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Abstract: A novel type of neural network with an architecture based on physics is proposed. The
network structure builds on a body of analytical modifications of classical numerical methods. A
feature of the constructed neural networks is defining parameters of the governing equations as
trainable parameters. Constructing the network is carried out in three stages. In the first step, a neural
network solution to an equation corresponding to a numerical scheme is constructed. It allows for
forming an initial low-fidelity neural network solution to the original problem. At the second stage,
the network with physics-based architecture (PBA) is further trained to solve the differential equation
by minimising the loss function, as is typical in works devoted to physics-informed neural networks
(PINNs). In the third stage, the physics-informed neural network with architecture based on physics
(PBA-PINN) is trained on high-fidelity sensor data, parameters are identified, or another task of
interest is solved. This approach makes it possible to solve insufficiently studied PINN problems:
selecting neural network architecture and successfully initialising network weights corresponding to
the problem being solved that ensure rapid convergence to the loss function minimum. It is advisable
to use the devised PBA-PINNs in the problems of surrogate modelling and modelling real objects
with multi-fidelity data. The effectiveness of the approach proposed is demonstrated using the
problem of modelling processes in a chemical reactor. Experiments show that subsequent retraining
of the initial low-fidelity PBA model based on a few high-accuracy data leads to the achievement of
relatively high accuracy.

Keywords: PINN; numerical method; analytical modification; shooting method; data-driven mod-
elling; chemical reactor; engineering applications; intelligent systems; multi-fidelity; surrogate
modelling

1. Introduction

A classical approach to modelling real objects consists of two steps. In the first step,
based on the analysis of known facts about physical (and other) processes taking place in
an object, a model is constructed in the form of a differential equation (system of equations)
and additional conditions (initial, boundary, etc.). In the second step, the model obtained is
investigated using numerical methods. The final model in the form of a table of numbers
allows for drawing the necessary conclusions about the object’s behaviour, plotting graphs,
predicting their dynamics, etc. If it turns out that the operation data differ significantly
from the model constructed, there is a need to return to the first stage and build a more
accurate differential model, then rebuild the table of numerical solutions. The differential
equation solvers can be computationally costly compared to the case when it is possible
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to operate a general parametric analytical model. Moreover, if such an approach does not
lead to success, it is necessary to build a model of the object directly from measurement
data that is not the strength of classical numerical methods. The same problem arises
in engineering when it is required a thorough analysis of the model performance under
various parameters. The underlying equations have to be solved for a large amount of
input data, reflecting a particular realisation of the parameter space of interest.

The described issues are discussed further in the context of the application of physics-
informed neural networks (PINNs), which have become especially popular after the pub-
lication of work [1]. The ability of such networks to solve problems with parameters is
investigated in many studies and remains an urgent issue [1–9]. In particular, the con-
struction of parametric models is an integral part of surrogate modelling [4,5,7,10]. In [5],
the importance of constructing parametric solutions in comparison with classical numer-
ical ones is emphasised in the sense of convenience of analysing the surrogate model
under different conditions and instantaneous response when requested for any location
in the spatial-parameter space of interest. The authors demonstrate how effectively solu-
tions representing the whole families of parametric models are constructed by exploiting
PINNs. It allows for solving the problem of parameter identification with high accuracy.
Refining a family of parametric neural network models by minimisation the loss encoded
measurement data and selecting the most suitable one is also investigated in [11–13].

Other relevant areas of research in the field of modelling are the multi-fidelity ap-
proaches. PINNs and multi-fidelity methods are discussed in some detail in [14]. For
matching low-fidelity physics and high-fidelity sensor data, it is used transfer learning
which involves updating the initial model by re-training. The multi-level method also is
proposed in [6,15]. There are studies utilising active training to enhance the approximation
accuracy of PINNs, for example, [6] (based on sensor data) and [5] (based on finite element
simulations).

In this article, a new class of multi-fidelity physics-informed neural networks with
physics-based architecture (PBA-PINNs) is proposed. The main feature of such a type of
network is that not only the training of weights but also the architecture of a network itself
is based on physics. It is a multi-fidelity method where, at the first stage, the PBA model is
constructed based on the analytical modification of classical numerical methods with em-
bedded neural network modules. Note that utilising numerical methods to improve PINN
models not only as additional data encoded in the loss is gaining popularity [6,16–18]. In
the approach proposed, the issue of forming a neural network initialisation is solved while
the network architecture is often manually provided [14]. Considered in this manuscript,
PINNs have a simple architecture. The advantages of the structure that is easy to be un-
derstood are discussed in [9] where neural networks and interpolation polynomials are
combined. In [4], this question is also considered.

With a small number of iterations of the numerical method, the proposed initial PBA
model is compact but low-fidelity. At the same time, this allows quick (compare with [5])
training of a network at the next medium-fidelity step by minimising the physics-informed
loss across the whole parameter space. The high-fidelity training at the third stage realises
the Industry 4.0 concept of active manufacturing control encoding sensor data [19].

The performance of proposed methods is demonstrated in solving a benchmark problem,
namely the stationary problem of the thermal explosion of a non-isothermal chemical reactor
in the plane-parallel case [20]. The Runge–Kutta and shooting methods are widely used in
modelling chemical processes [21–23], and it is natural to leverage the analytical modification
of these methods to solve the task. In similar problems, activation energy, temperature and
thermal conductivity act as measured values. The measurement of thermal conductivity in a
chemical reactor is considered in the works [24,25]. Papers [26–28] investigate temperature
measurements. Parameters considered in this study also include the measurements of the
activation energy of a chemical reactor which is investigated in [29,30].

This article is structured as follows. Section 2 discusses methods applied at each
stage of the approach proposed in detail. Section 3 specifies the bench problem, presents
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the results of constructing multi-fidelity parametric PBA-PINN models and demonstrates
an application of high-fidelity networks to a parameter identification problem. Section 4
provides conclusions and a discussion of results and the method itself.

2. Materials and Methods

In this section, the stages of building a multi-fidelity physics-informed neural net-
work with physics-based architecture for some boundary value problems are described
sequentially. The whole process is schematically shown in Figure 1.

Figure 1. General scheme of constructing and training multi-fidelity physics-informed neural net-
works with physics-based architecture (PBA-PINN).

2.1. Problem Statement

Consider boundary value problems of the general form

y′(x) = f(x, y(x)), (1)

x ∈ [a1, a2] = D, with boundary conditions

B1[y](a1) = b1, B2[y](a2) = b2; (2)

where f(x, y(x)) is an reasonable function, B1[·],B2[·] are appropriate operators and y(x)
is a hidden solution.
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2.2. Analytical Modification of the Shooting Method and Constructing PBA Model

Here, the analytical modification of the shooting method is presented. Task (1) and (2)
is regarded as an initial value problem by guessing

y(x0) = y0, (3)

where x0 is some point on the interval D. Further, according to an approach described, for
example, in [16], an analytical solution on the interval with a variable right (left) end x ∈ D
is built by means of known formulas for the numerical solution of the Cauchy problem for
a system of ordinary differential equations [31].

Classical numerical methods consist in dividing the interval across which the problem
is solved into n parts x0 < . . . < xn = x0 + a. To find the values of an approximate solution
at these points, an iterative formula

yk+1 = A[f, yk, yk+1, hk, xk], (4)

where hk = xk+1− xk, is used. Here, yk approximates the exact value of the desired solution
at the point xk and A[·] is a function that defines the specific method leveraged. The steps
hk are regarded as functions of a variable x [16], hk(x). In the simplest case of uniform
partition, it follows that hk = (x− x0)/n and xk = x0 + (x− x0)k/n.

The function yn(x, y0) constructed at the final step determines an approximate an-
alytical solution to the problem (1) + (3). Note, that this solution includes as a vector
parameter y0 = y0(x) which, similar to the classical shooting method, is determined from
the boundary conditions

B1[yn](a1, y0) = b1, B2[yn](a2, y0) = b2. (5)

Thus, an analytical modification of any classical numerical scheme and the shooting
method is obtained. The solution constructed in this way is a model with PBA, which
can be considered as a deep neural network with n hidden layers. Models of this type are
discussed in more detail in [16,18]. Choosing a large enough n provides an arbitrarily well
approximation, but in this work, PBA solutions with one layer are studied due to regarding
them as compact low-fidelity models.

Note that Figure 1 contains round symbols near the shooting method and analytical
modification of numerical scheme blocks, indicating that there are abilities to embed neural
networks at these steps.

If Formula (4) defines some explicit numerical method, then the approximate solution
can be calculated as an explicit function. If it is inconvenient to use it directly, for example,
a cumbersome expression, you can approximate this function using a neural network. As a
result of applying the iterative Formula (4) including replacing with the neural network
function an approximate solution to the problem (1) and (2), which is a multilayer neural
network function, is obtained.

If the functionA depends on yk+1 , the relation (4) can be considered an equation with
respect to yk+1. In the case of having an exact solution instead of Equation (4), a relation of
the form

yk+1 = B[f, yk, hk, xk]. (6)

is obtained.
It allows calculating the approximate solution to the problem (1) and (2) iteratively.
If Equation (4) cannot be solved exactly with respect to yk+1, a specially trained neural

network can be used to obtain an approximate formula of the form (6). As a result, the
approximate solution in the form of a deep neural network with physics-based architecture
is constructed as before.
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2.3. PBA-PINN Model Constructing

At this stage, the network with physics-based architecture

yn(x, y0, a), (7)

where a is a vector including all the weights of neural networks embedded at the previous
step, and is further trained to solve the original differential equation by minimising the loss
function, as is usually the case in works devoted to physics-informed neural networks.

If the formulation of the problem (1) and (2) contains some parameters p, they are
automatically included in the expression for PBA network yn → yn(x, y0, a, p) which leads
to the construction of a parametric neural network solution [2].

Further training of the neural network can be carried out by minimising the loss function

m

∑
j=1
||y′n(xj, pj)− f(xj, yn(xj, pj), pj)||2 + λ

(
||B1[yn](a1(pj), y0(pj))− b1(pj)||2 + ||B2[yn](a2(pj), y0(pj), pj)− b2(pj)||2

)
. (8)

In this case, the parameter values are taken from the area of interest. λ is a usual
hyperparameter regularising the contribution of each loss term to the value of the loss
function. For brevity, weights a are omitted in the entry.

The result is an approximate solution in the form of a deep physics-informed neural
network with physics-based architecture. It is important to note that according to the
methods proposed, the learning process starts not with a random neural network weight
initialisation, but with a relatively successful initial approximation (the accuracy of approx-
imation depends on the accuracy of the numerical method and the number of iterations
used) which greatly reduce the training time of the neural network as it is demonstrated in
the case study.

In the process of training a neural network, dependence yn(x, y0, p) on y0 may be
broken. It can be avoided if y0 in Equation (5) is substituted with another neural net-
work, the weights of which are determined in the process of minimising the appropriate
error function.

2.4. High-Fidelity Refinement PBA-PINNs Based on Sensor Data

In the third stage, the PBA-PINN model built is further trained according to high-
fidelity data coming from sensors. The compactness of the constructed model makes it
convenient to adapt it to real measurements. The PBA-PINN weights are re-trained by
minimising the loss function in the form

M

∑
j=1

(
yn(xj, y0, a, pj)−mj

)2, (9)

where {mj, pj}M
j=1 are sensor data in points xj.

The resulting PBA-PINN is regarded as the multi-fidelity model of an object described
by differential Equations (1) and (2) and sensor data.

2.5. Data-Driven Parameter Identification

As it is noted before, constructing parametric solutions is important in the sense of
convenience of analysing the surrogate model under different conditions and instantaneous
response when requested for any location in the spatial-parameter space of interest. Thus,
this model can be applied to solve an inverse problem (parameter identification) based on
a few sensor data. In this case, it is proposed to identify a new parameter value using a
parametric high-fidelity PBA-PINN model constructed at the previous step and obtain the
predicted value by minimising the loss function of type

L

∑
j=1

(
yn(xj, y0, a, p)−mj

)2, (10)
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where {mj}L
j=1 are sensor data in points xj.

In the next section, the performance of the proposed methods is demonstrated in
solving a benchmark problem, namely the stationary problem of the thermal explosion of a
non-isothermal chemical reactor in the plane-parallel case.

3. Case Study
3.1. Problem Statement

The methods described above have been applied to the stationary problem of the
thermal explosion of a non-isothermal chemical reactor in the plane-parallel case [20] under
the assumption that the reaction is one-stage, irreversible, not accompanied by phase
transitions, proceeds in a stationary medium. In dimensionless form, this problem can be
written as a nonlinear differential equation with boundary conditions that are given by

d2θ

dx2 + δ exp(θ) = 0,

dθ

dx
(0) = 0, θ(1) = 0,

x ∈ [0, 1], δ ∈ [0.2, 0.8]. (11)

This problem has a ground-truth solution that can be obtained by using the standard
method of reducing an order [31]. This allows evaluating the quality of a solution built
utilising the methodology considered above.

The variable change interval is taken from the problem statement and is associated
with the transition to a dimensionless coordinate. The parameter space is selected for
computational experiments based on the following considerations. For a small value of δ, an
approximate solution can be obtained based on standard methods of asymptotic expansions.
In addition, to achieve a small relative error at these parameter values, changing the
loss function is required. Such changes are task-specific and make it difficult to use this
problem to illustrate the general methodology. There is no exact solution to the problem at
δ > δ∗ ≈ 0.878458. As the solution approaches this critical boundary, it becomes unstable,
and the problem acquires stiff properties. The relevant problems have been left aside not to
lose clarity to illustrate the general methods. In addition, when operating a real reactor,
there is a tendency to avoid working close to the stability boundary. A small value of the
parameter corresponds to a low reaction rate which makes the operation of the reactor
ineffective. Therefore, the parameter change interval similar to the one under consideration
seems to be the most interesting from a practical point of view.

3.2. Transformation of Equations

Reduce (11) to a system
dθ

dx
= z,

dz
dx

(0) = −δ exp(θ),
x ∈ [0, 1]. (12)

and apply the modification of the implicit Euler method, then{
θk+1 = θk + hkzk+1,

zk+1 = zk − hkδ exp(θk+1).
(13)

It is obtained by applying a single-layer formula (k = 1) that

θ1 = θ0 + (x− x0)z0 − (x− x0)
2δ exp(θ1). (14)

Let x0 = 0 then dθ
dx (0) = 0 and θ(1) = 0 imply z0 = 0 and θ0 = δ. Therefore,

θ1 = δ− x2δ exp(θ1). (15)
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This implicit equation is solved using a neural network according to the methods of
embedding neural network elements described earlier.

3.3. Embedding Neural Network in PBA Solution

Consider an implicit equation

y + s exp(y) = t. (16)

An approximate solution y(s, t) to (16) is looked for in the form of a neural network
with one hidden layer and n neurons per it, which can be expressed as

ŷ(s, t, {ci, ai}n
i=1) = c1 +

n

∑
i=2

civ(s, t, ai), (17)

where
v(s, t, a) = th(a1s + a2)th(a3t + a4) (18)

is an activation function, parameters {ci, ai}n
i=1 are learned by minimising the squared

error loss

J =
M

∑
j=1

(
ŷ(sj, tj, {ci, ai}n

i=1) + sj exp(ŷ(sj, tj, {ci, ai}n
i=1))− tj

)2. (19)

Throughout this work, in the training process, inputs are resampled after 3–5 steps
of nonlinear optimisation of a corresponding loss function in the domain of interest. This
resampling [32] is regarded as the regularisation aimed to avoid over-fitting. In this case,
input points {sj, tj}M

j=1 are from domain 0 < s < t < 1.
The resulting neural network is used as an approximate solution to Equation (11), namely

θ1(x) = ŷ(x2δ, δ, {ci, ai}n
i=1). (20)

Further, results obtained for various n are considered and discussed. Table 1 shows
that along with the rise in the number of neurons, the accuracy of the implicit Equation (16)
solution increases as expected. Simultaneously, the accuracy of the original problem
solution decreases. It is obviously related to the large error of the Euler method on the basis
on which the solution is built. In addition, a network with n = 20 neurons has no significant
advantages in the accuracy of the corresponding solution of the implicit equation. This is
due to the fact that training all networks takes the same number of epochs (2000) to avoid
the bias of comparison, and longer training is required to learn a network with 20 neurons
of a hidden layer.

Table 1. Results of solving the implicit Equation (16). A comparison of the mean square error (MSE)
and the maximum value of the absolute error for the neural network solution to Equation (16) with
basis functions (18) and the corresponding solution of the problem (11) for different numbers of
neurons per a hidden layer.

Number of Neurons MSE for (16) max|Error| for (16) MSE for (11) max|Error| for (11)

n = 3 0.0259 0.146 0.0617 0.106
n = 5 0.00354 0.0238 0.0900 0.168
n = 10 0.00189 0.0117 0.0880 0.172
n = 20 0.00223 0.0100 0.0875 0.176

The errors of neural network solutions to problems (16) and (11) in the case of n = 3
and n = 4 are presented in the form of graphs in Figures 2 and 3. Plots in Figure 2
demonstrate that a network with n = 3 neurons of a hidden layer gives a much poor
quality of the approximation to the exact solution to the implicit equation because the error
significantly deviates from 0 in most of the input domain. A network with n = 10 gives
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greater accuracy and has big deviations from 0 only for small s and big t. Note that in this
case, the decision surface has a more tortuous character compared to the decision surface
of a network with n = 3 neurons of a hidden layer.

Figure 3 shows that the maximum error is reached at the left end of the parameter
interval and the medium value of δ. At the same time, the error for a network with n = 10
neurons is slightly higher. It is caused by inaccuracies introduced by Formula (14).

Figure 2. Errors in PBA solutions (17) to Equation (16), across domain 0 < s < t < 1, for n = 3 (a)
and n = 10 (b).

Figure 3. Errors in the multilayer solutions (20) with an embedded neural network (17) to
problem (11), across parameter space 0.2 < δ < 0.8, for (a) n = 3 and (b) n = 10.

For fixed parameter δ values, several graphs of the solutions of the type (20) and the
exact solution to the problem (11) are shown in Figure 4. The graphs presented in Figure 3
show that despite a significant error, the PBA solutions with an embedded neural network
match the overall trend of the ground-truth solution, which allows for obtaining more
accurate solutions by further training.

Comparison of Figures 4 and 5, where the same graphs for the PBA solution with
n = 10 are presented, shows that the solution (20) with n = 3 neurons per a hidden layer of
embedded network does not have such an advantage over the one with n = 10, as it might
seem from Table 1.

Moreover, comparing any accuracy of solutions presented in this subsection is rather
conditional, since these solutions are only a qualitatively correct approximated blank for
further high-fidelity classical PINN learning to effectively refine the low-fidelity initial PBA
solutions with an embedded neural network.
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Figure 4. A comparison of PBA solutions (20) with an embedded neural network, θ1(x, δ), n = 3
neurons, and an exact solution of the problem (11) for parameter values: (a) δ = 0.2; (b) δ = 0.5;
(c) δ = 0.8.

Figure 5. A comparison of the multilayer solutions (20) with an embedded neural network, θ1(x, δ),
n = 10 neurons, and an exact solution of the problem for parameter values: (a) δ = 0.2; (b) δ = 0.5;
(c) δ = 0.8.

3.4. Physics-Informed Refinement of Initial PBA Neural Networks

Here, the low-fidelity initial PBA solutions with an embedded neural network con-
structed in a previous subsection are refined. Parameters {ci, ai}n

i=1 of a parametric family of
neural networks θ1(x) = y(x2δ, δ, {ci, ai}3

i=1) can be learned by minimising the loss function

J1 =
m

∑
j=1

[(
θ′′1 (xj) + δj exp(θ1(xj))

)2
+ λ

(
(θ′1(0))

2 + (θ1(1))2)]. (21)

The points {xj, δj} are resampled after 3–5 steps of nonlinear optimisation of the loss
function (21) across domain [0, 1]× [0.2, 0.8].

The results of computational experiments presented in Table 2 demonstrate that neural
networks proposed in this paper have a significant potential for refining by minimising the
loss (21) encoding the initial formulation of the problem (11). For comparison, the results
of classical neural network models with activation functions of the form (18) are presented.

Table 2. Results of PBA-PINN learning. A comparison of the mean square error (MSE) and the
maximum value of the absolute error for PBA-PINN (20) with n neurons per a hidden layer in an
embedded network and classical PINN with n neurons of a hidden layer and activation function (18)
after learning by minimising the loss (21).

Number of
Neurons

MSE for
Learned (20)

max|Error| for
Learned (20)

MSE for
Classical PINN

max|Error| for
Classical PINN

n = 3 0.0192 0.0947 0.120 0.393
n = 5 0.0118 0.0678 0.0448 0.149
n = 10 0.0113 0.0706 0.0374 0.123
n = 20 0.0269 0.0792

3.5. Additional Embedding Neural Network in PBA Solution

As a further development, equality θ0 has been replaced with a neural network
function with one hidden layer
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θ0(δ, {bi}N
i=1) =

N

∑
i=2

cith(b1
i δ + b2

i ). (22)

The resulting neural network has two hidden layers and is expressed as

θ1(x) = ŷ
(
x2δ, θ0(δ, {bi}N

i=1), {ci, ai}n
i=1
)
. (23)

where weights {ai}N
i=1, {bi}N

i=1 are trained by minimising the loss function (21).
Comparing the error values in Tables 2 and 3, it can be concluded that a two-layer

network has a significant advantage.
The error field in various PINN solutions to Equation (11) across the whole parameter

region of interest, 0.2 < δ < 0.8, learned by minimising the loss (21) are shown in Figure 6.
These plots make it clear that none of the PINN solutions has a big advantage over the
others. Refined PBA PINN (20) with n = 10 neurons has a slightly smaller error than the
one with n = 3 but has excessive fluctuations in the area of large δ. PBA PINN (23) with
n = 3, N = 1 has the smallest error and matches the trend of the exact solution. A classical
PINN with n = 20 neurons of a hidden layer and activation function (18) has the largest
error with the maximum amplitude of oscillations.

Figure 6. Errors in PBA-PINN (20) for (a) n = 3 and (b) n = 10, (c) in PBA-PINN (23) for n = 3,
N = 1, and (d) in classical PINN with n = 20 neurons of a hidden layer and activation function (18),
across parameter space 0.2 < δ < 0.8, after learning by minimising the loss (21).
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Table 3. Results of PBA-PINN learning. The mean square error (MSE) and the maximum value of the
absolute error for PBA-PINNs (23) with N neurons per first hidden layer and n neurons per second
one after learning by minimising the loss (21).

Number of Neurons MSE max|Error|

n = 3, N = 1 0.00865 0.0527
n = 10, N = 3 0.00593 0.0437

Compare the results for fixed values of the parameter δ by visually presenting their
graphs. Figure 7 demonstrates that, for small δ, PBA-PINN (20) with n = 10 neurons
and PBA-PINN (23) with n = 3, N = 1 have the minimum error, classical PINN with
n = 20 neurons of a hidden layer has the largest error. According to Figure 8, in the
middle of parameter space, PBA-PINN (23) with n = 3, N = 1 have the minimum error,
classical PINN with n = 20 neurons has the largest error. At the same time, the relative
errors for all networks are significantly less than errors for δ = 0.2. Figure 9 shows that
for big δ classical PINN with n = 20, neurons have the smallest error, and the quality
of other PINNs is approximately the same. It is clear from Figures 7–9 that it is most
convenient to have a family of PINN solutions and choose from them the most appropriate
in a particular situation.

Figure 7. A comparison of PBA-PINN (20) for (a) n = 3 and (b) n = 10, (c) PBA-PINN (23) for n = 3,
N = 1, and (d) classical PINN with n = 20 neurons of a hidden layer and activation function (18),
after learning by minimising the loss (21) and an exact solution to the problem (11), for δ = 0.2.
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Figure 8. A comparison of PBA-PINN (20) for (a) n = 3 and (b) n = 10, (c) PBA-PINN (23) for n = 3,
N = 1, and (d) classical PINN with n = 20 neurons of a hidden layer and activation function (18),
after learning by minimising the loss (21), and an exact solution to the problem (11) for δ = 0.5.

Figure 9. A comparison of PBA-PINN (20) for (a) n = 3 and (b) n = 10, (c) PBA-PINN (23) for n = 3,
N = 1, and (d) classical PINN with n = 20 neurons of a hidden layer and activation function (18),
after learning by minimising the loss (21), and an exact solution to the problem (11) for δ = 0.8.

3.6. Data-Driven PBA-PINN Model Refinement and Discovery

The high-fidelity sensor data is leveraged to effectively refine PBA-PINN solutions
to problems (11). The portability of PBA-PINN (20) with n = 3 per hidden layer makes
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it convenient to adapt it to real measurements. Recall that this network weight has been
already trained by minimising the loss function (21).

3.6.1. Parametric PBA-PINN

In the first computational experiment, M = 50 random (uniformly distributed) loca-
tions {x′j, θ′j}M

j=1 in spatial-parameter domain (0, 1)× (0.2, 0.8) have been used as input and
correspondent synthetic measurements θ′j calculated by means the exact solution to (11) as
output. The training sample is shown in Figure 10. It can be seen that random sampling is
used without the intention of covering the whole domain of interest evenly.

Figure 10. 3-D plot of a training sample for refining parametric PBA-PINN, across parameter space
0.2 < δ < 0.8.

For training, the loss encoding generated sensor data {x′j, δ′j , θ′j}M
j=1 is utilised, namely

J′2 =
M

∑
j=1

(
θ1(x′j, δ′j)− θ′j

)2. (24)

Figure 11 illustrates the results of training PBA-PINN (20) by minimising the loss (24).
A comparison of them with graphs in Figures 7a, 8a and 9a shows drastic improvement in
the quality of PBA-PINN solution, especially at the ends of parameter interval. Figure 12
displays PBA-PINN solutions for fixed spatial locations.

3.6.2. PBA-PINN for Fixed Parameter Value

In the next experiment, parameter δ is fixed on the (0.2, 0.8) and 10 random inputs x′′j
of PBA-PINN (20) are taken on [0, 1]. Correspondent synthetic measurements θ′′j calculated
as before.

For training, the loss encoding generated sensor data {x′′j , δ, θ′′j }M
j=1 is utilised, namely

J′′2
M

∑
j=1

(
θ1(x′′j , δ)− θ′′j

)2. (25)

The results of computational experiments presented in Table 4 demonstrate that errors
after additional training PBA-PINN according to the data for the entire spatial-parameter
space are several times less than errors presented in Table 2.
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Figure 11. A comparison of parametric PBA-PINN (20), θ1(x, δ), n = 3, after two consecutive training
weights by minimising the losses (21) and (24), respectively, and an exact solution to the problem
for parameter values: (a) δ = 0.2; (b) δ = 0.5; (c) δ = 0.8; and (d) error in this PBA-PINN across
parameter space 0.2 < δ < 0.8.

Figure 12. A comparison of parametric PBA-PINN (20), θ1(x, δ), n = 3, after two consecutive training
weights by minimising the losses (21) and (24), respectively, and an exact solution to the problem for
spatial locations: (a) x = 0; (b) x = 0.5; (c) x = 0.9.

Table 4. The mean square error (MSE) and the maximum value of the absolute error for PBA-PINNs
(20) with n = 3 neurons per a hidden layer after two consecutive training weights by minimising the
losses (21) and (24), respectively.

δ MSE for (11) max|Error| for (11)

(0.2, 0.8) 0.00445 0.0163
0.2 0.0000456 0.000155
0.5 0.000148 0.000272
0.8 0.000798 0.00178

3.6.3. Parameter Identification

Consider a slightly different problem that shows the possibilities of using parametric
data-driven trained PBA-PINN. It is demonstrated by applying this network to an inverse
problem, namely, predicting the δ parameter value which corresponds to a certain sensor
data. As it has been done before, synthetic temperature measurements {x′′′j , θ′′′j }K

j=1 at
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K random points on the interval [0, 1] are calculated for δ = 0.4 by means of the exact
solution to the problem in question. The training samples used in the experiments and
corresponding PBA-PINN solutions are shown in Figures 13a and 14a.

The PBA-PINN with n = 3 refined by two training is regarded as a final parametric
model θ1(x, δ) satisfying to Equation (11) across spatial-parameter domain (0, 1)× (0.2, 0.8).
The unknown δ is obtained by minimising the loss

J′′3 =
K

∑
j=1

(
θ1(x′′′j , δ)− θ′′′j

)2. (26)

The parameter values predicted as a result of querying the parametric PBA-PINN
model are presented in Table 5.

Table 5. The inverse problem parametric PBA-PINN (20) solving results. Predicted parameter δ

values for different sensor data numbers and ground-truth value δ = 0.4 .

Number of Sensor Data Predicted δ |Error|

K = 3 0.378 0.022
K = 1 0.364 0.046

It is clear from Figure 14b that utilising an inaccurate PBA-PINN solution with only
n = 3 neurons and one measurement from sensors allows predicting a sufficiently high-
quality approximate solution in the case of unknown parameter δ. Compare with [7] where,
to perform model inversion, 100 points are used.

Figure 13. Parameter identification and model discovery. (a) A sample with K = 3 synthetic
measurements; (b) error in corresponded parametric PBA-PINN solution (20) to (11) for predicted
parameter δ value.

Figure 14. Parameter identification and model discovery. (a) A sample with K = 1 synthetic
measurement; (b) error in corresponded parametric PBA-PINN solution (20) to (11) for predicted
parameter δ value.
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4. Discussion

This manuscript proposes a new class of physics-informed neural networks, PBA-
PINN. The main feature of this type of network is that not only the training of weights but
also the architecture (structure) of the network itself is based on physics.

The task of training a neural network by minimising the loss function encoding
measurement data, differential equations and boundary conditions is well-known and
investigated. However, the issue of forming a good initial approximation to the weights
of a neural network (initialisation), and especially the question of selecting a network
architecture, that meets the features of the problem being solved, has not been sufficiently
investigated. The paper puts forward the method for solving these issues based on the
use of differential equations and, accordingly, the physics of processes occurring in a
simulated object.

The process of building and utilising these kinds of networks proceeds in the following
three stages. In the first step, based on the analytical modification of classical numerical
methods, the task of constructing an approximate neural network solution of a boundary
value problem for a differential equation is reduced to the construction of an approximate
solution with a physics-based architecture. To simplify the solution of an equation (explicit
or implicit) at each iteration of the numerical method, this equation is proposed to be
solved using a neural network. Network weights are trained in the usual way based on
minimising the loss function. An essential feature of the network is that the task parameters
can be among the inputs. With a small number of iterations of the numerical method,
the resulting solution with physics-based architecture is compact, but low-fidelity. At the
second stage, the PBA network built is further trained to solve the differential equation
by minimising the loss function, as is typical in works devoted to PINNs. In this case, the
network is trained not only across the set of input variables of the original problem but also
across parameter space. In the third stage, the PBA-PINN model built is further trained
according to data coming from sensors. By means of the resulting high-fidelity model, it is
possible to solve the problems of parameter identification, equations discovery and other
tasks, for example, the control problem.

The performance of the proposed methods is demonstrated on a benchmark problem
of modelling processes in a chemical reactor.

The results of computational experiments have shown that for the problem in ques-
tion, the proposed method allows the construction of very small physics-informed neural
network models that reflect the simulated object with acceptable accuracy. The insufficient
accuracy of low-fidelity models constructed at the first stage is compensated by the possi-
bility of refining the models through additional high-fidelity training at the second and
third stages. The results of this multi-fidelity training PBA-PINNs have been compared
with the results of training classical PINNs. The proposed PBA-PINNs have allowed for
reaching several times greater accuracy than the standard fully-connected neural networks.
Data-driven computational experiments have demonstrated that the proposed parametric
low-fidelity models are suitable for subsequent retraining and solving problems of parame-
ter identification based on measurement data. In work [33], the same parametric differential
problem was solved by applying the analytical modification of such numerical methods as
the corrected Euler method and the Störmer method. The authors have shown that the ac-
curacy of a solution improves as the number of iterations increase. Note that on the basis of
a similar low-fidelity model, with the help of subsequent additional training, in this article,
it has been possible to obtain the parametric model with comparable accuracy. Moreover,
when completing training according to data for specific parameter values, the superiority
of the final high-fidelity solution has been expressed in reducing the maximum error by
three orders of magnitude. This result is comparable to solutions obtained in [34,35] where
similar problems with fixed parameter values were solved.

It is advisable to use the devised PBA-PINNs in the problems of surrogate modelling
and modelling real objects when it is difficult or inappropriate to build a sufficiently
accurate physical model and, accordingly, a mathematical model in the form of a boundary
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value problem for a differential equation (or a system of such equations). In this case, it is
assumed that there are sensor data that can improve the accuracy of the model, but which
are not enough to build a model without using differential equations.
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