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Abstract: The improvement of comfort monitoring resources is pivotal for a better understanding of
personal perception in indoor and outdoor environments and thus developing personalized comfort
models maximizing occupants’ well-being while minimizing energy consumption. Different daily
routines and their relation to the thermal sensation remain a challenge in long-term monitoring
campaigns. This paper presents a new methodology to investigate the correlation between individu-
als’ daily Thermal Sensation Vote (TSV) and environmental exposure. Participants engaged in the
long-term campaign were instructed to answer a daily survey about thermal comfort perception
and wore a device continuously monitoring temperature and relative humidity in their surround-
ings. Normalized daily profiles of monitored variables and calculated heat index were clustered to
identify common exposure profiles for each participant. The correlation between each cluster and
expressed TSV was evaluated through the Kendall tau-b test. Most of the significant correlations
were related to the heat index profiles, i.e., 49% of cases, suggesting that a more detailed description
of physical boundaries better approximates expressed comfort. This research represents the first step
towards personalized comfort models accounting for individual long-term environmental exposure.
A longer campaign involving more participants should be organized in future studies, involving also
physiological variables for energy-saving purposes.

Keywords: thermal perception; clustering process; wearable sensing; personal exposure; energy
efficiency; thermal comfort; multidomain comfort; indoor environmental quality; IEQ

1. Introduction

During people’s daily activities, different environmental stimuli impact their well-
being and comfort perception and, consequently, their work productivity [1], health [2], and
happiness [3]. Measuring and understanding the triggers that lead to human sensations can
help to calibrate and configure ideal conditions [4]. Even if people spent almost 90% of their
lifetime in indoor environments [5], outdoor stimuli also influence overall human wellness.
In this case, people are exposed to conditions that are more difficult to be modified and
controlled, when compared to buildings equipped with HVAC systems, lighting appliances,
and performing construction materials. Moreover, the human perception of comfort also
affects their interaction with the environment and buildings’ operation.

Furthermore, the definition of thermal comfort provided by ISO 7730 [6], which can
be adapted to the other perception domains, stated that it is the “condition of mind which
express satisfaction with the thermal environment”. Comfort studies demand the quantifi-
cation of a qualitative indicator that is the satisfaction level of the occupants, to possibly
drive improvement of indoor, or even outdoor, conditions. In this context, comfort models
assist international standards to quantify human comfort perception, in different dimen-
sions. The Predicted Mean Vote (PMV) and the Percentage of People Dissatisfied (PPD)
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indices, developed by Fanger in the 1960s, are widely adopted to access indoor thermal
comfort in research, considering the simple approach and satisfactory results [7]. The in-
dices construction is based on laboratory tests, which combine the human physiological
responses to environmental stimuli and the theory of heat balance for thermoregulation.
The PMV model adopted a seven-point scale to predict the mean value of human subjective
thermal sensation votes, in indoor comfort studies. This scale represents the preferences of
a group of people occupying the same building, going from −3 (cold) to +3 (hot), where
0 corresponds to the neutral thermal sensation [8]. However, it should be addressed that to
predict theoretically the thermal sensation of occupants is not an easy task, considering that
steady-state conditions are rarely found in real environments and other external stimuli
can also influence the thermal perception of users, such as activity level, occupancy, and
other multi-domain interactions [7].

On the other hand, the adaptative thermal comfort model tried to explain the di-
vergences between the classic PMV-PPD approaches and the actual thermal sensation in
naturally ventilated buildings, through a simple regression model that relates the indoor
and outdoor temperatures. International Standards used the adaptive approach as a con-
ceptual foundation and guidance, such as ASHRAE 55 [9], ISO 7730 [6], EN 16798 [10],
and CIBSE Guide A [11]. ASHRAE 55 Standard, for example, recommends that indoor
temperatures should lead the PMV index to a value between −1 and +1, in order to reach
only 25% of the occupants dissatisfied. The ISO 7730 describes an equation to determine
the PMV value, based on environmental variables and physiological characteristics. Never-
theless, the PMV scale has been questioned and adapted several times, considering that
non-neutral thermal preferences are common among occupants [12].

Martins, Soerbato, and Williamson [12] investigated different scales used to translate
thermal preference or sensation, across 37 studies. Depending on the study’s approach,
some scales were converted to a lower number of points. Jazizadeh et al. [13] used a 5-point
scale to determine occupants’ personalized comfort profiles and optimize the control of the
Heating, Ventilation, and Air-Conditioning (HVAC). The new scale was adapted from the
7-point scale, considering that the intermediate points (−1, 0, and +1) are all considered
satisfactory by the standards. The scale adoption and configuration were investigated
by Schweiker et al. [14], addressing the relationship between temperature and subjective
thermal sensation. The authors concluded that the type of scale used to collect the occupants’
perceptions impacts the results and that the scale range of comfortable differs from person
to person. Therefore, the association of these subjective interpretations with measurable
indices, such as environmental [15] and physiological [16] information, can bring a more
integrated and complete interpretation of human comfort perception. Some studies have
already tried to overcome the weaknesses of thermal comfort models, since they were
developed for a group of people, not for individual preferences.

This association can identify patterns in the subjects’ perception and consequently
drive the ambient environmental control toward more comfortable conditions. In this
case, personal comfort models, based on people’s perception of comfort and on the envi-
ronmental conditions which shape satisfaction, can be drawn and help the creation of a
comfortable environment with the reduction of energy use [17]. The automation of HVAC
systems reduces the issues caused by users’ low awareness of their own thermal sensa-
tion, avoiding overheated or overcooled buildings [18]. Yang et al. [19], developed a new
technology to measure the skin temperature of occupants without direct contact. In this
study, HVAC systems could have their regulation totally demand-oriented, based on the
previous calibration of the systems through monitoring of physiological and environmental
signals and association with subjective reports of comfort. A similar approach was applied
by Deng [17] using wristbands signals and by Cottafava et al. [20], in a crowdsensing and
feedback model developed for an office building in the context of the ComfortSense project.

Different sensors and devices are adopted to verify the environmental and physiologi-
cal dimensions of indoor and outdoor spaces and human responses, respectively. In this
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view, wearable sensors are particularly suitable for catching the personal human experience
of comfort.

As described by Salamone et al. [15], wearable sensors can monitor different domains
of comfort, namely thermal, visual, acoustic, and air quality, and catch indoor environmen-
tal quality. Moreover, the combination of the different environmental factors helps for the
deep comprehension of the external triggers of human sensation. The data collected from
environmental and physiological wearable sensors can support machine learning models
to predict the thermal comfort perception of occupants [21–23]. In this case, data-driven
models could optimize the number of experiments done for a certain situation. In any case,
the use of wearable sensors to monitor the subject’s daily activities for a long-time assist in
understanding their responses to different outdoor stimuli. This database can be updated
according to new information it receives from users to the future improvement of indoor
conditions and perceived comfort.

Connecting the different spheres of comfort is the best option for detecting real human
experience. Nazarian et al. [24] proposed a wrist-mounted wearable sensor to measure
microclimate parameters, and physiological, and subjective answers from the subjects,
to access human thermal comfort and heat stress. The tool proved to be satisfactory to
predict body core temperature and the overall sensation of participants. Mansi et al. [25]
investigated the encephalographic (EEG) signals using wearable devices, during an experi-
mental campaign in a test room. The subjects were exposed to different thermal conditions
and answered different surveys relating to their comfort perception. The environmental
characteristics were also monitored. Even presenting reliable results, the wearable device
required a processing step.

Outdoor environments were also studied in the last few years, considering the fast
growth of urban areas. Pioppi, Pisello, and Ramamurthy [26] used a wearable apparatus
to collect key environmental parameters for pedestrian comfort in urban parks. The sen-
sors indicated that urban parks could help to reduce the effects of heat islands in cities.
Biosensors are another type of tool that could detect small toxic molecules, pollutants, and
life-threatening agents present in inhabited environments [27]. Essentially, portable and
wearable devices have lower performance than medical [28] and fixed devices [15], but
recent advancements are being made to increase their accuracy, through improvements in
sensing technology and data processing [16].

However, there is still a lack of long-term studies to investigate the human comfort
experience. Liu et al. [29] carried out an experiment monitoring fourteen subjects for at least
fourteen days, using different wearable devices: iButton hygrochron to monitor the external
air temperature and relative humidity; iButton hygrochron to the skin temperature at the
ankle and wrist; a chest strap to the heart rate and a smartwatch to wrist accelerometry.
The authors were able to use the data collected, together with comfort survey answers, to
establish personal comfort models more reliable than the traditional PMV and adaptive
comfort models. Ji et al. [30] also conducted a long-term study using wearable devices,
for less than two months, to understand the influence of the immediate thermal history
of the subjects on the current thermal history. The participants were asked to wear a
portable probe outside their backpacks to register temperature and humidity data and
to give feedback on thermal sensation whenever they experience some abrupt change of
condition or position. The temperature acceptability range was wider than expected and
the cold temperatures had a higher influence on the thermal perception.

Research that performs data acquisition for a longer time should have well-established
procedures for data gathering and storage, considering the high amount of information
collected. Wearable devices are practical and non-intrusive solutions, usually available
commercially [31]. The connectivity of wearable sensors with the virtual world is promoted
for the Internet of Things (IoT), improving interoperability, communication, and response
dynamism, to create a unified environment [32]. IoT solutions are growing alternatives to
traditional methods of monitoring and calculation of environmental data and can assist in
the promotion of a more human-centric approach to build environment research [33].
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Salamone et al. [34] performed data collection using wearable sensors, machine learn-
ing techniques, and IoT to assess human thermal perception and improve the environmental
condition of the surroundings accordingly. The use of IoT solutions allowed the researchers
to build personal thermal comfort models considering the characteristics of the indoor
environment monitored. Future implementations foresee the use of real-time data to adjust
indoor conditions according to the users’ thermal preferences. The campaign carried out
by Liu et al. [28], for example, allowed researchers to cloud computing data and use this
information for real-time prediction of occupants’ thermal preferences.

Using wearable sensors, devices are more and more accessible, it is possible to access
high-granularity data from occupants and understand the triggers of discomfort perception.
The inclusion of different parameters and real-time information in comfort models enables
the development of realistic predictions, controlled by IoT appliances in a more efficient
way [31]. In the current scenario of thermal comfort research, the detection of thermal
comfort parameters is fundamentally based on camera technologies, wearable devices, and
fixed sensor systems.

However, a point still underexplored is the acceptability of occupants to the wearable
technology and the ethical concerns for this data employment for research. Usually, phys-
iological data collected from users can raise more privacy concerns than environmental
ones, and their acquisition should be studied and agreed upon among all participants [35].
The same concern emerges when it comes to IoT devices connected with buildings, highly
dependent on individual information to develop personal comfort models. Aside from
the ergonomic design and their integration into the occupants’ daily activities [15], users
should understand the practical benefits of the data collection and how it can improve their
productivity, happiness, and health [36]. Nevertheless, the study of different factors that
lead to discomfort, relating them with human perception in a long-term approach, could
bring insightful conclusions about the actual environment that people are daily exposed to.

Considering the previously presented knowledge gaps, this study aims to investigate the
occurrence of a correlation between mean daily Thermal Sensation Vote (TSV) and different
normalized metrics of air temperature, relative humidity, and heat index, i.e., mean minimum
and maximum values. All the data were collected during long-term monitoring, through a
wearable device, expecting to understand the relationship between the human’s subjective
sensation of thermal comfort and the variation of monitored environmental values.

Therefore, a potential contribution can be identified by relating conditioned controlled
environments, in terms of temperature and relative humidity, and the comfort sensation of
the subject experiencing these environments: do only the absolute values of temperature
and relative humidity impact the thermal sensation of occupants, or their fluctuation have
a stronger effect? The occupants can, at the same time, adapt to the current environmental
conditions and be more influenced by greater modifications in a shorter time. Understand-
ing which factors are more influential and whether the difference of its amplitude during
the day determines an important factor for the long-term comfort perception of occupants,
can represent a first step to the implementation of personal comfort models and guide the
use of active strategies for improving thermal comfort while reducing energy use.

Considering the proposed objectives and contributions provided to the human-centric
research, this paper is organized as follows: Section 2 describes the method adopted to
collect, analyze and process the data; Section 3 presents the results from the long-term
monitoring; Section 4 discusses the produced outcomes and Section 5 resumes the study
and organizes final comments and future perspectives.

2. Materials and Methods

The proposed method aims to understand the relationship between human thermal
sensation and different environmental indices. The data gathering was enabled using wear-
able sensors, which collected air temperature (Ta) and relative humidity (RH) information
continuously during the campaign period. The adopted procedure was divided into three
steps: (1) data collection characterization; (2) data analysis and clustering process and
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(3) statistical evaluation, which will be detailed in the following sections. Figure 1 describes
graphically the method.
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Figure 1. Research framework demonstrating steps 1 (data collection), 2 (data analysis and clustering
process), and 3 (statistical calculation).

2.1. Data Collection Characterization

During the data collection, six people wore one iButton Hygrochron (Figure 1) for
Ta and RH monitoring. The participants were instructed to leave the sensors visible to
the outdoor environment and attached to accessories of daily use, such as key chains,
backpacks, or even coats. It was also recommended that the sensors should not be exposed
to direct sunlight, to avoid overheating or being immersed in waterbodies, considering
that they are water-resistant, but not waterproof. Alarms were set to send reminders to the
participants, according to the usual hour that they leave home. The participants’ training
ensures the proper usage of the sensors during the experiment, avoiding data loss or
miscollecting. Unlike most human comfort experiments, in this case, the subjects are daily
monitored during the whole experimental period and are responsible for the correct use of
the probes, without the constant assistance of the researchers.

The iButton Hygrochron is a portable sensor available commercially, with 8 KB of
data-log memory and software for setup and data retrieval. The timestep and initial time
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of recording are configurable through this user interface, as well as the data saving. The
Ta and RH parameters collected by the probe have an accuracy of ±0.5 ◦C and ±5%,
respectively. The sensor tolerates temperatures from −20 ◦C to 85 ◦C [29]. The information
was registered assuming a timestep of five minutes. Before starting the data collection, the
participants agreed to cooperate with the activity by signing a consent form, declaring to
understand the procedure and that their personal information will not be disclosed during
this research. All the subjects are volunteers in good health condition, i.e., not affected by
any circumstances that could affect the environmental perception and the survey results.
The monitoring activity occurred in indoor and outdoor environments, for 24 h, 7 days a
week, for at least one month in different seasons of the year.

The participants were also asked to answer a survey relating their perception of
different comfort dimensions, i.e., thermal, acoustic, visual, and air quality, three times
a day: right before waking up, between 12 PM and 14 PM, and before going to sleep. A
question concerning the stress level was also asked, considering the same scale used for
the comfort sensation. In this study, only the thermal comfort sensation was considered. A
five-point scale was adopted, presented in Table 1.

Table 1. Adopted Thermal Sensation Vote scale.

−2 −1 0 +1 +2

Cold Cool Comfortable Warm Hot

Table 2 presents the start and end date of data collection for each subject. However,
it is important to point out that some days between these dates were not registered due
to data rollover issues. The last column of Table 2 gives the percentage of the received
answers per the total expected answers in the daily surveys. Summer and spring were
related to the “hot seasons”; autumn and winter to the “cold seasons”.

Table 2. Start and end date of data collection for each subject.

Subject
ID Age Metabolic

Rate (W)
Start Date

Hot Season
End Date

Hot Season

Obs. in
Hot Season

(Days)

Start Date Cold
Season

End Date Cold
Season

Obs. in
Cold

Season
(Days)

Received/
Expected

Answers (%)

I 34 506.13 18 August 2020 26 October 2020 45 04 March 2021 12 May 2021 30 48
II 26 450.88 11 August 2020 26 October 2020 52 01 March 2021 15 March 2021 15 66
III 31 603.00 12 August 2020 21 October 2020 45 02 March 2021 16 March 2021 15 82
IV 29 519.48 07 August 2020 21 October 2020 54 09 February 2021 09 March 2021 25 86
V 33 560.98 21 August 2020 26 October 2020 42 - - 0 67
VI - - 05 August 2020 22 August 2020 18 24 February 2021 24 March 2021 29 21

Due to the lack of sufficient survey answers, the data from participant VI, described
in Table 1, had to be discarded from the analysis. Thus, only five people remained in the
final sample.

Aside from the daily survey and the monitoring devices, the study had no further
impact on their daily routine. The participants involved were women, between 25 and
35 years, working in office jobs and with quite similar routines. The working hours were
considered from 9 AM to 7 PM, based on the related daily schedule of the participants.
The metabolic rate for each person was calculated using Annex C from ISO 8996:2021 [37],
varying from 450.88 W to 560.98 W, with a standard deviation of ±57.47. The mean heart
rate, required for the calculation, was obtained from the Samsung Galaxy smartwatch
provided to the subject for the whole experimental campaign. According to previous
research, the device has an accuracy of around +/− 4 bpm [38,39]. Table 2 shows the main
information for each subject at the time of the data collection.

The study was carried out in Perugia, Italy. According to the Köppen-Geiger criteria,
Perugia has an overall mild climate, with no dry season and constantly moist, classified as
a humid subtropical climate (Cfa) [21].
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2.2. Data Analysis and Clustering Process

Due to the large amount of collected data, Python routines were used to optimize the
data processing step. First, a cleansing process was carried out, to remove outliers from
the database, for both Ta and RH [40]. Equations (1) and (2) were adopted to establish the
lower and upper limits, respectively.

Lower limit = 1º Quartile − 1.5 × (3º Quartile − 1º Quartile) (1)

Upper limit = 3º Quartile + 1.5 × (3º Quartile − 1º Quartile) (2)

A normalization process was performed to determine the different profiles of hourly
Ta and relative humidity amplitude during the day, considering three different indices:
mean, minimum and maximum values. The normalization allows recognizing only the
metrics amplitude, looking in detail at the effect of their variation, not the absolute values.
Additionally, by calculating the normalized values, it is possible to compare data from
different periods and seasons of the year. The 24-h profiles were calculated, and the corre-
spondent minimum daily Ta was subtracted from each hourly value, for the different Ta
and RH metrics. For example, considering the maximum hourly Ta, the value subtract was
the minimum maximum Ta for each day. The reasoning was the same adopted for the mean
and minimum values. Equation (3) represents the calculation performed for the Ta and
Equation (4) for relative humidity.

Tan,h, (mean,min,max) = Ta(mean,min, max),h − Tamin,d,(mean,min,max) (3)

Where Tan,h is the hourly normalized mean, minimum or maximum temperature (◦C),
Tamean,h is the hourly mean, minimum or maximum temperature (◦C) and Tamin,d is the
minimum temperature for the corresponding day for the mean, minimum or maximum
profiles (◦C).

RHn,h, (mean,min,max) = RH(mean,min, max),h − RHmin,d,(mean,min,max) (4)

where RHn,h is the hourly normalized mean, minimum or maximum relative humidity (%),
Rhmean, h is the hourly mean, minimum or maximum relative humidity (◦C), and Rhmin,d
is the minimum relative humidity for the corresponding day for the mean, minimum or
maximum profiles (◦C).

Calculations were also performed to obtain the heat index metric (HI) [41], an index
that combines temperature and relative humidity values to determine apparent temperature
(Equation (5)). The values for Ta and RH collected by the data acquisition were used to
calculate the HI, which was later normalized as the other two metrics.

HI = −8.784695 + 1.61139411 × T + 2.338549 × RH − 0.14611605 × T × RH − 1.2308094 × 10−2×
T2 − 1.6424828 × 10−2 × RH2 + 2.211732 × 10−3 × T2 × RH + 7.2546 × 10−4 × T × RH2−

3.582 × 10−6 × T2 × RH2
(5)

The days without any answers to the comfort perception survey were excluded from
the database, considering that in the next step, the statistical evaluation, both normalized
metrics (Ta and RH) and TSV values are necessary to perform the correlation.

According to the remaining hourly normalized 24 h temperature and relative humidity
profiles for each day, the k-means cluster method [42], with 100,000 iterations, was adopted
to classify the different daily profiles (lower to a higher variation of hourly temperatures,
RH and HI). To determine the optimum number of clusters for each case, two criteria
were considered: (1) the number of elements per cluster and (2) the within-cluster average
distance (the within-cluster sum of squares, WSS). The values for these two criteria were
calculated for a predefined number of clusters k from two to eight in each case (Figure 2).
The optimum number of clusters was decided considering the option with at least 10 ele-
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ments per cluster and a low average distance from the cluster elements to their centroid
(average within-cluster sum of squares), according to Equation (6).

WSSm =
∑n

i=1(x − xi)
2

n
(6)

where WSSm is the average within-cluster sum of squares, n is the number of observations,
xi is the observation value and x is the centroid position for the corresponding day and hour.
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database to the final cluster grouping.

The minimum number of elements per cluster follows the sample size calculation for
the Kendall-tau b test, explained by Bonett and Wright [35,43], with a confidence level of
0.90, 0.30 Fisher confidence interval, and 0.01 confidence interval.

This procedure was adopted for each subject separately. The latter was considered
due to the homogeneity of the sample, which may provide some pattern behavior for the
group. Considering the five participants, three different variables, i.e., Ta, RH, HI, and the
three different metrics, i.e., mean, minimum, and maximum, 45 clustering procedures were
performed after the determination of the optimum cluster number in each case.

2.3. Statistical Evaluation

Finally, considering the optimum number of clusters, a Kendall tau-b test was per-
formed through Python routines, to verify the correlation between the daily normalized
profiles (mean, minimum and maximum values for temperature and relative humidity
data) and the mean daily TSV. The Kendall tau-b is a correlation test, which measures the
strength and direction of association between two variables organized on an ordinal scale.
The Kendall tau-b test is an alternative for both Pearson’s and Spearman’s tests, considering
its non-parametric nature and that it allows tests with smaller sample sizes and many tied
ranks, respectively. The Kendall tau correlation coefficient varies from −1 to 1, where
−1 indicates a perfect negative association between the two variables, 1 is a perfect positive
association between the two variables, and 0 is independence between the variables. How-
ever, values higher than |0.35| and between |0.21| and |0.35| can be already considered
with a strong and moderate association between the analyzed variables, respectively.

To understand the behavior of each cluster, the daily mean values of the normalized
Ta, RH, and HI data were also calculated. Then, lower or higher clusters mean amplitudes
can be verified when a correlation between the metrics and the TSV is identified, and a
possible pattern is established. The procedure was repeated for each cluster and subject.

3. Results
3.1. Overview and Clustering Process

Data collection is a fundamental step to the success of human-centric research. The
daily participants’ survey answers, for example, allowed the correlation between this
subjective metric and environmental parameters, for the statistical test. However, only 70%
of the total expected answers were completed by the participants of this study. Figure 3
shows the overall mean daily thermal sensation by subject. All the subjects present median
thermal sensation values within the thermal neutrality range established in ASHRAE
55 [36], i.e., values between −0.5 to +0.5. The extreme values, with +2 representing hot
and −2 cold, were chosen by only 2.03% considering all the subjects, indicating favorable
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thermal conditions or broader thermal acceptability from the participants. In general,
the range of thermal sensation values does not vary significantly between the subjects,
supporting the premise of homogeneity between the group: minimum and maximum
values were always between +1 and −1. Calculating the thermal deviation from the center
(neutral sensation), the values found were similar between the subjects, respectively 0.090,
0.081, 0.082, 0.069, and 0.090 for subjects I, II, III, IV, and V. Subject IV presented the lowest
deviation and subjects I and V the highest ones.
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The number of samples for each subject also directly influences the number of clusters
and, obviously, the number of elements by cluster. Based on the criteria presented in the
Section 2, the number of clusters for each subject was calculated for temperature, relative
humidity, and heat index, respectively shown in Figures 4–6.
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each subject.

In two cases for the temperature clustering, only one cluster was selected, i.e., when
having two or more clusters the number of elements by cluster was lower than 10. This
could be observed using the minimal and mean normalized temperature values for the II
and V subjects. The possible explanation, analyzing the data from each one of the subjects
and based on the k-means clustering method, it is the similarity between the daily profiles
obtained in these two cases, not reaching more than 10 elements by a cluster when the
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process is performed. Having just one cluster, the average within-cluster sum of squares
for these two cases is slightly higher when compared with the others, presented in Table 3.

Table 3. Within cluster average distance by metric for each subject.

Subject ID

Within Cluster Average Distance

Temperature Relative Humidity

Mean Minimum Maximum Mean Minimum Maximum

I 0.0274 0.0370 0.0290 0.0389 0.0373 0.0252
II 0.0130 0.0363 0.0130 0.0178 0.0171 0.0269
III 0.0121 0.0205 0.0112 0.0169 0.0183 0.0192
IV 0.0177 0.0192 0.0120 0.0169 0.0183 0.0192
V 0.0260 0.0169 0.0184 0.0326 0.0394 0.0292

Winter and summer seasons were not differentiated, as the analysis concerned the
normalized temperature and relative humidity values, not the absolute ones. The values of
within-cluster average distance were similar for all the participants. It is possible to notice
that the subjects with more valid data, i.e., III and IV, also have usually a higher number of
clusters and lower WSS.

3.2. Clustered Daily Environmental Profiles

In most cases, the clustering process, preceded by the temperature and relative humid-
ity normalization, demonstrated one cluster by metric with more constant temperatures
and relative humidity during the day. For the other cases, amplitude turning points, for
both temperature and relative humidity values, were observed mostly at 9 AM and 8 PM,
i.e., respectively the beginning of working and resting hours according to the subjects’
routine. The range of higher and lower amplitude values depends mainly on the access of
the subject to conditioning systems at home or in the office.

For subject I, some differences could be observed between the different metrics: em-
ploying the temperature mean values, cluster 0 presented more constant values with
low-temperature variation, i.e., mean temperature of 1.20 ◦C for both working and rest-
ing hours, and cluster 1 had a higher variation during the working than resting hours,
respectively 3.02 ◦C and 2.15 ◦C mean temperature values.

The minimum values of temperature provided two clusters, one higher variation
during the resting hours and another one during the working hours, having their peak
mean values of temperature variation at 3.68 ◦C at 2 AM and 3.80 ◦C at 5 PM, respectively.
For the maximum values of temperature, the higher variation was during the working hours
for the two clusters, with mean values 0.91 ◦C and 1.05 ◦C higher than during the resting
hours for clusters 0 and 1, respectively. In this case, it can be noticed that, when the mean
values of temperature were used, the temperature amplitude was more constant during
the day, probably better expressing the daily overall subject’s temperature perception.

For RH, one cluster of each metric showed higher variation between 8 PM and 9 AM,
with a mean value of 3.58 ◦C among the metrics during the working period, and another
with constant temperatures during the whole day, with a standard deviation of 0.39 ◦C
between the metrics using mean, minimum and maximum temperatures, characterizing
two distinct expositions for the subject I. For the normalized HI for the subject, I presented
lower and more constant values for the daily profiles, with a standard deviation of xxx for
the mean values among clusters. Figure 7 shows the mean daily profiles for temperature
(a), relative humidity (b), and heat index (c) for subject I.
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For subjects II and V, the trends for temperature values were similar, having for all
metrics and clusters higher amplitude during working hours than resting ones, with mean
values of 2.41 ◦C and 1.67 ◦C, respectively. This behavior indicates a routine during the
different seasons of data collection and probably access to conditioning systems during
resting time, at home. Subject III presented a similar scenario for at least one cluster by
metric, and another with lower and constant temperature amplitude. Subject IV, the one
which held the higher volume of data, also presented a higher number of clusters and
scenarios by metric, with a higher standard deviation of mean amplitude values when
using the minimum metric, compared to mean and maximum ones, respectively 2.49 ◦C,
1.81 ◦C, and 1.37 ◦C. Each metric produced one cluster with lower and constant amplitudes.
Concerning the other clusters, most parts of the temperature variation occurred between
9 AM and 8 PM.

Concerning relative humidity, subjects II, III, IV, and V presented one scenario by
metric with lower and constant amplitudes and the others with lower amplitude values
between 9 AM and 8 PM and higher between 8 PM and 9 AM, for all the analyzed metrics.

Using the Heat Index, the normalized values remained more constant by cluster,
having a less clear pattern of variation between working and resting hours. Knowing
that this apparent temperature could explain why the participants demonstrated a lower
variation from the neutral condition, described in Figure 3, as the index is used to determine
how the temperature and humidity together impact human perception. Figure 8 shows the
daily profiles for temperature (a), relative humidity (b), and heat index (c) for subjects II,
III, IV, and V.

Constant and lower temperature amplitudes can indicate two different exposition
situations: either the subject remained all day in the same environment, probably with
access to a conditioning system, or the sensor was not brought together with them during its
daily activities. Considering that the data collection was carried out during the COVID-19
pandemic, i.e., summer 2020—winter 2021, and that the subjects mainly perform office
activities, there is a high possibility of remote work at the time of data acquisition. The data
collected can also assist to understand the subjects’ daily routine and the time spent inside
or outside the office.

3.3. Statistical Analysis for Correlation Calculation

The results obtained for the Kendall tau-b correlation between normalized temperature,
relative humidity, and heat index values are summarized in Tables 4–6, respectively. Kendall
tau-b correlation coefficient, p-value, and standard deviation by cluster, concern only the
days with both temperature and TSV values. The percentage of received answers was
shown previously in Table 2.

For the temperature, the test showed a strong correlation between the variables in
five cases: subject I, minimum values, cluster 0; subject III, mean values, cluster 2; subject
III, minimum values, cluster 1; subject IV, mean values, cluster 0; subject V, maximum
values, cluster 0. These cases were highlighted in green color in Table 5, with mean values
for temperature amplitude respectively 1.845, 4.426, 5.264, 1.070, and 1.671. Values are
statistically significant when p-values are lower than 0.05, i.e., minimum values for cluster
0 of subject I, minimum values for cluster 1 of subject III, mean values for cluster 0 of subject
IV, and both mean and maximum values for cluster 0 of subject V.

Moderate correlation arose seven times, highlighted in yellow color in Table 4: subject
II, mean values, cluster 2; subject III, mean values, cluster 0; subject III, maximum values,
cluster 1; subject IV, mean values, cluster 2; subject IV, maximum values, cluster 0; subject
IV, maximum values, cluster 3; subject V, mean values, cluster 0. The mean values for
temperature amplitude were respectively 3.322, 1.060, 3.962, 4.982, 1.152, 4.725, and 1.878.
These results might show a tendency of correlation between lower temperature amplitudes
and TSV. In any case, even with similar sample sizes and temperature standard deviation
values, not all cases present the same results.
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Table 4. Kendall tau-b statistical calculations of temperature by subject and metric.

Temperature Values

Metric Cluster Kendall Tau-b
Correlation Coefficient

Kendall tau-b
p-Value

Mean Value by
Cluster

Subject I

Mean
0 −0.031 0.893 1.162

1 0.158 0.301 2.507

0 −0.374 0.018 1.845
Minimum 1 0.000 1.000 3.124

Maximum
0 −0.196 0.247 1.453

1 −0.035 0.856 2.820

Subject II

Mean
0 −0.009 0.964 1.731

1 0.035 0.866 1.725

2 −0.214 0.310 3.322
Minimum 0 −0.048 0.667 2.709

Maximum
0 0.198 0.128 1.760

1 0.081 0.742 3.485

Subject III

Mean
0 0.240 0.164 1.060
1 0.083 0.658 2.722

2 −0.389 0.146 4.426

0 −0.005 0.972 1.756
Minimum

1 −0.374 0.048 5.264

0 0.115 0.357 1.539
Maximum

1 −0.250 0.322 3.962
Subject IV

Mean

0 0.462 0.020 1.070

1 −0.203 0.160 2.554

2 −0.263 0.259 4.982
3 0.038 0.874 5.609

Minimum
0 −0.040 0.795 2.426

1 −0.145 0.307 5.263

2 0.206 0.317 8.587

Maximum

0 0.248 0.180 1.152
1 0.039 0.814 2.147

2 0.113 0.576 3.357

3 0.230 0.321 4.725
Subject V

Mean 0 0.302 0.046 1.878

Minimum
0 −0.149 0.602 1.518

1 0.107 0.573 4.062

0 0.373 0.073 1.671
Maximum

1 0.040 0.869 2.727

Moderate correlation Strong correlation
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Table 5. Kendall tau-b statistical calculations of relative humidity by subject and metric.

Relative Humidity Values

Metric Cluster Kendall tau-b
Correlation Coefficient

Kendall tau-b
p-Value

Mean Value by
Cluster

Subject I

0 −0.104 0.594 3.949
Mean

1 0.236 0.163 10.259
0 0.064 0.745 4.718

Minimum
1 0.327 0.051 13.129
0 −0.009 0.950 5.080

Maximum
1 0.511 0.054 12.329

Subject II

Mean
0 0.135 0.503 6.424

1 −0.010 0.959 10.633

2 −0.079 0.720 14.012

Minimum
0 0.221 0.290 8.509
1 0.302 0.169 11.958
2 −0.213 0.271 17.476

Maximum
0 0.077 0.622 6.971

1 0.006 0.974 13.429

Subject III

Mean
0 −0.197 0.353 2.397

1 −0.037 0.820 6.712

2 0.059 0.809 13.637

Minimum
0 0.083 0.723 2.517

1 −0.005 0.978 7.497

2 0.072 0.746 15.068

Maximum
0 −0.173 0.364 2.916

1 0.147 0.397 6.622

2 −0.193 0.456 13.871

Subject IV

Mean
0 −0.193 0.172 5.264

1 0.068 0.663 11.721

2 −0.188 0.371 15.108

Minimum
0 −0.116 0.429 6.696

1 0.055 0.747 13.597

2 −0.069 0.688 17.831

Maximum
0 −0.121 0.391 5.633

1 0.509 0.026 10.007

2 −0.014 0.927 12.924

Subject V

Mean
0 0.000 1.000 8.996

1 0.140 0.547 14.430
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Table 5. Cont.

Relative Humidity Values

Metric Cluster Kendall tau-b
Correlation Coefficient

Kendall tau-b
p-Value

Mean Value by
Cluster

Minimum
0 0.105 0.652 14.355

1 −0.138 0.521 21.433

0 −0.082 0.675 6.730
Maximum

1 0.599 0.025 14.072

Moderate correlation Strong correlation

Table 6. Kendall tau-b statistical calculations of heat index by subject and metric.

Heat Index Values

Metric Cluster Kendall tau-b
Correlation Coefficient

Kendall tau-b
p-Value

Mean Value by
Cluster

Subject I
0 −0.03475 0.839893 0.689227

Mean
1 −0.42836 0.043394 1.115328

Minimum
0 0.016657 0.930244 0.615092

1 −0.0684 0.715942 1.155734

Maximum
0 −0.32203 0.204976 0.785946

1 0.196672 0.318203 0.880973

2 −0.38103 0.154466 1.376008

Subject II

Mean
0 0.288315 0.097346 1.083491
1 0.197386 0.395355 2.215478

2 0.307255 0.193156 2.641658

Minimum
0 0.286592 0.078526 1.319569
1 0.052705 0.845009 2.356961

2 0.407597 0.077839 3.379285

0 0.300322 0.031342 1.321422
Maximum

1 0.318441 0.130206 2.830822

Subject III

Mean
0 0.193589 0.309974 0.375035

1 −0.36071 0.064451 1.330671

2 −0.03269 0.890746 2.526225

0 −0.0791 0.605212 0.653943
Minimum

1 0.288806 0.091109 2.339653
0 0.329478 0.075592 0.519701

Maximum
1 −0.17795 0.22386 2.044502

Subject IV

Mean
0 0.139446 0.210929 1.183001

1 0.112792 0.486967 3.26676

Minimum
0 0.144039 0.349533 1.115322

1 0.115728 0.454287 2.594446

2 0.01452 0.937345 5.057425
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Table 6. Cont.

Heat Index Values

Metric Cluster Kendall tau-b
Correlation Coefficient

Kendall tau-b
p-Value

Mean Value by
Cluster

Maximum
0 0.15183 0.224053 1.387462

1 0.11134 0.642769 1.957179

2 0.086838 0.618119 3.480653

Subject V

Mean 0 0.271538 0.072749 1.837843
0 0.106132 0.59567 1.803292

Minimum
1 −0.25565 0.334428 4.172755
0 0.093906 0.672236 1.260548

Maximum
1 0.314945 0.160892 2.69809

Moderate correlation Strong correlation

Considering the results for relative humidity, three cases presented a strong correlation
between the variable and the TSVs, highlighted in Table 5 in green color: subject I, maximum
values, cluster 1; subject IV, maximum values, cluster 1; subject V, maximum values, cluster
1. The mean values for relative humidity amplitude were respectively 12.329, 10.007, and
14.072. Moderate correlation, highlighted in yellow color in Table 5, was observed only for
subjects I and II, in five cases: mean values, cluster 1, and minimum values cluster 1 for
the former and clusters 0, 1, and 2 for the latter. The mean values for relative humidity
amplitude in these cases were respectively 10.259, 13.129, 8.509, 11.958, and 17.476. Using
maximum values for cluster 1 of subjects IV and V, statistically representative values were
obtained for the relative humidity.

Thus, there is little evidence that the daily temperature or relative humidity variation
and the daily mean TSV have any correlation, either positive or negative. However, the
test must be replicated with higher sample sizes, increasing the data collection period, and
keeping track of the participants’ survey answers, to reduce the days without answers.

The Heat Index (Table 6) presented at least one case with a strong correlation for
all subjects, except subject IV, without a clear pattern between clusters with higher or
lower HI mean amplitude. However, the thermal perception of subjects I, II, III, and V was
demonstrated to be closely related to the apparent temperature calculated by the HI. Subject
IV, also the one with the lowest deviation from the neutral condition, did not indicate any
correlation between the HI and the daily mean TSV values, which may be related to a low
sensibility to environmental conditions. The heat index values presented the following
statistically significant values: subject I, mean values, cluster 1, and subject II, maximum
values, cluster 0.

This section may be divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

4. Discussion

Considering the data collected, it is possible to notice a stronger tendency of correlation
between the heat index and the thermal sensation vote of the subjects, without a clear
pattern of correlation among the different used metrics or the clusters. Subject IV, unlike all
the other four participants, did not present any correlation in this case, probably due to a
lower sensibility to environmental changes or favorable thermal conditions. Considering
that the heat index can represent the apparent temperature and, consequently, better
describe the human perception of the environment nearby. Therefore, no clear tendency of
correlation between the temperature or relative humidity amplitude and thermal sensation
values could be established for the subjects, through the long-term monitoring campaign.



Sensors 2023, 23, 576 19 of 22

The simple method allowed the inclusion of wearable sensors in the participants’
routine with minimal adjustments and almost any complaints on their side. However, some
factors that could have influenced the results should be addressed, such as the possibility
of inaccurate data collection, in the cases where the subjects left the sensors at home,
registering temperatures with lower amplitude, even if the actual perceive temperature
is different. In this research, the participants were instructed to answer the questionnaire
just by having it with them, in order to avoid such problems. Subjects should be correctly
instructed and regularly remembered about simple and strategic ways to always carry
the sensors right positioned with them. Furthermore, the consequences for the research
results, caused by poor data acquisition, should be explained to engage participants in
self-controlling the sensing system. In this type of data acquisition, in which the researchers
are not present the whole time with the subjects, the subjects should be motivated and
followed closely as it is possible.

Still, the proposal can be an initial approach for the use of wearable sensors for
human-centric data acquisition in a long-term application and in the implementation of
personal comfort models through machine learning techniques. The complex nature of
people’s comfort perception should be studied considering the whole exposure context,
not only under controlled boundaries in conditioned rooms, but also under a climate-
dependent outdoor environment. The addition of other variables and dimensions of the
human experience, such as physiological measurements with wearable smart watches, can
improve even more the study of the long-term exposition influence on people’s thermal
perception and preferences.

Additionally, solutions to remind the participants to answer the survey, such as
notifications implemented with the smartwatches as in the CoolBit Project [24], should
be adopted to avoid data missing. Having a broader sample can help to understand the
subjects’ responses to different environmental conditions and more consistent data. For
outdoor environments, alerts implemented in wearable sensors can warn people about
adverse conditions.

The clustering process helps to understand better subjects’ routines, acceptability
to different environmental conditions and possible alterations, and access to cooling or
heating systems. Long-term data monitoring with portable devices can also help to develop
personal and personalized thermal comfort models, as established by Liu et al. [28], which
coupled with HVAC systems, collaborate to a reduction of energy use, while maintaining
high comfort levels. The authors used the collected environmental parameters, correlated
to subjective and physiological data to train machine learning models and predict subjects’
thermal preferences. The lower sensor intrusiveness can improve the data collected volume
to build more accurate models. Still, low prediction accuracy regions could be found due
to the multi-factor influence on subjects’ perception. This issue can be addressed by the
inclusion of different sensors and by increasing the sample or the time of data acquisition.
Additionally, wearable sensors can assist in the implementation of strategies to receive
instantaneous feedback from the users and facilitate model adjustments.

5. Conclusions

The use of wearable sensors to describe people’s perceived environmental conditions
can help to fully understand the triggers of human comfort. This study proposed a long-
term monitoring campaign, implementing a human-centric perspective. Five participants
were asked to wear an individual sensor for at least one month in different seasons of the
year. The sensors collected environmental information in indoor and outdoor spaces, i.e.,
temperature and relative humidity. The human perspective was accessed through daily
surveys, concerning thermal comfort sensation. A clustering process was performed to
obtain 24-h temperature, relative humidity, and heat index amplitude profiles for each
participant. In each case, three different metrics were used to obtain hourly mean values,
the mean, minimum and maximum values, all of them normalized using the daily lower
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values found for the series. Finally, the Kendall tau-b tests were carried out between the
daily normalized metrics and the TSV, for correlation verification by cluster.

Subject I presented the lowest amplitudes for temperature and HI. The other subjects,
i.e., I, II, III, IV, and V, presented more similar behavior, with higher variations of temper-
ature and relative humidity between the working hours. Concerning the HI, the values
were more regular during the daily period. The clustering process showed in all cases the
tendency to have at least one scenario by metric with lower variation, probably related to
longer stays in indoor conditioned spaces. The HI metrics presented more cases with a
strong correlation with the TSV for all subjects, except subject IV. Subject IV demonstrated
the lowest deviation from the neutral conditions in the TSV, possibly caused by high ac-
ceptability or low perception of environmental changes. These results are probably related
to a better description of the environmental conditions by the index, which determines the
apparent temperature relating to temperature and relative humidity data.

The procedure can access even more effective outcomes in campaigns with a higher
amount of data, for longer periods of monitoring, and including more participants. Fu-
ture studies concerning this matter should foresee the requested sample size to obtain
more conclusive results. Given the human-centric approach employed in this campaign,
strategies to keep the participants engaged in it, i.e., wearing the sensors and answering
the survey, should be implemented, guaranteeing serious and active participation of the
subjects. Participants must be instructed about the concept of the campaign and how
the data is collected, to avoid jeopardizing the results. The data obtained should also be
implemented in machine learning techniques to find preference patterns and guide HVAC
systems management. Other types of sensors can be adopted, measuring more parameters
of the environment, such as biosensors.

Additionally, a more heterogeneous sample can be explored in future studies, seeking
general and not localized patterns. People with different routines, metabolic rates, and ages
may provide more meaningful information and, consequently, different results. During
this campaign, other variables were monitored and can possibly be included in the next
applications, such as heart rate data and survey answers for visual, air quality, and acoustic
comfort domains, stress level, and sleep quality. Other parameters can refine the sample
characterization and allow another type of analysis, such as the introduction of refined
personalized comfort models.
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23. Pivac, N.; Nižetić, S.; Zanki, V.; Papadopoulos, A.M. Application of wearable sensory devices in predicting occupant’s thermal
comfort in office buildings during the cooling season. IOP Conf. Ser. Earth Environ. Sci. 2020, 410, 012092. [CrossRef]

24. Nazarian, N.; Liu, S.; Kohler, M.; Lee, J.K.W.; Miller, C.; Chow, W.T.L.; Alhadad, S.B.; Martilli, A.; Quintana, M.; Sunden, L.; et al.
Project Coolbit: Can your watch predict heat stress and thermal comfort sensation? Environ. Res. Lett. 2021, 16, 034031. [CrossRef]

25. Mansi, S.A.; Pigliautile, I.; Porcaro, C.; Pisello, A.L.; Arnesano, M. Application of wearable EEG sensors for indoor thermal
comfort measurements. Acta IMEKO 2021, 10, 214–220. [CrossRef]

26. Pioppi, B.; Pigliautile, I.; Pisello, A.L. Human-centric microclimate analysis of Urban Heat Island: Wearable sensing and
data-driven techniques for identifying mitigation strategies in New York City. Urban Clim. 2020, 34, 100716. [CrossRef]

http://doi.org/10.1016/j.buildenv.2016.06.001
http://doi.org/10.2105/AJPH.92.9.1430
http://www.ncbi.nlm.nih.gov/pubmed/12197969
http://doi.org/10.1016/j.scs.2019.101447
http://doi.org/10.1038/sj.jea.7500165
http://www.ncbi.nlm.nih.gov/pubmed/11477521
http://doi.org/10.1016/j.buildenv.2022.109020
http://doi.org/10.1016/j.buildenv.2021.108502
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000300
http://doi.org/10.1080/09613218.2016.1183185
http://doi.org/10.3390/s21144727
http://doi.org/10.1016/j.measurement.2021.109872
http://doi.org/10.1016/j.enbuild.2020.109872
https://www.jstor.org/stable/26877627
http://doi.org/10.1016/j.enbuild.2020.110261
http://doi.org/10.1016/j.enbuild.2019.01.007
http://doi.org/10.1016/j.buildenv.2021.108492
http://doi.org/10.1016/j.enbuild.2020.110399
http://doi.org/10.1088/1755-1315/410/1/012092
http://doi.org/10.1088/1748-9326/abd130
http://doi.org/10.21014/acta_imeko.v10i4.1180
http://doi.org/10.1016/j.uclim.2020.100716


Sensors 2023, 23, 576 22 of 22

27. Kadam, U.S.; Hong, J.C. Advances in aptameric biosensors designed to detect toxic contaminants from food, water, human fluids,
and the environment. Trends Environ. Anal. Chem. 2022, 36, e00184. [CrossRef]

28. Duvinage, M.; Castermans, T.; Petieau, M.; Hoellinger, T.; Cheron, G.; Dutoit, T. Performance of the Emotiv Epoc headset for
P300-based applications. BioMed. Eng. OnLine 2013, 12, 56. [CrossRef] [PubMed]

29. Liu, S.; Schiavon, S.; Das, H.P.; Jin, M.; Spanos, C.J. Personal thermal comfort models with wearable sensors. Build. Environ. 2019,
162, 106281. [CrossRef]

30. Ji, W.; Cao, B.; Geng, Y.; Zhu, Y.; Lin, B. A study on the influences of immediate thermal history on current thermal sensation.
Energy Build. 2019, 198, 364–376. [CrossRef]
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