEO satellite’s
MEC server.

The local satellite migrates some tasks to neighboring satellites, which can utilize the
computing resources of neighboring satellites’ MEC servers to compute tasks, thus reducing
the task completion delay. Compared with local computing, task offloading introduces
additional overhead, such as transmission delay. Moreover, the computing resources of
MEC servers are relatively limited compared with the central cloud. Therefore, it is very
important to make task offloading decisions and allocate computing resources properly.
According to whether tasks are divisible, computation offloading can be divided into two
categories, namely binary offloading and partial offloading [16]. Binary offloading involves
integer programming, so the corresponding task offloading problem is generally NP-hard.
Furthermore, assigning computing resources to tasks of different devices complicates the
problem and increases the difficulty of algorithm design [17].

In this paper, we consider an STN consisting of IoT devices, a local satellite, and neigh-
boring satellites. The tasks of the IoT devices within the coverage area of the local satellite
are considered, and the neighboring satellites are regarded as computing nodes without
considering the tasks of the IoT devices within their coverage areas. Neighboring satellites
assist the local satellite in computing IoT devices’ tasks by inter-satellite cooperation. We
propose an inter-satellite cooperative task offloading and resource allocation scheme in an
MEC-enabled STN, which minimizes the task completion delay for all IoT devices under
the condition that the tasks are indivisible.

Sensors 2023, 23, 668 3 of 17

The main contributions of this paper are as follows:

• The system model of the MEC-enabled STN is established to provide MEC services
in remote or disaster areas by utilizing inter-satellite cooperation. The joint task
offloading and computing resource allocation problem is formulated to minimize the
task completion delay and decomposed into a task offloading decision problem and a
computing resource allocation problem.

• An inter-satellite cooperative joint offloading decision and resource allocation opti-
mization scheme, which consists of a task offloading decision algorithm based on the
Grey Wolf Optimizer (GWO) algorithm and a computing resource allocation algorithm
based on the Lagrange multiplier method is proposed. The optimal task offloading
decision and computing resource allocation are obtained by the proposed scheme.

• The performance of the proposed scheme is evaluated by comparing it with other
baseline schemes with respect to the variation of some parameters. Simulation results
demonstrate the performance gain of the proposed scheme.

The rest of this paper is organized as follows. Section 2 introduces related works.
Section 3 describes the system model. The task completion delay minimization problem for
all IoT devices is formulated in Section 4. In order to solve this problem, the corresponding
algorithm is designed in Section 5. In Section 6, simulations and an analysis are presented.
Section 7 concludes this paper.

2. Related Work

Non-terrestrial networks, particularly satellite networks, were proposed to be inte-
grated with terrestrial networks in the early 2030s. Moreover, the most anticipated function
of the STN was to provide coverage to rural and remote areas [18]. The authors in [19]
proposed satellite MEC. MEC servers deployed at LEO satellites enabled devices without a
nearby MEC server to enjoy MEC services through satellite links. In addition, a coopera-
tive computation offloading model was designed to realize parallel computation in STNs,
which minimized user-perceived delay and system energy consumption by optimizing
task scheduling. Through radio frequency (RF) communication or optical communication,
ISLs can realize data communication, interconnection, and information relay. Moreover,
compared with RF ISLs, optical ISLs have the advantages of broader bandwidth, lower
energy consumption, and lower interference [20]. According to [21], inter-satellite laser
technologies can establish ISLs and achieve transmission between satellites at a high speed.
With the aid of optical or visible light communication systems, LEO satellites can achieve
connection through intra-plane ISLs and inter-plane ISLs [22]. In [23], some satellites
temporarily formed a task group, where the access satellite was responsible for task and
resource scheduling, while others were responsible for computing tasks. The authors in [24]
proposed a double-edge computing STN architecture, where an access satellite can send
tasks to other satellites for computing. They also proposed a double-edge computation
offloading algorithm to minimize system energy consumption and reduce task offloading
delay. In [25], a double-edge intelligent integrated STN was designed. Satellite MEC
servers were grouped by ISLs, and they can assist terrestrial MEC servers in computing
tasks. A task migration strategy based on a greedy algorithm was proposed to achieve
load balancing and reduce system delay. The authors in [26] proposed a hybrid cloud and
edge computing LEO satellite network architecture, where the tasks of ground users can be
completed in one of three places, i.e., the ground user themselves, the LEO satellite, or the
terrestrial cloud server. They also came up with a distributed algorithm to minimize the
sum energy consumption of the ground users. The authors in [27] proposed an MEC frame-
work for the terrestrial–satellite IoT. With the assistance of terrestrial–satellite terminals,
IoT mobile devices can offload tasks to LEO satellites for computing. They also proposed
an energy-efficient algorithm for computation offloading and resource allocation, thereby
minimizing the weighted sum of energy consumption of IoT mobile devices.

Most of the above works investigate the satellite–terrestrial cooperation or the inter-
satellite cooperation in the presence of terrestrial networks, where satellites usually assist

Sensors 2023, 23, 668 4 of 17

terrestrial entities. However, there are few works that investigate inter-satellite cooperation
to assist users in computing tasks in areas not covered by terrestrial networks.

Algorithms for computation offloading include heuristic algorithms, meta-heuristic
algorithms, game theory-based algorithms, etc. [28]. Algorithms for resource allocation
include convex optimization algorithms, heuristic algorithms, game theory-based algo-
rithms, etc. Convex optimization algorithms are widely investigated and can easily obtain
suboptimal solutions. However, they are complex and not easy to implement in actual
systems. Heuristic algorithms are efficient and can quickly obtain solutions, but they are
prone to fall into the local optimum. Meta-heuristic algorithms have too many parameters,
which are not easy to adjust. Game theory-based algorithms are simple, flexible, and easy
to implement. However, the obtained solution may not be globally optimal and the Nash
equilibrium needs to be reached through continuous iterations [29]. The GWO algorithm is
a meta-heuristic algorithm with few parameters. Therefore, we propose a task offloading
decision algorithm based on the GWO algorithm.

3. System Model

In this section, the network model is proposed first. Then, the channel model is
presented. Lastly, the computation model is introduced.

3.1. Network Model

As shown in Figure 1, a remote area beyond the reach of terrestrial BSs is considered in
this paper. There is an LEO satellite 1 in space, called the local satellite, around which there
are M− 1 neighboring satellites, i.e., LEO satellite j, j ∈ M, whereM = {2, 3, . . . , M}. All
satellites in the same orbit move in the same circular direction. We define a satellite within
the communication range of the local satellite at the moment as a neighboring satellite.
These LEO satellites are all deployed with MEC servers. N IoT devices are randomly
distributed in the ground area covered by the local satellite, and the set composed of
them is denoted by N . These IoT devices are equipped with satellite antennas and can
communicate with the local satellite directly. Each IoT device requests an indivisible task;
for instance, IoT device i requests task i, denoted by (ci, ai), where ci is the computation
intensity, i.e., computing resources required for computing one bit of task i (cycles per
bit), and ai is the data size of task i (bits). Different IoT devices have different computing
capabilities. MEC servers have more computing resources than IoT devices, but the
computing resources of MEC servers are still limited. Task generation mechanisms may
be periodic generation, random generation, and event-triggered generation. The problem
we study is to build the corresponding task model for the set of tasks generated by the
IoT devices in the network at a certain moment. We assume that each IoT device has only
one task at the moment and perform computation offloading according to the task model.
Based on the offloading decision, the local computing portion of the task of each IoT device
is computed by the IoT device itself. The satellite allocates its computing resources to the
offloading portion of the tasks of the IoT devices and concurrently computes the tasks
offloaded by the IoT devices. There are three strategies to complete task i, i ∈ N . IoT
device i computes task i locally, i.e., local computing. IoT device i offloads task i to the
local satellite, and task i is computed by the local satellite’s MEC server, i.e., local satellite
edge computing. IoT device i offloads task i to the local satellite, then task i is migrated to
neighboring satellite j, j ∈ M and computed by the neighboring satellite’s MEC server, i.e.,
neighboring satellite edge computing.

Sensors 2023, 23, 668 5 of 17

task offloading

task migration

local computing

MEC server

task N

task Ntask 3

task 1

task 2

LEO satellite 1

LEO satellite 2 LEO satellite 3

LEO satellite 4

LEO satellite 5

task 2

IoT device 1IoT device 1

IoT device 2IoT device 2

IoT device 3IoT device 3

IoT device NIoT device N

Figure 1. Network model.

3.2. Channel Model

In order to avoid the interference among IoT devices, orthogonal frequency division
multiple access (OFDMA) technology is used. Subcarriers with equal bandwidth are
allocated to IoT devices. The satellite–terrestrial transmission links between IoT devices
and the local satellite use the Ka band [27] and have high communication rates. Since
the line-of-sight (LOS) transmission is mainly considered in the link, the Rice channel is
used. Free-space path loss (FSPL) and additive white Gaussian noise (AWGN) are taken
into consideration. The achievable data rate of the link between IoT device i and the local
satellite is:

ri,1 = Bi,1log2

(
1 +

pigi Hi,1

N0i,1

)
, (1)

where Bi,1 is the subchannel bandwidth, pi is the transmission power of IoT device i, gi is
the antenna gain of IoT device i, Hi,1 is the channel gain of the link, and N0i,1 is the noise
power of the link. Hi,1 = (hi,1)

2, where the channel coefficient hi,1 = ρi,1/(Lf
i,1)

1/2, ρi,1 is
the independent identically distributed Rice stochastic variable with a unit variance, Lf

i,1

is FSPL, Lf
i,1 = (4πdi,1 f /c)2, c is the light velocity (meter per second), di,1 is the distance

between IoT device i and the local satellite (meter), and f is the carrier frequency (hertz).
dmin

i,1 = hs, as Figure 2 depicted, dmax
i,1 = [(Re)

2 + (Re + hs)
2 − 2Re(Re + hs) cos θec]1/2,

where Re is the earth radius, hs is the LEO satellite orbit altitude, and θec is the covering geo-
centric angle. θec = arccos

[
Re cos θmin

u /(Re + hs)
]
− θmin

u , θmin
u is the minimum elevation

angle of the IoT devices on the ground to the satellite [30].

LEO satellite 1

IoT device i

MEC server

max

1i,
d

S
h

min

u
θ

e
R

ec
θ

LEO satellite 1

IoT device i

MEC server

max

1i,
d

S
h

min

u
θ

e
R

ec
θ

Figure 2. Illustration of dmax
i,1 .

Sensors 2023, 23, 668 6 of 17

The ISLs between the local satellite and neighboring satellites use the Ka band [31].
FSPL and AWGN are taken into account. The achievable data rate of the link between the
local satellite and neighboring satellite j, j ∈ M is:

r1,j = B1,jlog2

(
1 +

PGH1,j

N01,j

)
, (2)

where B1,j is the subchannel bandwidth, P is the transmission power of the local satellite, G
is the antenna gain of the local satellite, H1,j is the channel gain of the link, and N01,j is the

noise power of the link. G ≈ (4DTA f /c)2, and DTA is the diameter of the local satellite’s
transmitting antenna [31]. H1,j =

(
h1,j
)2, where the channel coefficient h1,j = 1/(Lf

1,j)
1/2,

Lf
1,j is FSPL, Lf

1,j =
(
4πl1,j f /c

)2, and l1,j is the distance between the local satellite and
neighboring satellite j (meter).

Normally, each satellite has four neighboring satellites, two in the same orbit and
the other two in the left and right orbits. The distance between the local satellite and

the neighboring satellite in the same orbit is l1,j =
√

2R
√

1− cos
(
360◦/J

)
, where R is the

orbital radius, R = hs + Re, and J is the number of satellites in each orbit. The distance
between the local satellite and the neighboring satellite in different orbits is l1,j = ω cos(lat),

ω =
√

2R
√

1− cos
(
360◦/2I

)
, where lat is the latitude where the ISL of the current satellite

locate, and I is the number of orbits of satellite constellation [32].

3.3. Computation Model

To represent the task offloading strategies, we set indicator variables, i.e., yi,0, yi,1,
yi,j ∈ {0, 1}, ∀i ∈ N , and ∀j ∈ M. When task i is completed by local computing, yi,0 = 1,
otherwise, yi,0 = 0. When task i is completed by local satellite edge computing, yi,1 = 1,
otherwise, yi,1 = 0. When task i is completed by neighboring satellite edge computing,
yi,j = 1, otherwise, yi,j = 0.

When yi,0 = 1, the task computing delay of IoT device i is:

Di,0 =
ciai
fi,0

, (3)

where fi,0 is the computing capacity of IoT device i (cycles per second).
When yi,1 = 1, the task completion delay of IoT device i includes the delay with which

IoT device i offloads task i to the local satellite, the propagation delay between IoT device i
and the local satellite, and the delay that the local satellite’s MEC server computes task i.

Di,1 =
ai

ri,1
+

2di,1

c
+

ciai
fi,1

, (4)

where fi,1 is the computing resource allocated to task i by MEC server of the local satellite
(cycles per second).

When yi,j = 1, the task completion delay of IoT device i includes the delay that IoT
device i offloads task i to the local satellite, the propagation delay between IoT device i and
the local satellite, the delay with which the local satellite migrates task i to neighboring
satellite j, the propagation delay between the local satellite and neighboring satellite j, and
the delay with which neighboring satellite j’s MEC server computes task i.

Di,j =
ai

ri,1
+

2di,1

c
+

ai
r1,j

+
2l1,j

c
+

ciai
fi,j

, (5)

where fi,j is the computing resource allocated to task i by the MEC server of neighboring
satellite j (cycles per second).

Sensors 2023, 23, 668 7 of 17

In all of the cases above, the delay of IoT devices downloading task computing results
from the local satellite or neighboring satellites is neglected, because the size of output
resulting data obtained after task computation is usually much smaller than the size of
input data [33].

4. Problem Formulation

The task completion delay of all IoT devices can be expressed as:

U = ∑
i∈N

(
yi,0Di,0 + yi,1Di,1 + ∑

j∈M
yi,jDi,j

)

= ∑
i∈N

[
yi,0

ciai
fi,0

+ yi,1

(
ai

ri,1
+

2di,1

c
+

ciai
fi,1

)
+ ∑

j∈M
yi,j

(
ai

ri,1
+

2di,1

c
+

ai
r1,j

+
2l1,j

c
+

ciai
fi,j

)]
. (6)

The optimization objective of this paper is minimizing the task completion delay of
all IoT devices. The optimization variables are yi,0, yi,1, yi,j, fi,1, and fi,j. The problem P is
as follows.

P : min{ yi,0,yi,1,yi,j ,
fi,1, fi,j

}U (7a)

s.t. ∑
i∈N

yi,1 fi,1 ≤ F1, (7b)

∑
i∈N

yi,j fi,j ≤ Fj, ∀j ∈ M, (7c)

0 ≤ fi,1 ≤ F1, ∀i ∈ N , (7d)

0 ≤ fi,j ≤ Fj, ∀i ∈ N , ∀j ∈ M, (7e)

yi,0 + yi,1 + ∑
j∈M

yi,j = 1, ∀i ∈ N , (7f)

yi,0, yi,1, yi,j ∈ {0, 1}, ∀i ∈ N , ∀j ∈ M. (7g)

Equation (7a) is the objective function. Equation (7b) represents that computing resources
allocated to task i cannot surpass the resources owned by the local satellite’s MEC server,
i.e., F1. Equation (7c) shows that computing resources allocated to task i cannot exceed the
resources of the MEC server of neighboring satellite j, i.e., Fj. Equations (7d) and (7e) mean
that the MEC server’s computing resource allocation for task i is non-negative. Equation (7f)
denotes that only one strategy is selected to complete task i. Equation (7g) means that yi,0,
yi,1, and yi,j are 0 or 1.

P consists of the IoT devices’ task offloading decision and the computing resource
allocation of the local satellite’s MEC server and neighboring satellites’ MEC servers. P
includes discrete variables and continuous variables, so it is a mixed-integer nonlinear
programming problem (MINLP), which is NP-hard.

5. Algorithm Design

From P , it can be seen that yi,1 and fi,1, yi,j and fi,j interact with each other, respectively.
Since the variables are coupled, it is necessary to decouple them. Assuming y∗i,0, y∗i,1, and
y∗i,j, ∀i ∈ N , ∀j ∈ M are given, the sets ND =

{
i
∣∣y∗i,0 = 1

}
, N L =

{
i
∣∣y∗i,1 = 1

}
, and

NN =
{

i
∣∣y∗i,j = 1, ∀j ∈ M

}
can be obtained. P can be transformed into P1.

Sensors 2023, 23, 668 8 of 17

P1 : min
{ fi,1, fi,j}

∑
i∈ND

ciai
fi,0

+ ∑
i∈N L

(
ai

ri,1
+

2di,1

c
+

ciai
fi,1

)
+ ∑

i∈NN
∑

j∈M

(
ai

ri,1
+

2di,1

c
+

ai
r1,j

+
2l1,j

c
+

ciai
fi,j

)
, (8a)

s.t. ∑
i∈N L

fi,1 ≤ F1, (8b)

∑
i∈NN

fi,j ≤ Fj, ∀j ∈ M, (8c)

0 < fi,1 ≤ F1, ∀i ∈ N L, (8d)

0 < fi,j ≤ Fj, ∀i ∈ NN, ∀j ∈ M. (8e)

Equation (8a) is the objective function. The meanings of (8b)–(8e) are similar to the
meanings of (7b)–(7e). From P1, it can be seen that the delay of local computing is a
constant. Moreover, the computing resource allocation problem of the local satellite’s
MEC server and the computing resource allocation problem of the neighboring satellites’
MEC servers are independent of each other. Therefore, P1 can be decomposed into two
sub-problems, i.e., P1.1 and P1.2, and then f ∗i,1 and f ∗i,j can be obtained by solving P1.1
and P1.2, respectively.

P1.1 is the computing resource allocation problem for the local satellite’s MEC server,
which is represented as:

P1.1 : min
{ fi,1}

∑
i∈N L

(
ai

ri,1
+

2di,1

c
+

ciai
fi,1

)
, (9)

s.t. (8b) and (8d).

The objective function in (9) is set as UL. Then we can have ∂UL/∂ fi,1 = −ciai/(fi,1)
2,

which is less than 0. ∂2UL/∂(fi,1)
2 = 2ciai/(fi,1)

3, which is greater than 0. ∂2UL/(∂ fi,1∂ f j,1)

= 0, i, j ∈ N L, i 6= j. The Hessian matrix of UL is positive definite, so UL is convex.
P1.1 can be solved by using the Lagrange multiplier method. The Lagrangian function is
constructed as:

L(fi,1, θ) = ∑
i∈N L

(
ai

ri,1
+

2di,1

c
+

ciai
fi,1

)
+ θ

(
∑

i∈N L

fi,1−F1

)
, (10)

where θ is the Lagrange multiplier and θ ≥ 0. The KKT conditions of P1.1 are listed as:

∂L(fi,1, θ)

∂ fi,1
=− ciai

(fi,1)
2 +θ = 0, (11)

∂L(fi,1, θ)

∂θ
= ∑

i∈N L

fi,1 − F1 = 0, (12)

θ

(
∑

i∈N L

fi,1 − F1

)
=0, (13)

(8b) and (8d),

θ ≥ 0. (14)

fi,1 =
√

ciai/θ is obtained from (11). Substituting it into (12), we can obtain
∑i∈N L

√
ciai/θ− F1 = 0, i.e.,

√
θ =

(
∑i∈N L

√
ciai
)
/F1. Thus, fi,1 = F1

√
ciai/

(
∑i∈N L

√
ciai
)
.

Considering (8d), we can deduce:

f ∗i,1 = min
[

max
(

F1
√

ciai

∑
i∈N L

√
ciai

, 0
)

, F1

]
. (15)

Sensors 2023, 23, 668 9 of 17

P1.2 is the computing resource allocation problem for neighboring satellites’ MEC
servers, which is expressed as:

P1.2 : min
{ fi,j}

∑
i∈NN

∑
j∈M

(
ai

ri,1
+

2di,1

c
+

ai
r1,j

+
2l1,j

c
+

ciai
fi,j

)
, (16)

s.t. (8c) and (8e).

Since the computing resource allocation of each neighboring satellite is independent
of each other, P1.2 can be decomposed into M− 1 sub-problems, one of which is P1.3.

P1.3 : min
{ fi,j}

∑
i∈NN

(
ai

ri,1
+

2di,1

c
+

ai
r1,j

+
2l1,j

c
+

ciai
fi,j

)
, (17)

s.t. (8c) and (8e).

The objective function in (17) is set as UN. Then, we can have ∂UN/∂ fi,j = −ciai/
(

fi,j
)2,

which is less than 0. ∂2UN/∂
(

fi,j
)2

= 2ciai/
(

fi,j
)3, which is greater than 0. ∂2UN/(∂ fi,j∂ fk,j) =

0, i, k ∈ NN, i 6= k. The Hessian matrix of UN is positive definite. Hence, UN is convex.
P1.3 can be solved by using the Lagrange multiplier method. The Lagrangian function is
constructed as:

L
(

fi,j, λ
)
= ∑

i∈NN

(
ai

ri,1
+

2di,1

c
+

ai
r1,j

+
2l1,j

c
+

ciai
fi,j

)
+ λ

(
∑

i∈NN

fi,j − Fj

)
, (18)

where λ is the Lagrange multiplier and λ ≥ 0. The KKT conditions of P1.3 are listed as:

∂L
(

fi,j, λ
)

∂ fi,j
=− ciai(

fi,j
)2 +λ = 0, (19)

∂L
(

fi,j, λ
)

∂λ
= ∑

i∈NN

fi,j − Fj = 0, (20)

λ

(
∑

i∈NN

fi,j − Fj

)
=0, (21)

(8c) and (8e),

λ ≥ 0. (22)

Similar to solving P1.1, fi,j =
√

ciai/λ is obtained from (19). Substituting it into
(20), we can obtain ∑i∈NN

√
ciai/λ − Fj = 0, i.e.,

√
λ =

(
∑i∈N

√
ciai
)
/Fj. So fi,j =

Fj
√

ciai/
(

∑i∈NN
√

ciai
)
. Given (8e), we can obtain:

f ∗i,j = min
[

max
(Fj

√
ciai

∑
i∈NN

√
ciai

, 0
)

, Fj

]
. (23)

By solving P1.1 and P1.3 above, we can obtain f ∗i,1 and f ∗i,j, respectively. By taking
them back to P , P can be transformed into P2.

P2 : min
{yi,0,yi,1,yi,j}

∑
i∈N

[
yi,0

ciai
fi,0

+ yi,1

(
ai

ri,1
+

2di,1

c
+

ciai
fi,1

)
+ ∑

j∈M
yi,j

(
ai

ri,1
+

2di,1

c
+

ai
r1,j

+
2l1,j

c
+

ciai
fi,j

)]
, (24)

s.t. (7f) and (7g).

Equation (24) is the objective function. P2 is an integer linear programming (ILP)
problem, which is NP-hard. When the scale of a problem is large, it is difficult to obtain

Sensors 2023, 23, 668 10 of 17

the optimal solution in polynomial time. ILP problems can be solved by intelligence
optimization algorithms, one of which is the GWO algorithm. The GWO algorithm is
widely used and has few parameters and is easy to implement [34].

According to the GWO algorithm [35], the grey wolf population is highly hierarchical
and each wolf represents a feasible solution. The top rank wolf is α, i.e., the optimal solution.
The second rank wolf is β, i.e., the suboptimal solution. The third rank wolf is δ, i.e., the
third optimal solution. The remaining wolves are ω, which are the lowest rank and form
a set N ω, i.e., the remaining solutions. The prey is the optimal solution to the problem.
During each iteration, α, β, and δ command ω to encircle, hunt, and attack the prey to
obtain the optimal solution.

We use NW to represent the number of grey wolves in the population. The wolf l is
encoded as ~Xl = [xl,1, xl,2, xl,3, . . . , xl,N], where xl,i is the task offloading decision of task i
of wolf l. To be specific, xl,i = 0 represents local computing, xl,i = 1 means local satellite
edge computing, xl,i = j, j ∈ M denotes neighboring satellite j edge computing. After such
coding, Equations (7f) and (7g) are satisfied. The grey wolves’ hunting of prey consists of
three phases, i.e., encircling, hunting, and attacking.

During the encircling phase, the grey wolves scour the prey, and then approach
and encircle it gradually. The distance between l and the prey p is denoted by ~D =∣∣~C · ~Xp(t)− ~Xl(t)

∣∣, ∀l ∈ N ω, and the updating of ~Xl is ~Xl(t + 1) = ~Xp(t)− ~A · ~D, where
t is the number of iterations, ~Xl is the position of l, ~Xp is the position of p, and ~A and ~C
are coefficient vectors. ~A = 2~a ·~r1 −~a, ~C = 2 ·~r2, where~a is the convergence factor, which
reduces from 2 to 0 linearly as t increases,~a = 2 · (1− t/tmax). Both~r1 and~r2 are random
vectors in [0, 1]. tmax is the maximum number of iterations.

During the hunting phase, the grey wolves ω identify and track the location of prey
according to the command of α, β, and δ. The distance between l and α, β, δ are expressed as
~Dα =

∣∣~C1 · ~Xα − ~Xl
∣∣, ~Dβ =

∣∣~C2 · ~Xβ − ~Xl
∣∣, and ~Dδ =

∣∣~C3 · ~Xδ − ~Xl
∣∣ respectively, where ~Xα,

~Xβ, and ~Xδ are the positions of α, β, and δ in that order. ~C1, ~C2, and ~C3 are all random vectors.
The step length and direction that l moves forward to α, β, and δ are ~X1 = ~Xα − ~A1 ·

(
~Dα

)
,

~X2 = ~Xβ − ~A2 ·
(
~Dβ

)
, and ~X3 = ~Xδ − ~A3 ·

(
~Dδ

)
respectively. The updating of ~Xl is

~Xl(t + 1) =
(
~X1 + ~X2 + ~X3

)
/3.

During the attacking phase, the prey stops moving and the grey wolves attack it.
As the value of~a decreases from 2 to 0 linearly, the value of ~A varies within the interval[
−
∣∣~a∣∣, ∣∣~a∣∣]. When

∣∣~A∣∣ < 1, the grey wolves the prey. When
∣∣~A∣∣ > 1, the grey wolves move

away from it to find a better one, which is conducive to jump out of the local optimum.
In addition to ~A, another search coefficient, i.e., ~C also helps obtain the global optimal

solution. ~C is composed of random values in [0, 2], which can provide random weights for
the prey, so that the search of prey by grey wolves has randomness, thus helping to avoid
falling into the local optimum.

The fitnesses of l, α, β, and δ are Ul , Uα, Uβ, and Uδ, respectively. During each iteration,
the GWO algorithm compares Ul with Uα, Uβ, and Uδ, and then updates ~Xα, ~Xβ, ~Xδ, Uα,
Uβ, and Uδ. When tmax is reached, ~Xα is the optimal solution to the problem, and Uα is the
optimal objective function value. According to ~Xα, y∗i,0, y∗i,1, and y∗i,j can be determined.

In this paper, we propose an inter-satellite cooperative task offloading scheme based
on the GWO algorithm. We make some modifications to the GWO algorithm. Since ~Xl is a
real number, which is inconsistent with the task offloading decision in integer form, we
round it to convert the real number code into the integer code, so that the corresponding
objective function value can be calculated and obtained.

The detailed step of the proposed joint offloading decision and resource allocation
optimization scheme, which consists of a task offloading decision algorithm based on the
GWO algorithm and a computing resource allocation algorithm based on the Lagrange
multiplier method, and considers inter-satellite cooperation (GWOORAC), is expressed in
Algorithm 1.

Sensors 2023, 23, 668 11 of 17

Algorithm 1 GWOORAC

1: Initialize the grey wolf population,~a, ~A, and ~C. Set t = 1. Set tmax.
2: Obtain f ∗i,1 by (15), obtain f ∗i,j by (23), thus calculating the fitness of each grey wolf. The

top three wolves in fitness are identified as α, β, and δ, the other wolves are ω.
3: while 1 ≤ t ≤ tmax do
4: for each l ∈ N ω do
5: Update ~Xl .
6: Update~a, ~A, and ~C.
7: For ~Xl , obtain f ∗i,1 by (15), obtain f ∗i,j by (23), thus calculating Ul .
8: if Ul < Uα then
9: update ~Xα = ~Xl , Uα = Ul .

10: else if Ul > Uα and Ul < Uβ then
11: update ~Xβ = ~Xl , Uβ = Ul .
12: else if Ul > Uα and Ul > Uβ and Ul < Uδ then
13: update ~Xδ = ~Xl , Uδ = Ul .
14: end if
15: end for
16: t = t + 1.
17: end while
18: return ~Xα and Uα.

To sum up, the ~Xα that is obtained finally is the optimal task offloading decision,
i.e., y∗i,0, y∗i,1, and y∗i,j. The corresponding f ∗i,1 and f ∗i,j are the optimal computing resource
allocation. Uα is the minimum task completion delay. The complexity of Algorithm 1 is
O(tmaxNWN).

6. Simulation and Analysis

In this section, the delay is evaluated by performing our scheme and other baseline
schemes. The results are also analyzed.

6.1. Simulation Parameters

The simulation parameters of this paper are shown in Table 1. The variables ai and
fi,0 follow random distribution within the intervals of [0.5, 5] Mbits and [1, 2] Gcycles/s,
respectively. K is the Rice factor. The main references for simulation parameter settings
are [16,24,25,27,30,31]. To validate our scheme, GWOORAC was compared with other
baseline schemes described below. The first scheme uses the GWO algorithm to determine
the offloading decision, allocates the resources randomly, and considers inter-satellite
cooperation (GWORandRAC). The second scheme obtains the offloading decision randomly,
optimizes the resource allocation, and considers inter-satellite cooperation (RandORAC).
The third scheme uses the GWO algorithm to make the offloading decision, optimizes the
resource allocation, and takes no account of inter-satellite cooperation (GWOORANC).
The fourth scheme only has local computing, and the rest is the same as our scheme
(OLC). The fifth scheme uses the particle swarm optimization (PSO) algorithm to determine
the offloading decision, optimizes the resource allocation, and considers inter-satellite
cooperation (PSOORAC). The number of particles is 20. The maximum number of iterations
is 200. The inertia weight is 0.8 and both learning factors are 1.5. All simulation results
were obtained by averaging 300 times simulations.

Sensors 2023, 23, 668 12 of 17

Table 1. Simulation parameters.

Parameter Value Parameter Value

N 50 M 5
ci 1000 cycles/bit ai [0.5, 5] Mbits
fi,0 [1, 2] Gcycles/s pi 2 W
gi 43.3 dBi Bi,1 100 MHz

B1,j 100 MHz P 50 W
F1 12 Gcycles/s Fj 12 Gcycles/s

DTA 2.2 m N0i,1 −203 dBm/Hz
N01,j −203 dBm/Hz Re 6371 km
θU

min 16◦ lat 60◦

hs 780 km c 3× 108 m/s
f 30 GHz K 7
I 6 J 11

NW 20 tmax 200

6.2. Simulation Results and Analysis

As shown in Figure 3, as the number of IoT devices, i.e., N, increases, the delay
of all schemes increases gradually. GWOORAC has the lowest delay, and the more IoT
devices, the more the delay reduction. Compared with GWORandRAC, the delay is
relatively close when N = 10. However, when N > 10, the delay reduction increases
notably, which demonstrates that our optimal resource allocation is effective. The delay
of GWOORAC is lower than that of RandORAC. Moreover, the delay reduction increases
notably when N > 15, which proves the effectiveness of the GWO algorithm. Compared
with GWOORANC, there is little difference in the delay when N ≤ 25. By contrast, when
N > 25, the difference between the delay of GWOORAC and that of GWOORANC increases
gradually, which indicates that the inter-satellite cooperation is of great significance in
reducing the delay. The computing resources of MEC servers are much larger than those of
IoT devices, and each task can be allocated more computing resources than the computing
capacity of IoT devices when tasks are offloaded to satellites for computing; thus, the delay
of OLC is much higher than that of GWOORAC. Moreover, although the delay increases as
N increases, the increasing speed of GWOORAC is much smaller than that of OLC.

10 20 30 40 50

Number of IoT devices

0

20

40

60

80

100

D
el

ay
 (

s)

GWOORAC

GWORandRAC

RandORAC

GWOORANC

OLC

Figure 3. Delay vs. number of IoT devices.

Figure 4 shows that GWOORAC has the lowest delay. As the number of satellites,
i.e., M increases, the delay of GWOORAC, GWORandRAC, and RandORAC decreases
gradually, because more neighboring satellites bring more computing resources, and more
computing resources are available for each offloaded task. Neither GWOORANC nor OLC
takes into account neighboring satellites, so their delay almost does not change with the
variation of M. Due to the optimal resource allocation, the delay of GWOORAC is much

Sensors 2023, 23, 668 13 of 17

lower than that of GWORandRAC. The delay of GWOORAC is much lower than that of
RandORAC, which indicates that the GWO algorithm is appropriate to solve the problem.
When M ≥ 2, the delay of GWOORAC is lower than that of GWOORANC, and the gap gets
larger, which demonstrates that the inter-satellite cooperation reduces the delay. Compared
with OLC, the delay of GWOORAC is much lower, and the delay reduction becomes larger
as M increases, because a large number of computing resources can be allocated to each
offloaded task, far more than the computing capacity of IoT devices.

1 2 3 4 5

Number of satellites

40

60

80

100

120

D
el

ay
 (

s)

GWOORAC

GWORandRAC

RandORAC

GWOORANC

OLC

Figure 4. Delay vs. number of satellites.

As Figure 5 shows, the delay of all schemes except OLC shows downward trends
as the computing resources of each satellite, i.e., F1 and Fj, increase. The reason is that
the more computing resources a satellite has, the more computing resources are allocated
to offloaded tasks, which reduces the delay of computing tasks. OLC does not consider
computation offloading, so its delay is not affected by F1 and Fj. Due to reasonable resource
allocation, the delay of GWOORAC is much lower than that of GWORandRAC. The delay
of GWOORAC is lower than that of RandORAC, which indicates that the GWO algorithm
can obtain an appropriate task offloading decision, thereby reducing the delay. The delay
of GWOORAC is lower than that of GWOORANC, which proves that the inter-satellite
cooperation reduces the delay effectively. The delay of GWOORAC is much lower than
that of OLC, and the delay reduction becomes larger gradually. This demonstrates that
a combination of suitable task offloading decisions and reasonable computing resource
allocation can reduce the delay significantly.

6 7 8 9 10 11 12

Computing resources of each satellite (Gcycles/s)

30

40

50

60

70

80

90

100

D
el

ay
 (

s)

GWOORAC

GWORandRAC

RandORAC

GWOORANC

OLC

Figure 5. Delay vs. computing resources of each satellite.

Sensors 2023, 23, 668 14 of 17

As shown in Figure 6, the delay of all schemes shows upward trends as the computa-
tion intensity, i.e., ci, increases, because of the increased task computation delay. The delay
of GWOORAC is much lower than that of GWORandRAC due to the optimal computing
resource allocation. The delay of RandORAC is higher than that of GWOORAC, which
validates that the GWO algorithm can obtain the proper task offloading decision, thus
reducing the delay. Thanks to the inter-satellite cooperation, the delay of GWOORAC is
lower than that of GWOORANC. The computing capacity of IoT devices is weaker than
that of MEC servers, so the delay of OLC is higher than that of GWOORAC, and its growth
speed is much faster than that of GWOORAC. When ci ≤ 400 cycles/bit, the delay of
GWOORAC and other schemes is fairly close. When ci > 400 cycles/bit, the gap becomes
larger, which validates that both the appropriate task offloading decision and the proper
computing resource allocation are necessary.

200 600 1000 1400 1800

Computation intensity (cycles/bit)

0

50

100

150

D
el

ay
 (

s)

GWOORAC

GWORandRAC

RandORAC

GWOORANC

OLC

Figure 6. Delay vs. computation intensity.

As shown in Figure 7, the data size of each task, i.e., ai is assumed to be the same.
As ai increases, the delay of all schemes increases. The reason is that the data size is
bigger, and the corresponding task transmission delay and task migration delay are higher.
Additionally, the computing resources required by a task are proportional to its data size,
which means that big data sizes bring high task computation delay. Compared with
GWORandRAC, the delay of GWOORAC is much lower due to the optimal resource
allocation. As can be seen from the fact that the delay of GWOORAC is lower than that
of RandORAC, the task offloading decision obtained by the GWO algorithm can reduce
the delay. The gap between the delay of GWOORAC and that of GWOORANC shows the
contribution of the inter-satellite cooperation. The delay of OLC is much higher than that
of GWOORAC, which validates the effectiveness of GWOORAC.

As Figure 8 shows, the delay of both schemes increases with the increase of N. The
delay of GWOORAC is lower than that of PSOORAC. This is because the values of the
parameters, such as ~A, are adaptive, allowing for a better balance between exploration and
exploitation, thus more effectively avoiding falling into the local optimum.

Sensors 2023, 23, 668 15 of 17

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Data size of each task (Mbit)

0

50

100

150

D
el

ay
 (

s)

GWOORAC

GWORandRAC

RandORAC

GWOORANC

OLC

Figure 7. Delay vs. data size of each task.

30 35 40 45 50

Number of IoT devices

20

25

30

35

D
el

ay
 (

s)

GWOORAC

PSOORAC

Figure 8. Delay vs. number of IoT devices.

7. Conclusions

In this paper, we investigate inter-satellite cooperative task offloading and resource
allocation in an MEC-enabled STN. The task completion delay optimization problem for all
IoT devices when the tasks are indivisible is formulated and decomposed. Then, we propose
a joint offloading decision and resource allocation optimization scheme, which consists
of a task offloading decision algorithm based on the GWO algorithm and a computing
resource allocation algorithm based on the Lagrange multiplier method, thus obtaining
the optimal task offloading decision and allocating optimal computing resources of the
local satellite’s MEC server and neighboring satellites’ MEC servers. Simulation results
validate that the proposed scheme performs better than the other baseline schemes in the
following cases: the number of IoT devices is large, the number of satellites is large, each
satellite has numerous computing resources, the computation intensity is high, or the data
size is big. Much work remains to be done in the future. For example, we will investigate
inter-satellite cooperation, where multiple satellites with MEC servers can simultaneously
receive tasks offloaded by IoT devices and assist IoT devices in computing tasks in areas
not covered by terrestrial networks.

Author Contributions: Conceptualization, M.T.; methodology, M.T. and S.L.; software, M.T.; valida-
tion, M.T.; formal analysis, M.T.; investigation, M.T.; resources, X.W.; data curation, M.T.; writing—
original draft preparation, M.T.; writing—review and editing, M.T., S.L., X.W. and P.W.; visualization,
M.T.; supervision, S.L.; project administration, S.L. and X.W.; funding acquisition, X.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China grant number 2018YFC1504502.

Sensors 2023, 23, 668 16 of 17

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the editors and the reviewers for their helpful
suggestions and constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IMT-2030 6G Promotion Group. The 6G Overall Vision and Potential Key Technologies White Paper, 1st ed.; IMT-2030 6G Promotion

Group: Beijing, China, 2021; pp. 1–32. (In Chinese)
2. Chen, S.; Sun, S.; Kang, S. System Integration of Terrestrial Mobile Communication and Satellite Communication-The Trends,

Challenges and Key Technologies in B5G and 6G. China Commun. 2020, 17, 156–171. [CrossRef]
3. Tirmizi, S.B.R.; Chen, Y.; Lakshminarayana, S.; Feng, W.; Khuwaja, A.A. Hybrid Satellite–Terrestrial Networks toward 6G: Key

Technologies and Open Issues. Sensors 2022, 22, 8544. [CrossRef] [PubMed]
4. Zhang, F.; Wang, M.M. Stochastic Congestion Game for Load Balancing in Mobile-Edge Computing. IEEE Internet Things J. 2021,

8, 778–790. [CrossRef]
5. Zhao, T.; Zhou, S.; Song, L.; Jiang, Z.; Guo, X.; Niu, Z. Energy-Optimal and Delay-Bounded Computation Offloading in Mobile

Edge Computing with Heterogeneous Clouds. China Commun. 2020, 17, 191–210. [CrossRef]
6. Patel, M.; Naughton, B.; Chan, C.; Sprecher, N.; Abeta, S.; Neal, A. Mobile-Edge Computing-Introductory Technical White Paper, 1st

ed.; ETSI: Sophia Antipolis, France, 2014; pp. 1–36.
7. Liu, X.; Zhao, X.; Liu, G.; Huang, F.; Huang, T.; Wu, Y. Collaborative Task Offloading and Service Caching Strategy for Mobile

Edge Computing. Sensors 2022, 22, 6760. [CrossRef] [PubMed]
8. Liu, J.; Zhang, Q. Code-Partitioning Offloading Schemes in Mobile Edge Computing for Augmented Reality. IEEE Access 2019, 7,

11222–11236. [CrossRef]
9. Huang, S.; Zhang, J.; Wu, Y. Altitude Optimization and Task Allocation of UAV-Assisted MEC Communication System. Sensors

2022, 22, 8061. [CrossRef]
10. Zou, C.; Wang, H.; Chang, J.; Shao, F.; Shang, L.; Li, G. Optimal Progressive Pitch for OneWeb Constellation with Seamless

Coverage. Sensors 2022, 22, 6302. [CrossRef]
11. Jin, L.; Wang, L.; Jin, X.; Zhu, J.; Duan, K.; Li, Z. Research on the Application of LEO Satellite in IOT. In Proceedings of the 2022

IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China,
27–29 May 2022; pp. 739–741. [CrossRef]

12. Xie, R.; Tang, Q.; Wang, Q.; Liu, X.; Richard Yu, F.; Huang, T. Satellite-Terrestrial Integrated Edge Computing Networks:
Architecture, Challenges, and Open Issues. IEEE Netw. 2020, 34, 224–231. [CrossRef]

13. Xiao, Z.; Dai, X.; Jiang, H.; Wang, D.; Chen, H.; Yang, L.; Zeng, F. Vehicular Task Offloading via Heat-Aware MEC Cooperation
Using Game-Theoretic Method. IEEE Internet Things J. 2020, 7, 2038–2052. [CrossRef]

14. Yang, Z.; Liu, H.; Jin, J.; Tian, F. A Cooperative Routing Scheme Using Inter-Satellite Links to Assist Data Downloading for LEO
Satellite Networks. Sensors 2022, 22, 7986. [CrossRef] [PubMed]

15. Liu, S.; Guo, X.; Lai, J.; Yang, J. Distributed Timekeeping in BeiDou Inter-satellite Link Network. IEEE Commun. Lett. 2022, in press.
[CrossRef]

16. Li, S.; Sun, W.; Sun, Y.; Huo, Y. Energy-Efficient Task Offloading Using Dynamic Voltage Scaling in Mobile Edge Computing.
IEEE Trans. Netw. Sci. Eng. 2021, 8, 588–598. [CrossRef]

17. Zhang, G.; Zhang, S.; Zhang, W.; Shen, Z.; Wang, L. Joint Service Caching, Computation Offloading and Resource Allocation in
Mobile Edge Computing Systems. IEEE Trans. Wirel. Commun. 2021, 20, 5288–5300. [CrossRef]

18. Zhu, X.; Jiang, C. Integrated Satellite-Terrestrial Networks Toward 6G: Architectures, Applications, and Challenges. IEEE Internet
Things J. 2022, 9, 437–461. [CrossRef]

19. Zhang, Z.; Zhang, W.; Tseng, F.H. Satellite Mobile Edge Computing: Improving QoS of High-Speed Satellite-Terrestrial Networks
Using Edge Computing Techniques. IEEE Netw. 2019, 33, 70–76. [CrossRef]

20. Al Homssi, B.; Al-Hourani, A.; Wang, K.; Conder, P.; Kandeepan, S.; Choi, J.; Allen, B.; Moores, B. Next Generation Mega Satellite
Networks for Access Equality: Opportunities, Challenges, and Performance. IEEE Commun. Mag. 2022, 60, 18–24. [CrossRef]

21. Cao, X.; Li, Y.; Xiong, X.; Wang, J. Dynamic Routings in Satellite Networks: An Overview. Sensors 2022, 22, 4552. [CrossRef]
22. Pi, J.; Ran, Y.; Wang, H.; Zhao, Y.; Zhao, R.; Luo, J. Dynamic Planning of Inter-Plane Inter-Satellite Links in LEO Satellite Networks.

In Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022;
pp. 3070–3075. [CrossRef]

23. Wang, H.; Han, J.; Cao, S.; Zhang, X. Computation Offloading Strategy of Multi-satellite Cooperative Tasks Based on Genetic
Algorithm in Satellite Edge Computing. In Proceedings of the 2021 International Conference on Space-Air-Ground Computing
(SAGC), Huizhou, China, 23–25 October 2021; pp. 22–28. [CrossRef]

http://doi.org/10.23919/JCC.2020.12.011
http://dx.doi.org/10.3390/s22218544
http://www.ncbi.nlm.nih.gov/pubmed/36366243
http://dx.doi.org/10.1109/JIOT.2020.3008009
http://dx.doi.org/10.23919/JCC.2020.05.015
http://dx.doi.org/10.3390/s22186760
http://www.ncbi.nlm.nih.gov/pubmed/36146113
http://dx.doi.org/10.1109/ACCESS.2019.2891113
http://dx.doi.org/10.3390/s22208061
http://dx.doi.org/10.3390/s22166302
http://dx.doi.org/10.1109/ICETCI55101.2022.9832117
http://dx.doi.org/10.1109/MNET.011.1900369
http://dx.doi.org/10.1109/JIOT.2019.2960631
http://dx.doi.org/10.3390/s22207986
http://www.ncbi.nlm.nih.gov/pubmed/36298337
http://dx.doi.org/10.1109/LCOMM.2022.3198986
http://dx.doi.org/10.1109/TNSE.2020.3046014
http://dx.doi.org/10.1109/TWC.2021.3066650
http://dx.doi.org/10.1109/JIOT.2021.3126825
http://dx.doi.org/10.1109/MNET.2018.1800172
http://dx.doi.org/10.1109/MCOM.001.2100802
http://dx.doi.org/10.3390/s22124552
http://dx.doi.org/10.1109/ICC45855.2022.9838251
http://dx.doi.org/10.1109/SAGC52752.2021.00011

Sensors 2023, 23, 668 17 of 17

24. Wang, Y.; Zhang, J.; Zhang, X.; Wang, P.; Liu, L. A Computation Offloading Strategy in Satellite Terrestrial Networks with Double
Edge Computing. In Proceedings of the 16th IEEE International Conference on Communication Systems (IEEE ICCS), Chengdu,
China, 19–21 December 2018; pp. 450–455. [CrossRef]

25. Zhang, J.; Zhang, X.; Wang, P.; Liu, L.; Wang, Y. Double-Edge Intelligent Integrated Satellite Terrestrial Networks. China Commun.
2020, 17, 128–146. [CrossRef]

26. Tang, Q.; Fei, Z.; Li, B.; Han, Z. Computation Offloading in LEO Satellite Networks With Hybrid Cloud and Edge Computing.
IEEE Internet Things J. 2021, 8, 9164–9176. [CrossRef]

27. Song, Z.; Hao, Y.; Liu, Y.; Sun, X. Energy-Efficient Multiaccess Edge Computing for Terrestrial-Satellite Internet of Things. IEEE
Internet Things J. 2021, 8, 14202–14218. [CrossRef]

28. Abu-Taleb, N.A.; Hasan Abdulrazzak, F.; Zahary, A.T.; Al-Mqdashi, A.M. Offloading Decision Making in Mobile Edge Computing:
A Survey. In Proceedings of the 2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA),
Ibb, Yemen, 25–26 October 2022; pp. 1–8. [CrossRef]

29. Luo, Q.; Hu, S.; Li, C.; Li, G.; Shi, W. Resource Scheduling in Edge Computing: A Survey. IEEE Commun. Surv. Tutorials 2021, 23,
2131–2165. [CrossRef]

30. Deng, R.; Di, B.; Zhang, H.; Kuang, L.; Song, L. Ultra-Dense LEO Satellite Constellations: How Many LEO Satellites Do We Need?
IEEE Trans. Wirel. Commun. 2021, 20, 4843–4857. [CrossRef]

31. Lee, Y.; Choi, J.P. Connectivity Analysis of Mega-Constellation Satellite Networks with Optical Intersatellite Links. IEEE Trans.
Aerosp. Electron. Syst. 2021, 57, 4213–4226. [CrossRef]

32. Ekici, E.; Akyildiz, I.F.; Bender, M.D. A distributed routing algorithm for datagram traffic in LEO satellite networks. IEEE ACM
Trans. Netw. 2001, 9, 137–147. [CrossRef]

33. Tang, L.; Hu, H. Computation Offloading and Resource Allocation for the Internet of Things in Energy-Constrained MEC-Enabled
HetNets. IEEE Access 2020, 8, 47509–47521. [CrossRef]

34. Hou, Y.; Gao, H.; Wang, Z.; Du, C. Improved Grey Wolf Optimization Algorithm and Application. Sensors 2022, 22, 3810.
[CrossRef]

35. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICCS.2018.8689224
http://dx.doi.org/10.23919/JCC.2020.09.011
http://dx.doi.org/10.1109/JIOT.2021.3056569
http://dx.doi.org/10.1109/JIOT.2021.3068141
http://dx.doi.org/10.1109/eSmarTA56775.2022.9935407
http://dx.doi.org/10.1109/COMST.2021.3106401
http://dx.doi.org/10.1109/TWC.2021.3062658
http://dx.doi.org/10.1109/TAES.2021.3090914
http://dx.doi.org/10.1109/90.917071
http://dx.doi.org/10.1109/ACCESS.2020.2979774
http://dx.doi.org/10.3390/s22103810
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007

	Introduction
	Related Work
	System Model
	Network Model
	Channel Model
	Computation Model

	Problem Formulation
	Algorithm Design
	Simulation and Analysis
	Simulation Parameters
	Simulation Results and Analysis

	Conclusions
	References

