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Abstract: Infectious diseases such as the COVID-19 pandemic have necessitated preventive measures
against the spread of indoor infections. There has been increasing interest in indoor air quality
(IAQ) management. Air quality can be managed simply by alleviating the source of infection or
pollution, but the person within a space can be the source of infection or pollution, thus necessitating
an estimation of the exact number of people occupying the space. Generally, management plans
for mitigating the spread of infections and maintaining the IAQ, such as ventilation, are based on
the number of people occupying the space. In this study, carbon dioxide (CO2)-based machine
learning was used to estimate the number of people occupying a space. For machine learning, the
CO2 concentration, ventilation system operation status, and indoor–outdoor and indoor–corridor
differential pressure data were used. In the random forest (RF) and artificial neural network (ANN)
models, where the CO2 concentration and ventilation system operation modes were input, the
accuracy was highest at 0.9102 and 0.9180, respectively. When the CO2 concentration and differential
pressure data were included, the accuracy was lowest at 0.8916 and 0.8936, respectively. Future
differential pressure data will be associated with the change in the CO2 concentration to increase the
accuracy of occupancy estimation.

Keywords: internet of things sensor; differential pressure; carbon dioxide; occupancy; ventilation
system; machine learning

1. Introduction

As people spend a significant amount of time indoors, it is important to manage
indoor air quality (IAQ). Numerous research studies on the management of airborne
pollutants such as carbon dioxide (CO2), particulate matter (PM), and volatile organic
compounds (VOCs) are in progress [1]. In addition, efforts to prevent the spread of indoor
infectious diseases have been made since the COVID-19 pandemic and are ongoing [2]. IAQ
management aims to identify and enforce an appropriate standard value for every country.
Typical management measures include the installation of ventilation systems or the use of
air purifiers for the active ventilation of indoor spaces. Recently, ultraviolet sterilization has
been adopted to reduce indoor pollutant concentrations, facilitating a response based on
various physical–chemical and biological measures. However, indiscriminate or excessive
responses can cause energy wastage [3,4]. Buildings account for approximately 30% of the
total energy consumption. Estimating the number of occupants is essential for providing a
suitable indoor environment and reducing the energy consumption [5–10].

Energy wastage needs to be mitigated and various relevant environmental factors
efficiently managed. To identify these environmental factors, the indoor environment can be
evaluated using suitable measurement equipment. However, IAQ measurement equipment
is expensive and its utilization has numerous restrictions, such as size. In this study, a
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relatively inexpensive and small internet of Things (IoT) sensor that measures indoor
air quality and differential pressure was used. However, these sensors are a follow-up
measure for circumstances in the indoor environment that should be predicted, mitigated,
and managed. In addition, unspecified environmental factors such as leakage and the
accessibility for people complicate the real-time management of air quality. Considering
that this cannot be seen as a steady state in terms of engineering, a method of estimating
the IAQ as a preliminary prediction through machine learning is required. Estimation
through machine learning can facilitate IAQ management by identifying indoor pollutants
and contribute to energy saving by predicting the number of occupants.

This study aims to predict the number of people by using the differential pressure
data and data from the ventilation system operation modes based on CO2 concentration,
through data acquisition and machine learning in a living-lab using IoT sensors. Differential
pressure is an indicator of air flow between rooms and pollutants, and air movement
between spaces. This study identified the effect of indoor–outdoor and indoor–corridor
differential pressure data on the prediction of occupants using CO2-based machine learning
and the ventilation system operation. In general, environmental factors such as temperature
and humidity are used for occupancy estimation. In order to accurately estimate the number
of occupants, the differential pressure between spaces considering the entry and exit of
people was used to improve accuracy. In addition, in the previous research on occupancy
estimation, the presence or absence of the ventilation system in most spaces is different,
but it is not reflected in the machine learning for occupancy estimation. Therefore, in this
study, it was confirmed that variables such as the differential pressure and the ventilation
system operation can affect occupant estimation. Furthermore, the present study reflects
the influence of the ventilation system operation; therefore, providing a reference for IAQ
management and infection prevention measures according to the estimated occupancy. An
appropriate and efficient IAQ management plan for the target space can be based on the
predicted number of occupants.

2. Literature Review

Various research studies such as Table 1 have estimated the number of occupants based
on CO2 concentration. Certain studies estimate the number of occupants by measuring
noise, illumination, lighting energy load, and Wi-Fi connection information among other
factors from the environmental data on CO2 concentration and the indoor temperature and
humidity (Table 1).

Table 1. Previous research on the CO2 concentration based on the occupancy estimation.

Input Data ML Model Accuracy Factors

[5] CO2, temperature, humidity, pressure ELM Accuracy

[6] CO2, temperature, humidity, pressure ELM, SVM, ANN, LDA,
kNN, CART

Accuracy
NRMSE

[7] CO2, temperature, humidity GB, kNN, LDA, RF

Accuracy
RMSE

NRMSE
CV

[8] CO2 ELM RMSE

[9]
CO2, 15 min CO2 concentration mean, 15
min CO2 concentration mean variation,
indoor-outdoor CO2 concentration ratio

CART, HMM RMSE
Accuracy

[10] CO2, CO2 variation, 5 min CO2
concentration mean SVM, ANN, PEM RMSE

Fb

[11] CO2
GCForest, SVM, CART,

IHMM

EA
MAE
DA

[12] CO2, temperature, humidity, light, LDA, CART, RF, GBM Accuracy
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Table 1. Cont.

Input Data ML Model Accuracy Factors

[13] CO2, temperature, light, PIR, sound LDA, QDA, SVM, RF Accuracy
f1 score

[14] CO2, temperature, humidity, pressure,
TVOC, sound, window state FNN Accuracy

[15] CO2, light energy consumption,
temperature, humidity LDA, RF, CART Accuracy

[16] CO2, temperature, humidity, Wi-Fi probe kNN, SVM, ANN
MAE
RMSE
MAPE

[17] CO2, Wi-Fi probe, PIR, energy consumption ANN R2

NRMSE

[18] environmental sensing, camera, Wi-Fi probe ANN MAE
f1 score

[19] - LSTM, RNN
MAPE
RMSE
MAE

[20] energy consumption RF, SVM, kNN, ANN, GB Accuracy
Precision

[21] CO2 GCForest, HMM EA
DA

[22] CO2, temperature, humidity, light

Navie Bayes
Classification via

Regression
Decision Table

RF
Simple Logistic Multi Class

Classifier

-

[23] Indoor and outdoor environmental sensing,
Wi-Fi probe, Energy consumption

DNN, LSTM, Bi-LSTM,
GRU, Bi-GRU -

[24] CO2, light sensing - -

[25] CO2, trend value, seasonal value, Irregular
value - Accuracy

[26] CO2, temperature, humidity, dew point SVM, AdB, RF, GB, LR,
MLP

RMSE
MAE

MAPE
R2

[27] CO2, temperature, humidity, air pressure CDBLSTM Accuracy
NRMSE

Masood et al. [5] estimated the CO2 concentration, indoor temperature, humidity,
and absolute pressure using the extreme learning machine (ELM) model. Chen et al. [6],
input the CO2 concentration, indoor temperature, humidity, and absolute pressure data
into various models such as ELM, support vector machine (SVM), artificial neural network
(ANN), linear discriminant analysis (LDA), K-nearest neighbors (KNN), and classification
and regression tree (CART), and compared the model accuracies. The two studies above
categorized occupancy into low (0–5), medium (6–10), and high (11–15) density depending
on the number of occupants. Brennan et al. [7] determined the CO2 concentration, tem-
perature, and humidity based on 0 to 4 occupants using the gradient boosting (GB), KNN,
LDA, and random forest (RF) models. Data were measured using temperature, humidity,
and CO2 sensors based on a raspberry pie board. Owing to the lack of data, this study
compared accuracy levels by categorizing occupancy into ranges before determining the
exact number of occupants.

According to Jiang et al. [8], the CO2 concentration may spike momentarily depending
on the measurement noise, the irregular indoor air flow, and the occupants who irregularly
approached the sensor; therefore, the CO2 concentration data was smoothly transformed
and used. Ryu et al. [9] estimated the number of occupants by determining the CO2
concentration and average CO2 concentration for 15 min, the average change in CO2
concentration within 15 min, and the ratio of indoor to outdoor CO2 concentration using
CART. As the CO2 concentration continuously changed owing to the indoor air flow and
location of the occupant and the sensor, among other factors, the value obtained by reducing
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the instantaneous change was input based on the concentration average within 15 min.
Zuraimi et al. [10] reduced the instantaneous spike effect of CO2 using a 5-min average
concentration. Zhou et al. [11] estimated the concentration of CO2 using the GCForest,
SVM, CART, and iHMM models. Noise was removed from the raw graph of the CO2
concentration through analysis. Before this study was conducted, the amount of change in
the CO2 concentration and the CO2 concentration itself were initially designated as input
variables. At that point, the number of occupants had not been accurately determined, and
owing to the noise of the change in the concentration of CO2, there was one case where
there was no occupant despite a high concentration of CO2.

Candanedo et al. [12] estimated the number of occupants using the LDA, CART, RF,
and gradient boosted model (GBM) for the CO2 concentration, illumination, temperature,
and humidity. The accuracy was compared using various data combinations based on
the different models. Singh et al. [13] estimated the occupancy using data from the CO2
concentration, temperature, lighting energy consumption, passive infrared (PIR), and noise
sensors and based on the LDA, QDA, SVM, and RF models. Adeogun et al. [14] estimated
the CO2 concentration, temperature, humidity, pressure, total VOCs, and the sound and
window state using the FNN model. The data collected in two rooms were trained using
different models, and the accuracy was cross-validated by applying the learned models to
different rooms. Elkhoukhi et al. [15] estimated the number of occupants using the LDA,
RF, and CART models to analyze the CO2 concentration, lighting energy consumption,
temperature, and humidity. The energy consumption was a suitable input variable for
the occupancy estimation; however, preliminary preparation was needed to measure the
energy consumption of the room. This study excluded energy consumption as a variable
during the estimation of occupants in various rooms with mechanical ventilation, but
aimed to later measure energy consumption to compare accuracy levels and integrate
energy consumption as an input variable using smart plugs.

Wang et al. [16] estimated the number of occupants using the CO2 concentration,
temperature, humidity, and Wi-Fi connection data. In a laboratory used by up to 25 people,
the number of occupants was modeled at 5-min intervals during working hours (08:30–
19:00). Hobson et al. [17] estimated the number of occupants using the ANN model for the
CO2 concentration, Wi-Fi connection, PIR, and energy consumption analysis. To prevent
the artificial inflation of the prediction accuracy of the model, the measured data obtained
at the time of occupancy (between 06:00–22:00) was considered. This study estimated
the number of occupants using various combinations of input variables. The accuracy of
occupant estimation increased drastically when Wi-Fi connection information was added.
Wang et al. [18] estimated the number of occupants using the ANN model to analyze
environmental data and Wi-Fi access information. Accuracy according to the combination
of the different sensor data was compared. Increasing the input factor did not always
increase the accuracy. However, the Wi-Fi-access information was used with caution owing
to privacy concerns. In addition, the exact location of the room could not be determined by
connecting to the Wi-Fi around the living-lab, which presented a challenge. Upon solving
this problem, our future study will consider the Wi-Fi information as one of the input
variables and will compare the resulting effect of this inclusion on the accuracy of the
estimations.

The occupancy estimation can be applied to various fields targeting buildings. The
number of occupants acts as an important factor in a building performance simulation
evaluation. Tekler et al. [28] proposed several techniques to accurately identify the dynamic
movement patterns of occupants indoors. Among them, BEL (Bluetooth Low Energy,
Bengaluru, India) technology using a mobile phone was used to confirm the location of
occupants and a method for estimating the number of occupants using machine learning
was presented. In addition, the occupant prediction can save energy consumption by
reducing unnecessary HVAC operation in the space. Dong et al. [29] conducted a study
on occupancy estimation techniques for the efficient operation of an HVAC in a building.
Tekler et al. [30] proposed a method using an IoT-based smart plug for efficient energy
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management through the occupancy estimation, and facilitated energy reduction and
occupancy satisfaction in the field for 5 months. Occupancy prediction data can be used
in hospital facilities(emergency). Whitt et al. [31] developed an aggregation probability
model of an emergency department (ED) through ongoing research. This model is used
during the patient arrival process in the emergency room through a real-time prediction
considering the patient’s arrival and departure time. Occupancy estimation data may
be used in hospital facilities for different purposes. Littig et al. [32] conducted a study
estimating the number of occupants in medical facilities. By estimating the number of
occupants entering and exiting the hospital and the number of occupants at the hospital,
various measures to cope with different concerns, such as the placement of medical staff,
management of beds and the use of ambulances, were proposed.

Most of the studies estimating the number of occupants based on the CO2 did not
include a ventilation system in the chamber for data acquisition nor add related information
as input variables, even when the ventilation system was activated. Considering that
buildings use heating, ventilation, and air conditioning for mechanical ventilation, the
change in the indoor CO2 concentration according to the operation of the ventilation
system varies. In addition, in facilities such as negative-pressure isolation wards, the
pressure difference between the rooms is set manually to control the airflow and prevent
the infectious bacteria from leaking to the outside. Depending on the airtightness of
the room and the pressure difference between the indoor and outdoor environments, air
pollutants can be introduced by leakage. Based on this information, the change in the indoor
CO2 concentration may vary according to the number of occupants, the ventilation system
operation, and the differential pressure. Therefore, we intend to estimate the number
of occupants based on the CO2 concentration through machine learning by reflecting
various indoor environmental factors, the ventilation system operation, and the pressure
difference between the room and the surrounding space. This is intended to facilitate the
comparison and determination of possible contributions of the ventilation system operation,
and the pressure difference between the room and surrounding space, to the accuracy of
the occupant estimation based on machine learning. The entire process of the study is
shown in Figure 1.
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Figure 1. An overview of the process of the proposed study.

3. Materials and Methods
3.1. The Internet of Things Environmental Sensors

The integrated sensor modules of the IoT sensor were PM2.5, PM10, CO2, temperature,
humidity, and VOCs. The data were set to be stored in ThingSpeak (MathWorks, Natick,
MA, USA). The differential pressure sensor was D6F-PH0505AD3, and the environmental
sensor AM1008W module. The AM1008W module used the CO2 sensor and PM sensor. The
Si7021-A20 sensor was used for temperature and humidity. The SP3S-AQ2-0 was used for
VOCs. A TTGO-T-Display ESP32 board was used as a micro control unit (MCU). In addition,
the sensor was configured to store data as a sub whenever there was a communication
error using the micro-SD module. Figure 2 shows the schematic of the sensor configuration.
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The sensor specifications are shown in Table 2. The accuracy of the differential pressure
sensors was compared using a DG-700 (The Energy Conservatory-TEC, Minneapolis, MI,
USA). The CO2 sensor calibration was performed at the same time from the outside for
both the indoor and corridor sensors.
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Table 2. The Internet of Things sensor specification.
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3.2. Data Mining and Analysis

The volume of the living-lab shown in Figure 3 was 264 m3(14.8 × 6.6 × 2.7) and an
air purifier AX90T7020WFD (SAMSUNG, Seoul, Korea) with an area capacity of 90 m3 was
placed at the entrance and window. In addition, a heat recovery ventilation system was
installed on the ceiling. The heat recovery HRD-EP250IBN (HIMPEL, Hwaseong-si, Korea)
was applied and the air volume of this model was 230 CMH in a slight wind, 250 CMH in a
moderate wind, and 270 CMH in a strong wind. The differential pressure and IAQ sensors
were installed on the entance and window, respectively, to collect data. The maximum
number of occupants using the living-lab was 17 during the measurement period. The
machine learning model used a random forest (RF) and an artificial neural network (ANN).
Data were acquired from 13 September to 22 November. Indoor environmental factors
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such as the CO2, the PM, the indoor–outdoor and indoor–corridor differential pressure,
the number of occupants, the ventilation system, and the air purifier operating mode
were measured. The data used for learning were collected for 55 days—13 September to
6 November—and data that was not collected due to Internet errors was excluded. Low,
R et al [33] and Stekhoven et al [34] were used various methods of interpolating missing
data. However, in this paper, among the data from 13 September to 6 November used
for learning, from 11:52 on 16 September to 13:57 on 21 September, the input values of
differential pressure and CO2 concentration data were not measured due to an internet
connection error. It was possible to manually enter the ventilation system operation mode
and the number of occupants, but the most important CO2 concentration, the average CO2
concentration, and the amount of change in the average CO2 concentration cannot be used.
In addition, data that were collected from 11 pm to 8 am and over the weekends were
disregarded because the living-lab was not in use at the time.
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Figure 3. The sensor locations in the living-lab.

The CO2 concentration, the mean value of the CO2 concentration for 15 min (currently
and at 15 min previously), the amount of change in the mean value of the CO2 concen-
tration for 15 min, the indoor–outdoor and indoor–corridor differential pressure, and the
ventilation system operation mode were set as the input values.

The measured CO2 concentration was significantly noisy; however, the noise could be
reduced by using the mean value of the CO2 concentration for 15 min and the amount of
change in the mean value of the CO2 concentration for 15 min. The ventilator operation
mode was classified as 0 for being turned off, 1 for weak, 2 for moderate, and 3 for strong.
In the operation mode of the ventilation system, the time when change occurred and the
operation mode were hand-written and later entered into the model. For the differential
pressure, data representing the 1-min mean value were used. For the occupancy data, the
time and number of occupants were hand-written whenever the living-lab was used for
classes, meetings, and seminars, for example. In addition, the accuracy was compared
using the data from 7 November to 22 November, which were not used for learning. The
data used for verification were disregarded because the accuracy would be excessively
high if data from 11 p.m. to 8 a.m. on weekends were considered.

The cases were largely categorized according to whether the ventilation system was
activated; consequently, the indoor–outdoor and indoor–corridor differential pressure, and
the CO2 concentration of the corridor were used for machine learning. Subsequently, the
accuracy was compared according to the operation mode data of the ventilation system
and differential pressure. The case included: CO2 concentration, the mean value of the
CO2 concentration within 15 min, and the amount of change in the mean value of the
CO2 concentration within 15 min. The case is shown in Table 3. The input values were
configured as shown in Table 3. The output value was the occupancy range and number of
occupants.
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Table 3. The cases of machine learning.

CO2
Concentration

(ppm)

Mean Value of
the CO2

Concentration
for 15 min

(ppm)

Amount of
Change in the
Mean Value of

the CO2
Concentration

for 15 min
(ppm)

Differential
Pressure

Indoor and
Corridor (Pa)

Differential
Pressure

Indoor and
Outdoor (Pa)

Corridor CO2
Concentra-
tion(ppm)

Ventilation
System State

(-)

Case1 O O O O O O O

Case2 O O O X X X O

Case3 O O O O O O X

Case4 O O O X X X X

The ventilation system operation mode was changed every Monday from 13 September
to 6 November, when learning data were acquired because the ventilation system in the
living-lab could not be controlled remotely. Moreover, data according to each ventilation
operation mode were acquired. When acquiring data for verification, the ventilation system
operation mode was arbitrarily set, and the data were obtained by manually entering the
setting.

3.3. The Comparison of the Accuracy Factor and Machine Learning

The machine learning model was configured using the ANN in the Python 3.9.13
version Tensorflow library and the Scikit-learn’s RF library. The input values were set
differently for each case, and the output values were set as occupancy range and number
of occupants. The ANN model constructed in this study was structured as follows. The
input layer set a node according to the number of input data, according to the case. In the
case of the hidden layer, the number of nodes was set at 20. The occupancy ranges were set
at 0 to 5, 6 to 10, 11 to 15, and 16 to 20. Of the total data used for machine learning (ANN
and RF), 70% was used for learning and 30% for a self-test to verify the learning model.

The ANN model using the Tensorflow library was composed of one input layer,
two hidden layers, and one output layer. The Rectified Linear Unit (ReLU) function, the
most commonly used activation function in most ANN models, was used as an activation
function of the input and hidden layer. The ReLU function outputs 0 if the input value is
less than 0, and outputs the input value as it is if the input value is greater than 0:

R(x) = max(0, x)

The Softmax function that is most commonly used in the multi-classification model
was used as the activation function of the output layer and the node was set to 1. The
Softmax function normalizes the output value between 0 and 1. For this function, the sum
of all output values is always 1:

σ(Z)i =
eZi

∑K
k=1 eZk

Adam was used as an optimizer and the loss function was set to a categorical cross
entropy. The metrics was set to accuracy.

In the case of the RF using the Scikit-learn’s library, a classifier was used. The maximum
depth was set to 10 to prevent the overfitting or underfitting of the accuracy differences in
the learning data, testing, and verification during the RF learning.

The actual and estimated number of occupants were compared using the Accuracy
and the root mean square error (RMSE). The RMSE was calculated based on the difference
between the actual values of N data and the estimated values of the model. The estimated
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value of occupants in the RMSE was obtained from the number of occupants, with a
maximum interval value of 17:

RMSE =

√√√√∑
(

Yreal − Ypredict

)2

N

The Accuracy compares the actual and model-estimated number of occupants by
dividing the intervals. The number of occupants is divided into four ranges: 0 to 5, 6 to 10,
11 to 15, and 16 to 20 to determine the range that includes the actual and estimated number
of occupants. It is calculated using the range of the actual number of occupants by N data
and the range of the estimated number of occupants:

Accuracy =
∑ True positive

N

4. Results
4.1. The Random Forest and Artificial Neural Network Train and Test Set

To derive an accurate output value from the decision tree model, data correlated with
the output value should be analyzed and added as an input value. Therefore, factors
that may affect the indoor CO2 concentration were identified to be the occupants, the
ventilation system, and the inflow into the room from the surrounding space. The possible
contribution of the differential pressure and CO2 concentration between the ventilation
system operation mode and the surrounding space to the increased accuracy of occupancy
prediction was examined. The Accuracy using the learning data from the RF and ANN as
based on data from 13 September to 6 November, was compared for each case using the
Accuracy and RMSE. The Accuracy divided the range according to the number of occupants
and compared the range of the actual and estimated number of occupants. The RMSE
used the actual and estimated numbers of occupants. Table 4 shows the results of the test
using 30% of the data after learning, at 70% of the model data. However, when comparing
the test accuracy by distinguishing 70% and 30% of the learning data, the accuracy can be
excessively heightened if 30% of the test data includes a lot of sit-in-free situations. This
necessitates the verification of accuracy using additional data not used for learning and
testing.

Table 4. Results of the random forest and artificial neural network self-test.

RF Accuracy RF RMSE ANN Accuracy ANN RMSE

Case1 0.9757 0.8178 0.9745 1.177

Case2 0.9635 0.9018 0.9674 1.184

Case3 0.9696 0.8705 0.9647 1.219

Case4 0.9502 0.9940 0.9720 1.332

4.2. The Random Forest and Artificial Neural Network Verification Set

To validate the trained model, the data set was divided into two parts. The Accuracy
and RMSE for each case were compared in each data set. Data were measured when the
ventilator was not operated from 7 November to 14 November. From 15 November to
22 November, the ventilation device was used arbitrarily. Depending on the date and
time, whether the ventilation system was turned off or whether it was operated with
a slight wind or a strong wind was measured. As the first data set, the data from 7
November to 14 November were used as one verification data set. As the second data set,
the period from 7 November to 22 November was used as a validation data set. Among
the data used for the accuracy verification, the CO2 concentration, the mean value of the
CO2 concentration within 15 min, the amount of change in the mean value of the CO2
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concentration within 15 min, the number of occupants, the indoor–outdoor differential
pressure, and the indoor–corridor differential pressure on 7 November, when the ventilation
system was not operated, are shown in Figure 4a. The data on the day when the ventilation
system was randomly operated, on 16 November, are shown in Figure 4b. The CO2
concentration graphs of Figure 3a,b show a difference in the maximum concentration of
CO2 depending on the ventilation system operation mode, and a difference in the overall
rate of decrease in the CO2 concentration after the occupants leave. The comparison
between the CO2 concentration change and the amount of change in the mean value of the
CO2 concentration for 15 min shows that the CO2 concentration change had significant
noise, but the amount of change in the mean value of the CO2 concentration for 15 min had
relatively little noise. Furthermore, the fine noise has been reduced in the graphs showing
the CO2 concentration and mean value of the CO2 concentration for 15 min.Sensors 2023, 23, x FOR PEER REVIEW 11 of 20 
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The indoor–corridor differential pressure was equalized when the door was open.
Figure 5 presents a graph comparing the indoor–corridor differential pressure and the
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number of occupants. On 16 November, the door was left open from 9:30 to 11:00 and
from 15:00 to 18:00 when the occupants were indoors. As shown in Figure 5, the pressure
difference between the room and corridor was equalized by opening the door while the
occupants were in the room. Moreover, fluctuations in the differential pressure were
confirmed when the door was closed. As the indoor environment and corridor were
maintained at an equal pressure in the afternoon of 7 November, the door was considered
to have been opened from 18:00 to 19:00 and used, and to have been closed and used in the
morning hours. As such, even in the presence of an occupant, the differential pressure is
measured in various ways depending on whether the door is open or not. Therefore, the
differential pressure data are considered to have caused an error in the occupant judgment
classification model. In future, by comparing the differential pressure data and the door
sensor data, we can plan to use them for the CO2 concentration-based occupant estimation
by considering the effect of the indoor CO2 concentration depending on whether the doors
and windows are open.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 20 
 

 

The indoor–corridor differential pressure was equalized when the door was open. 
Figure 5 presents a graph comparing the indoor–corridor differential pressure and the 
number of occupants. On 16 November, the door was left open from 9:30 to 11:00 and 
from 15:00 to 18:00 when the occupants were indoors. As shown in Figure 5, the pressure 
difference between the room and corridor was equalized by opening the door while the 
occupants were in the room. Moreover, fluctuations in the differential pressure were con-
firmed when the door was closed. As the indoor environment and corridor were main-
tained at an equal pressure in the afternoon of 7 November, the door was considered to 
have been opened from 18:00 to 19:00 and used, and to have been closed and used in the 
morning hours. As such, even in the presence of an occupant, the differential pressure is 
measured in various ways depending on whether the door is open or not. Therefore, the 
differential pressure data are considered to have caused an error in the occupant judgment 
classification model. In future, by comparing the differential pressure data and the door 
sensor data, we can plan to use them for the CO2 concentration-based occupant estimation 
by considering the effect of the indoor CO2 concentration depending on whether the doors 
and windows are open. 

11.07 11.16 

 
Figure 5. Checking the room–corridor differential pressure and occupancy data on 11/7 and 11/16. 

First, the data between 7 November and 14 November, when the ventilation system 
was not used, were compared with the actual value and the estimated occupant value 
output using the RF and ANN. The accuracy and RMSE of the RF are shown in Table 5. 
Both the Random Forest and ANN models, where the CO2 concentration, mean value of 
the CO2 concentration within 15 min, amount of change in the mean value of the CO2 
concentration within 15 min, and the ventilator operation mode were input, yielded the 
highest accuracy in Case 2. In the RF, the RMSE error yielded the lowest value at 1.462 in 
Case 2. In the ANN model, the lowest RMSE value was 1.544 in Case 4, where the CO₂ 
concentration, mean value of CO2 concentration within 15 min, and amount of change in 
the mean value of the CO2 concentration within 15 min were entered. In the model that 
learned the ventilation operation mode as an input value in a space where the mechanical 
ventilation was applied, both the RF and ANN models yielded the highest accuracy in 
Case 2, where the ventilation system operation mode was added as an input value even 
on days when the ventilation system was not operated (Figure 6). This is because in the 
remaining cases, except for Case 2 of the RF model and Cases 2 and 4 of the ANN model, 
when the CO₂ concentration decreased after the occupant had left the room, the learning 
model determined the presence of an occupant (Figure 6). In Case 2, where the ventilator 
operation mode was used as an input value, such a problem did not occur and the accu-
racy was inferred to be relatively high. In Case 2 of the RF model and Cases 2 and 4 of the 
ANN model, a situation occurred when numerous occupants left simultaneously, but it 
was determined that some occupants remained. However, this situation did not occur 
when the number of occupants was small. Case 3, where the indoor–outdoor and indoor–
corridor differential pressure data were added as input values, yielded the lowest accu-
racy and highest error in the RF and ANN models. Figure 6 shows that compared to other 
case models, the Case 3 model determines the occupants to be present even after they have 
left. The RMSE of Case 4 in the ANN model is lower than that of Case 2 because Case 2 of 
the ANN model fits the occupancy range better than Case 4 throughout the study period. 

Figure 5. Checking the room–corridor differential pressure and occupancy data on 11/7 and 11/16.

First, the data between 7 November and 14 November, when the ventilation system
was not used, were compared with the actual value and the estimated occupant value
output using the RF and ANN. The accuracy and RMSE of the RF are shown in Table 5.
Both the Random Forest and ANN models, where the CO2 concentration, mean value of
the CO2 concentration within 15 min, amount of change in the mean value of the CO2
concentration within 15 min, and the ventilator operation mode were input, yielded the
highest accuracy in Case 2. In the RF, the RMSE error yielded the lowest value at 1.462 in
Case 2. In the ANN model, the lowest RMSE value was 1.544 in Case 4, where the CO2
concentration, mean value of CO2 concentration within 15 min, and amount of change in
the mean value of the CO2 concentration within 15 min were entered. In the model that
learned the ventilation operation mode as an input value in a space where the mechanical
ventilation was applied, both the RF and ANN models yielded the highest accuracy in
Case 2, where the ventilation system operation mode was added as an input value even
on days when the ventilation system was not operated (Figure 6). This is because in the
remaining cases, except for Case 2 of the RF model and Cases 2 and 4 of the ANN model,
when the CO2 concentration decreased after the occupant had left the room, the learning
model determined the presence of an occupant (Figure 6). In Case 2, where the ventilator
operation mode was used as an input value, such a problem did not occur and the accuracy
was inferred to be relatively high. In Case 2 of the RF model and Cases 2 and 4 of the
ANN model, a situation occurred when numerous occupants left simultaneously, but it was
determined that some occupants remained. However, this situation did not occur when the
number of occupants was small. Case 3, where the indoor–outdoor and indoor–corridor
differential pressure data were added as input values, yielded the lowest accuracy and
highest error in the RF and ANN models. Figure 6 shows that compared to other case
models, the Case 3 model determines the occupants to be present even after they have
left. The RMSE of Case 4 in the ANN model is lower than that of Case 2 because Case
2 of the ANN model fits the occupancy range better than Case 4 throughout the study
period. However, Case 2 estimates the number of occupants more within the same range.
Therefore, the RMSE for Case 2 exceeded that for Case 4. In future studies, to address this
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issue, we will accumulate data to determine and increase the accuracy using the number of
occupants rather than the occupancy range.

Table 5. The Accuracy and RMSE results of all cases from 11/7 to 11/14.

RF-Accuracy RF-RMSE ANN-Accuracy ANN-RMSE

Case1 0.9182 1.925 0.9275 1.775

Case2 0.9198 1.462 0.9283 1.618

Case3 0.8951 2.353 0.8898 2.072

Case4 0.8980 1.840 0.9130 1.544

The second data set covered the entire validation period from 7 November to 22
November. From 15 November to 22 November, the occupants using the room operated
the ventilation system arbitrarily. Table 6 shows the results of comparing the RMSE of
the Random Forest and ANN model for each case using the data from 7 November to 22
November when the ventilation system was used randomly. In Figure 7, as in Figure 6,
the accuracy of the number of occupants in Case 2 of the two models throughout the data
range for verification yielded the highest values in both the RF model (0.9102) and the
ANN model (0.9180). Figure 7 shows the data for 16 November. On this day, the ventilation
system was operated in mode 1 from 09:30 and mode 3 from 14:59. Unlike 7 November,
when the ventilation system was not operated, on this day, when the ventilation system
was turned on, the CO2 concentration rapidly decreased after the occupants left. In all cases,
there was no state of determining that there were occupants when the CO2 concentration
slowly decreased after the occupants left. A comparison of the case of the RF model and
that of the ANN model in Figure 7shows that when an occupant re-enters an hour after an
occupant leaves and the CO2 concentration rises rapidly, the RF model shows that there are
more than 10 occupants. Inferences were made in numerous situations, but in the case of
the ANN, more occupants were estimated in relatively fewer situations. Comparing the
accuracy of the RF and the ANN models, in all cases, the accuracy of the ANN model was
relatively high. The RMSE was relatively low in the ANN except for Case 2. In addition,
the RMSE yielded the smallest error 1.743 in Case 2 only when the ventilation system was
running.

Table 6. The Accuracy and RMSE results of all cases from 11/7 to 11/22.

RF-Accuracy RF-RMSE ANN-Accuracy ANN-RMSE

Case1 0.9061 1.915 0.9155 1.750

Case2 0.9102 1.743 0.9180 1.770

Case3 0.8916 2.134 0.8936 2.042

Case4 0.9003 1.933 0.9147 1.787

Excluding the occupants, factors that affect the indoor CO2 concentration are the
ventilation system operation mode, infiltration amount, and differential pressure. The
accuracy could be improved when estimating the number of occupants, but in estimating
the number of occupants based on the CO2 concentration, the pressure difference between
the room and the surrounding space and the adjacent CO2 concentration did not contribute
to increasing the accuracy of the model. Based on the case results of the Random Forest
and ANN models, the accuracy of the occupant estimation model based on the CO2
concentration can be improved by adding the ventilation system operation mode as an
input value.
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In a room where a mechanical ventilation system is installed and the ventilation sys-
tem operation and recirculation air ratio are adjusted to reduce energy consumption, the
ventilation system operation mode has a significant effect on the change in CO2 concentra-
tion. Based on the above results, when estimating the number of occupants based on the
CO2 concentration in a room where a ventilation system is installed, adding the ventilation
system operation mode as an input value can improve the estimation accuracy.

5. Discussion

Studies [12–18] on the estimation of the number of occupants based on CO2 have used
data from various sensors such as Wi-Fi probes, sound, and PIR sensors along with the



Sensors 2023, 23, 585 15 of 17

CO2 concentration. The Wi-Fi probe can generate issues related to personal information.
The PIR data are limited by the possible reduction in accuracy owing to errors such as
data accumulation. Sound data can occur instantaneously or be greatly influenced by
the surroundings. In this study, to estimate occupancy and manage indoor air quality
environmental factors such as the indoor–outdoor and indoor–corridor differential pressure,
the ventilation system operation was added to present a method for estimating the number
of occupants using a CO2-based machine learning model. Estimating the number of
occupants can be beneficial for indoor air quality management and infection control; in
particular, this estimation can help to determine the frequency of ventilation for a space
used by several people or the level of mechanical ventilation that should be performed
when the utilization rate is highest. This helps determine the ventilation method that should
be adopted when there is an unspecified number of users or an infection is suspected among
the occupants. Currently, a method for estimating the occupancy of a single room is being
studied; the measurement and application of data in various large scale spaces can allow
for the efficient management of large commercial buildings.

However, the model presented in this study was based on one target room and the
amount of learning data is considered to be insufficient as an initial model. It is possible to
estimate the opening of the doors and windows using the pressure differential, but there
is no accurate data on the open state of the doors and windows, and they can be opened
freely according to the judgment of the occupant. By establishing that the differential
pressure data and ventilation system operation can influence the accuracy of the occupancy
estimation, the acquisition of long-term data is improved and the possibility of model
development is enhanced. As mentioned earlier, applying the model to large spaces would
facilitate an improved efficiency in building management (energy, indoor air quality, and
infection control, etc.). The accuracy should be improved by considering the additional
data and various variables, and because the differential pressure is affected by the space–
building entry/exit conditions (wind speed, wind direction, weather, and season, etc.), it
should further be improved through seasonal data acquisition and learning.

As the differential pressure between the indoor and the adjacent space increases, the
amount of air leakage also increases. Accordingly, this study tried to accurately determine
the change in the indoor CO2 concentration according to the occupancy, by using the
differential pressure between rooms and adjacent space. However, when the door is open,
the differential pressure becomes an equal pressure, but the air exchange rate between
the corridor and the indoor space increases compared to when the door is closed. The
differential pressure data should be included depending on whether the door is open or not.
In addition, the positive pressure and negative pressure conditions should be considered
separately. Under a positive pressure, where the pressure in the room is higher than the
adjacent pressure, the CO2 concentration in the adjacent room does not affect the CO2
concentration in the room because the airflow is formed from the room to the adjacent
one. Under a negative pressure, where the pressure in the room is lower than the adjacent
pressure, the airflow is formed from the adjacent space to the room, and the adjacent CO2
concentration affects the indoor CO2 concentration. The CO2 concentration in the room
is estimated by dividing it according to the value of the indoor and adjacent differential
pressure. For the same reasons as above, adding the differential pressure as an input value
in this paper is considered to reduce the accuracy.

For future applications in various spaces, the air change per rate will be considered.
To include the size of the space, the number of occupants can be applied in various spaces
if learning is conducted using the occupied space per person or the number of occupants
per unit space. The differential pressure data is intended to be applied to machine learning
according to the positive and negative pressure values.

6. Conclusions

In this study, CO2-based machine learning using differential pressure data and re-
flecting the influence of the ventilation system operation mode was used to estimate the
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number of occupants in a room. The following conclusions were drawn from the study
findings:

(1) The ventilation system operation data increased the estimation accuracy in the RF
and ANN models. In the RF model, the RMSE increased from a maximum of 0.898 to
0.9198 depending on the ventilation system operation. The RMSE was lowest in the
RF model where the ventilation system operation data were added as input values;

(2) The addition of the differential pressure data as input data decreased the accuracy
and increased the RMSEs in the RF and ANN models. The differential pressure data
were considered to have an effect on the CO2 concentration, but were not considered
to be related to prediction of the occupancy;

(3) The accuracy of estimating the number of occupants based on the CO2 concentration
using machine learning can be improved by adding the ventilation system operation
mode as input data if the mechanical facility operates indoors.

Future studies will regard the air change rate indoors as an input value and also
measure environmental and differential pressure data in various spaces using mechanical
ventilation. These data will be modified for application in various spaces, not only being
applicable in models for specific spaces. The aim is to improve the accuracy of the model
by continuously measuring data in the living-lab, thus increasing the amount of data. In
addition, accuracy is compared using other machine learning models and learning models
are optimized. For the differential pressure data to affect the increased accuracy of occupant
estimation, the amount of change in the mean value of CO2 concentration for 15 min, and
the CO2 concentration of the surrounding space and the differential pressure data need to
be related.
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