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Abstract: Due to the influence of the shooting environment and inherent image characteristics, there
is a large amount of interference in the process of image stitching a geological borehole video. To
accurately match the acquired image sequences in the inner part of a borehole, this paper presents
a new method of stitching an unfolded borehole image, which uses the image generated from the
video to construct a large-scale panorama. Firstly, the speeded-up robust feathers (SURF) algorithm
is used to extract the image feature points and complete the rough matching. Then, the M-estimator
sample consensus (MSAC) algorithm is introduced to remove the mismatched point pairs and obtain
the homography matrix. Subsequently, we propose a local homography matrix offset optimization
(LHOO) algorithm to obtain the optimal offset. Finally, the above process is cycled frame by frame,
and the image sequence is continuously stitched to complete the construction of a cylindrical borehole
panorama. The experimental results show that compared with those of the SIFT, Harris, ORB and
SUREF algorithms, the matching accuracy of our algorithm has been greatly improved. The final test
is carried out on 225 consecutive video frames, and the panorama has a good visual effect, and the
average time of each frame is 100 ms, which basically meets the requirements of the project.
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1. Introduction

With the vigorous development of mining, tunnel construction, oil mining and other
engineering projects, the importance of geological structure analysis is self-evident. Due
to the popularization of optical technology [1], camera technology has been applied for
geological exploration. Among them, forward-looking borehole camera technology can
be directly used to measure the inner wall of the borehole to obtain better information
about the rock mass structural plane, and it is not affected by the drilling coring process.
It has become one of the important methods in geological exploration [2]. The borehole
video captured using the axial view panoramic borehole camera system (APBCS) can
be converted into a borehole wall unfolded image sequence, and a complete borehole
panorama that intuitively reflects the characteristics of the borehole wall’s structural plane
can be constructed by using image stitching method [3]. Using the panorama, the trend,
crack width, rock mass interface and other information about the rock mass structural
plane can be analyzed from the macro perspective, which provides a research basis for
further qualitative analyses of borehole data. It has important theoretical significance and
practical application value.

In recent years, image stitching technology has been widely used in the military,
agriculture, geological exploration and other fields [4,5], and it has gradually become
an important branch of image processing [6-8]. Image matching is at the core of image
stitching [9,10], and its essence is to calculate the geometric transformation relationship
between two images using overlapping areas to obtain the rotation, scale, displacement and
other parameter values, and then realize the mosaic of the overlapping areas [11,12]. At
present, the mainstream image matching method is the feature-based matching method [13].
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Lowe (2004) [14] put forward the scale-invariant feature transform (SIFT) algorithm in
2004, which shows good robustness in image translation, scaling and rotation. However, it
requires a lot of operating, resulting in image stitching taking a long time. Subsequently,
the speeded-up robust features (SURF) algorithm, which is improved from SIFT, was
introduced to enhance the operating efficiency of the algorithm by taking the derivative of
the integral image Haar wavelet (Haar) [15].

In the process of image stitching, some scholars have proposed many image matching
algorithms based on feature points in combination with the application characteristics
of different fields [16]. Chen et al. [17] added a nonrigid matching algorithm based on
VEC on the basis of SIFT to make the matching between remote sensing images taken by
UAVs more accurate. However, due to the complexity of the SIFT algorithm itself, the
introduction of other algorithms for fusion resulted in running times that were too long,
which made them inapplicable to some real-time stitching systems, and they could not
meet the requirements of rapidity. Yuan et al. [18] proposed a seamless stitching method of
UAV aerial images by combining the adaptive as-natural-as-possible (AANPA) method
with the proposed energy function. It can effectively eliminate cracks in the stitching of
UAV images and make the stitched obtained images more accurate and comprehensive.
However, the stitching applicability between images with a small number of feature points
and relatively small shape variables remains to be verified. Bai et al. [19] proposed a video
mosaic method of coal mine monitoring based on feature points, which introduces the
Moravec corner detection algorithm on the basis of the SIFT and RANSAC algorithms to
solve the problem of feature re-extraction due to the change in the observation angle, but
the algorithm efficiency needs to be further improved.

The borehole unfolded image sequence studied in this paper was taken from inside
the geological borehole using the APBCS device. Due to the particularity of the geological
environment, the acquired rock mass image has a relatively singlemonotone color, texture,
structure and other features, which will produce many mismatched points during feature
extraction and matching [20], resulting in inaccurate image transformation which will affect
the accuracy of the image stitching. To solve the above problems, this paper proposes a new
stitching method for the geological borehole unfolded image sequence. We use the SURF
and MSAC algorithms to obtain the homography matrix and present a local homography
matrix offset optimization (LHOO) algorithm to obtain the optimal offset. By repeating
the above process frame by frame, we can realize the continuous stitching of the unfolded
image sequence, effectively improve the matching accuracy, and provide conditions for the
quantitative analysis of specific borehole wall information data, which increases the value
of forward-looking borehole camera systems used in geological explorations.

2. Overview of the System

According to the particularity of the geological borehole video captured using the
APBCS, this paper proposes a geological borehole video image stitching method based
on the local homography matrix offset optimization (LHOO) algorithm. The system
architecture of our stitching method based on LHOO is illustrated in Figure 1.

Two previous frames of the borehole unfolded image sequence are taken as the primary
stitching task. Firstly, the image feature points are extracted by the SURF algorithm to
complete the rough matching task. Then, the MSAC algorithm is introduced to remove
the mismatched point pairs and obtain the homography matrix [21]. Subsequently, in the
proposed LHOO algorithm, the local parameters of the homography matrix are used to
obtain the vertical offset of two consecutive unfolded images, and the optimal offset is
obtained by using the statistical optimization algorithm of multiple offsets proposed in this
paper. Finally, the above method is used for the continuous stitching of the unfolded image
sequence to obtain a complete borehole panorama.
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Figure 1. Flow chart of the video image stitching system.

3. Methodology

The stitching process of borehole unfolded image sequence mainly includes feature
matching and image stitching [22,23]. The essence of feature matching is to obtain eigen-
vector descriptors through using the feature point detection algorithm, then, we use the
extracted parameters for rough matching and fine matching to obtain the transformation
matrix between the images. The image stitching involves splicing two images with over-
lapping parts into a large-scale complete image based on the transformation matrix [24].

3.1. Rough Matching of Borehole Unfolded Image
3.1.1. SURF Feature Point Extraction

SURE, which is a popular algorithm that has been used for image registration in recent
years, is a fast and robust local feature point description algorithm. It is mainly used in the
field of machine vision, such as object detection, target recognition and 3D reconstruction
and so on [25], which is and it can be divided into the following five stages.

(1) Generate an integral image

The size of the integral image Py (y, ) is consistent with that of the source image P (x,
y). We draw the coordinate axis, with the lower left corner of the image being the origin,
and sum the pixel values of horizontal and vertical coordinates from the (0, 0) point to the
(x, y) point as the integral value at (x, v), as shown below:

i<xj<y
Py ey = 2 2 P(xy) ¥
i<0i=0

(2) Build a scale space pyramid

The Gaussian kernel is replaced by the box filter with the SURF algorithm, and then,
the scale space is formed by convolution with the expanded box filter template and the
original image. We can change the size of the box filter template to obtain the corresponding
scale image.

(3) Locate the key extreme points

After building the scale space, all of the pixels in the response image are calculated by
the determinant of Hessian and compared with 26 pixels in the 3D neighborhood of the
current image. If the value of the point is a maximum, then it is retained as a feature point,
as shown in Equation (2):

det(Happrox) = DxxDyy — (0.9ny)2 ()

where, Dxy, Dy, and Dyy are the second derivative values of the corresponding direction.
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(4) Direction matching

The feature point is the centre of the circle which is used to draw a circular region with
a diameter of 6 s; s is the scale. In this area, we count the sum of the Haar wavelet features
of all of the feature points in the 60-degree sector area and rotate them around the current
point in steps of 15 degrees. The maximum area of the module length is the current point
direction.

(5) Feature description

A square neighbourhood is constructed around the feature points with a side length
of 20 s, and the neighborhood direction is the main direction in the fourth step. To form
the SURF descriptors, the neighborhood is equally divided into a 4 x 4 sub-region to
count the Haar wavelet characteristics at horizontal and vertical directions in all of the

sub-regions [26].
F= () dx,) dy,) |dx| ) |dy]|) ®)

3.1.2. Feature Point Matching Based on the Euclidean Distance

The Euclidean distance is calculated for all of the feature points of the pre-matched
image. The smaller the value is, the higher the matching degree of corresponding feature
points is. In addition, the SURF algorithm counts the positive and negative relationships
of the Hessian matrix trace of the current feature point. If the signs of the trace value of
the two feature points are opposite to one another, this feature point pair will be excluded.
The basis of the judgement basis of the feature point pairs that is based on the Euclidean
distance is as follows [27]:

n 2

Y (Dy — Dy)?

k=1

D(i,j) = 4)

where D (i, j) is the Euclidean distance of the eigenvector between point i in the matching
image and point j in the template image. N represents the dimension of the characteristic
vector, Dy is the k-th characteristic component of point i, and D is the k-th characteristic
component of point j.

3.1.3. Homography Matrix Extraction Based on MASC Algorithm

The MSAC (M-estimate sample consensus) algorithm is an improved algorithm based
on RANSAC (random sample consensus) [28,29]. The specific implementation steps are as
follows:

(1) According to the properties of the homography matrix, it is necessary to randomly
select 4 pairs of matching points based on the Euclidean distance from the rough matching
point pairs and calculate the current homography matrix by using the reverse inference
method, as follows:

x! hin hip his| [x
s|y'| = |hoar hap has| |y ®)
1 h31 hzy haz] [1

where s is the scale, (x, ) is the feature point position of the image to be fused, and (x’, y’)
is the feature point position of the source image.

(2) We can use the homography matrix to calculate the symmetrical transformation
error for the rest of the matching point pairs [30,31]. The points, whose values are less than
the threshold value, are considered as interior points, as follows:

/

X; Xi
yi| —H|yi||| <t 6)
1 1
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(3) After counting the number of interior points, if the number of interior points
corresponding to the current transmission projection matrix is the largest one, the model is
considered to be the optimal model [32].

Compared with the RANSAC algorithm, the MSAC algorithm overcomes the short-
comings of the RANSAC algorithm, which is sensitive to the threshold value, to ensure
the stability of the algorithm, and the MSAC algorithm can reflect not only the number of
model data, but also the degree of data fitting.

3.2. Local Homography Matrix Offset Optimization Algorithm (LHOO)

As it is the most important parameter in the process of video image mosaic, the
accuracy of the offset of the unfolded image sequence directly affects the precision of the
generated borehole panorama. In this paper, the features of the geological borehole video
image are relatively simple, and the there is a large amount of interference in the accurate
matching of the feature points. In addition, due to the particularity over the course of
taking the picture, the vertical offset value of image sequence is much higher than the
horizontal offset. In view of the above characteristics, this paper proposes a new LHOO
algorithm to obtain the optimal vertical offset to ensure the accuracy of the video image
stitching process. Its flowchart is shown in Figure 2, and the implementation steps are as
follows:

(1) Obtain multiple homography matrices

Frame 1 Frame 2
SURF
MASAC 4
- M=—xB
v f

P'[l_k] = {hlls’hlzsahlssa"'hllgk}

'

0\10 (i)

Figure 2. LHOO algorithm flowchart.

The current image group is iterated repeatedly based on the SURF and MSAC algo-
rithms to obtain / homography matrices.

hi1 hip his hin hip hiz l hi1 hip his
W= |hy hyp hy|,h®=|hy hp hs|, - h=|hy ho hy (7)
h31 h3y  hs3 h31 h3y  hs3 h31 h3y  hs3

(2) Evaluate the threshold of vertical offset

According to the video frame rate and the camera displacement rate, we roughly
calculate the number of inter frame strokes of the shooting platform, and it is multiplied by
the offset coefficient to obtain the vertical offset threshold:

x B 8)

—
X
-
R NN
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where M is the threshold of vertical offset, S is the platform displacement in ¢ seconds, f is
the video capture frame rate, v is the camera displacement rate, and the offset coefficient B
is estimated from the lens focal length, image proportion and camera specifications, etc.
Based on the speed of the camera equipment traveling in the borehole and a series of
experiments testing, we finally determined the value of M as 15.

(3) Build the array that is to be filtered

We extract [ local vertical offsets /113, corresponding to multiple homography matrices
in the first step to obtain the vertical offset array. If the current offset /113 is less than M,
the value will be rounded and stored in the new array P’[I — k]. If k3 is greater than M,
the current homography matrix will be removed. The final array P’ that is to be filtered is
composed of a one-dimensional array, whose size is | — k.

Pl =K = {nly s, s H5F ©)

where k is the number of homography matrices which has finally been eliminated.
(4) Extract the optimal vertical offset data set

We calculate the Pearson mode (PM) from P’ as the initial cluster center pu and obtain
the Euclidean distance from all of the offsets in P’ to the y in the proper order (|hi13 —ul),
and then, we select the offset corresponding to the minimum value as the optimal vertical
offset, which is expressed as:

Ouoli) = Mz’n{}hg3 - u‘} - Min{

13— [e=3(e— My)]|} (10)

where € and M, are the mean and median values of the array, respectively.

After cycling the above steps frame by frame, the data set of stitching parameters is
generated, which is composed of the optimal vertical offsets (Oy,) between the adjacent
borehole unfolded images, i.e., {Oyo(1), Ovo(2), . .. , Ow(N)}.

To sum up, the pseudo-code of the image matching based on the LHOO is summarized
in Algorithm 1.

Algorithm 1. Pseudo-code: LHOO algorithm

Input: Image sequence to be stitched {F(1), F(2), F(3), ..., F(N)}

Output: Data set of stitching parameters {Oy(1), Opo(2), . .. , Opo(N)}

1.  Obtain: | homography matrices of the current image group F(1) and F(2) based on the SURF and MSAC
1 hz o his hi ha his hip hip hig

2. hl'=|hy hyp hp|, 2= |hn hp |, = |k hym o

h31  hzp  h3s har  hzp  has h31 hzp  has

3 Set: Threshold of vertical offset (M)

4 Compute: M = % x B

5. Build the array P’[I — k]

6. if hli3 < M, the value will be rounded and stored in P’
ine _ -k

7. Obtain: P'll k| = {hly i3y, 3y - hi5H}

8 Compute: Optimal vertical offset

9. fori=1tol—k

10, Opp(i) = Min{

11. end for

12.  Obtain: Oy (i)

13. fori=1toN

14.  Cycle 1 to 12 steps frame by frame

15. end for
16.  Obtain: Data set of stitching parameters {Oyo(1), Ouo(2), - .. , Ono(N)}

hiy — u’} = Min{’hé3 - [S—3(€—Md”‘}




Sensors 2023, 23, 632

7 of 13

3.3. Generate the Cylindrical Borehole Panorama

After using the LHOO algorithm proposed in this paper to obtain the data set ({Oyo(1),
Ou0(2), Ouo(3), - .. , Opo(N)}) which is composed of the optimal vertical offset between the
video frame sequences, we use the borehole unfolded image sequence ({F(1), F(2), E(3), ...,
F(N)}) to construct a cylindrical borehole panorama. According to the optimal vertical offset
Ouol(i), the two adjacent unfolded images are stitched one by one to generate a complete
panoramic image, and the steps are as follows:

Firstly, the first image F(1) and the second image F(2) are spliced into one image F(1-2)
by using the optimal vertical offset Oyo(1). Then, the images F(1-2) and F(3) are stitched into
F(1-2-3) by using the optimal vertical offset Oy,(2). Finally, after cycling the above steps, we
stitch all of the images frame by frame together to complete the generation of a cylindrical
borehole panorama. A diagram is of this is shown in Figure 3.

F(1)
FQ2)

F(1-2)
F(3)

=

F(AB--N)

P\/—/

F(N)

Figure 3. Generation process of cylindrical panorama.

4. Experimental Results and Analysis

To verify the effectiveness of the proposed method, image stitching experiments were
conducted on a natural scene image and a geological borehole image, respectively. The
experimental equipment and conditions used in this paper were as follows: the CPU was
the Intel Core (TM) i5-11300H, the highest main frequency was 3.10 GHz, the memory
was 16 GB, the operating system was Windows 11 and the development environment was
MATLAB R2020b. At this stage, the feature point extraction, image matching and stitching
effect are analyzed to demonstrate the effectiveness of the proposed algorithm.

4.1. Analysis of Feature Point Extraction

In this section, we compare the feature point extraction results of the SURF algo-
rithm using the natural scene image and the geological borehole image and perform the
comparative analysis of the SIFT, Harris and ORB algorithms for the geological borehole
image.

Figure 4a,c shows two scene images with overlapping areas taken using a hand-held
camera under natural light, both of which contain 677 x 449 pixels. The SURF feature
points of the two images are shown in Figure 4b,d, and correspondingly, 103 feature points
and 139 feature points are extracted. It can be seen that these feature points are distributed
more among the structure and texture corners of the image.
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Figure 4. Feature points extraction results of natural images. (a) Nature image 1, (b) SURF feature
points of natural image 1, (c) nature image 2, (d) and SURF feature points of natural image 2.

Figure 5a,b presents the continuous two frame borehole unfolded images generated
by the geological borehole video, which were taken using the APBCS, with the size of
512 x 64 pixels. The results obtained by extracting the feature points using the SIFT, Harris,
ORB, and SUREF algorithms are shown in Figure 5c through Figure 5j, respectively. The
number of feature points extracted by the different algorithms and their running time for
the two images are shown in Table 1. It is clear that the SIFT algorithm extracted the largest
number of feature points, but the algorithm took longer to run. The number of feature
points and the running time of the SURF algorithm selected in this paper can meet the
stitching requirement of the borehole video.

(i) SURF 1 (j) SURF 2

Figure 5. Feature points extraction results of 2 consecutive borehole unfolded images. (a) Borehole
image 1 and (b) borehole image 2. (c,e,g,i) contain the SIFT, ORB Harris, SURF feature points of
borehole image 1, and (d,f,h,j) contain the SIFT, ORB Harris, SURF feature points of borehole image 2.



Sensors 2023, 23, 632

90f13

Table 1. Number of feature points and running time.

Algorithm Nature Image Borehole Unfolded Image
Left Image  Right Image Time (ms) Framel  Frame2  Time (ms)

SIFT 468 385 1020 313 279 410

Harris 363 433 150 94 109 90

SURF 103 139 71 16 18 60

ORB 2541 2469 58 192 183 10

It can be seen from the comparison with the natural scene image that the geological
borehole image has a single color, minimal texture change and relatively few feature points
are extracted. Based on the same algorithm, the number of feature points extracted from a
single geological borehole image is reduced by about more than 100 compared with that
achieved with the natural scene image, so it will be difficult to use this to effectively match
the feature points and achieve high stitching accuracy. In general, the texture, color and
local features of the natural images are much richer than those of the special geological
borehole images. Therefore, the traditional algorithm meets the stitching demand between
the natural images, but for the stitching of borehole images, it encountered problems of
there being a few extracted feature points, a large matching rate error and a low stitching

quality.

4.2. Analysis of Image Matching

In order to verify the matching accuracy of the proposed algorithm, under the condi-
tion that the parameters are consistent, the image matching accuracy analysis experiments
are conducted on the natural scene image and the geological borehole images, respectively.

Figure 6a shows the matching of feature points for Figure 4b,d after using the SURF
and MASC algorithms. Figure 6b shows the stitching effect of the natural scene image by
using the homography matrix, which was calculated using the matching pairs. The feature
point matching of the SIFT, Harris and ORB algorithms and the algorithm in this paper for
the two borehole images are shown in Figure 6 (c, d, e and {, respectively).

Figure 6. Matching effect of two images. (a) Nature image matching result; (b) nature image stitching
result. (c—f) contain the borehole image matching results of SIFT, Harris, ORB and SURF algorithms,
respectively.
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In order to verify the performance of the SURF algorithm selected in this paper, based
on the same experimental parameters, 10 matching tests were carried out on the same
group of two consecutive rectangular unfolded images, which are shown in Table 2. In this
test, the horizontal offset (H,) and vertical offset (V) of the two images and the number of
feature point pairs (N,) were counted, and the coordinate values of five feature point pairs
on the two images are shown. It can be concluded that the data of the four matching tests
are identical, the number of accurate matchings is seven and the mismatch rate is 30%. The
optimal value of the vertical offset can be three, and the horizontal offset is approximately
0. For the above experiments, we also compare the 10 matching tests of the SIFT, ORB
and Harris algorithms on the same group of unfolded images and obtain the matching
accuracy (correct number/total number of tests), as shown in Figure 7. The results show
that compared with the SIFT, Harris, ORB and SURF algorithms, the matching accuracy of
our algorithm is improved by about 20%, 60%, 50% and 30%, respectively, thus ensuring
the accuracy of the video stitching process.

Table 2. Statistical results of match test.

N Vo H, Ny Feature Point 1  Feature Point2  Feature Point3 Feature Point4 Feature Point 5
1 3.1 0.4 10 (297,18) (298,24) (52,20) (54,18) (102,26) (103,24) (143,42) (144,41) (117,44) (119,43)
2 2.2 2.2 9 (358,19) (357,16) (13,23) (31,21) (102,26) (103,24) (124,34) (125,28) (370,41) (369,39)
3 3.1 0.3 7 (358,19) (357,16) (52,20) (54,18) (102,26) (103,24) (143,42) (144,41) (117/44) (119,43)
4 3.0 0.6 10 (297,18) (298,24) (52,20) (54,18) (102,26) (103,24) (143,42) (144,41) (117,44) (119,43)
5 1.8 2.6 8 (12,18) (12,16) (13,23) (31,21) (498,29) (498,27) (124,34) (125,28) (143,42) (144,41)
6 2.8 0.2 9 (297,18) (298,24) (358,19) (357,16) (52,20) (54,18) (102,26) (103,24) (143,42) (144,41)
7 3.3 0.4 10 (297,18) (298,24) (52,20) (54,18) (102,26) (103,24) (143,42) (144,41) (117,44) (119,43)
8 2.6 0.3 9 (297,18) (298,24) (358,19) (357,16) (52,20) (54,18) (102,26) (103,24) (143,42) (144,41)
9 2.3 1.8 7 (12,18) (12,16) (13,23) (31,21) (102,26) (103,24) (124,34) (125,28) (117,44) (119,43)
10 3.0 0.6 10 (297,18) (298,24) (52,20) (54,18) (102,26) (103,24) (143,42) (144,41) (117,44) (119,43)

100%
80%

Z50%

[

-

540%

Q

(o]

<20% I
OUO

SIFT Harris ORB SURF LHOO
Algorithm

Figure 7. Matching accuracy of different algorithms.

To verify the accuracy of the LHOO algorithm for extracting the optimal vertical
offset from different types of borehole unfolded images, five groups of unfolded images
at different positions are selected for the ten vertical offset extraction tests. The statistical
results are shown in Figure 8. It can be seen that the vertical offset will fluctuate up and
down close to the optimal value at each time. The vertical offset value extracted from
the second group belongs to the correct cluster point value, and the other four groups
contain from two to four elimination points. After using the proposed LHOO algorithm
proposed in this paper, the optimal vertical offset can be obtained accurately, which verifies
the effectiveness of our algorithm.
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Figure 8. Statistics result of vertical offset.

4.3. Video Frame Stitching Effect

In order to verify the effectiveness of the video image stitching method proposed in
this paper, in this stage, we conduct a real-time stitching experiment on 225 consecutive
frames from the borehole unfolded images.

Figure 9 shows 10 samples of unfolded images at different frame bits selected from the
borehole video sequence acquired by using the APBCS. We use the proposed LHOO algo-
rithm to match and stitch 225 consecutive frames of borehole unfolded images, and finally,
these images are fused into a complete borehole panorama, as shown in Figure 10. The
average stitching time of each frame was 100 ms, which basically meets the requirements
of the real-time system.

Figure 9. Selected 10 frame unfolded images from (a—j) for frames 1, 21, 43, 65, 85, 106, 127, 148, 169
and 210, respectively.

Figure 10. Panoramic view of drilling holes.

Our method is completely suitable for use on a geological borehole video that was
obtained in a special environment, and it solves the problem of matching errors in low
resolution images. The borehole panorama has a good visual effect, which also verifies that
the stitching system can be applied to the actual geological drilling work environment.
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The generation of the panoramic borehole image allows for us to perform a quantitative
analysis of the direction, inclination angle, width and other borehole information of the
structural surfaces, providing important reference values for intelligent image analysis
in the geological drilling field, thus, improving the application potential of the forward-
looking borehole camera system and providing important theoretical and application
values.

5. Conclusions

In this paper, we propose an effective image sequence stitching method for a geological
borehole video. After obtaining the homography matrix based on the SURF and MSAC
algorithms, the LHOO algorithm is put forward to obtain the optimal vertical offset of two
consecutive borehole images. Subsequently, our method is used for stitching the borehole
image sequence to obtain a complete borehole panorama. The panorama obtained by the
proposed method can clearly reflect the texture information of the borehole’s inner wall,
and it meets the engineering visualization requirements. However, the method is a multiple
offset statistical optimization type after obtaining the vertical offset, so it will increase the
complexity of the entire algorithm, which will be inapplicable for some video real-time
splicing systems which require a long running time.

For future works, the corresponding research will be conducted in the process of
feature point extraction and matching, and the statistical optimization method used in this
paper will be further improved to build a more rapid and accurate method to stitch the
geological borehole video sequence. In addition, due to the image changes between the
video frames, the stitching process will produce stitching seams. We will study how to
effectively eliminate the stitching seams and further improve the stitching quality of the
panorama.
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