
Citation: Bolotin, Y.; Savin, V.

Turntable IMU Calibration Algorithm

Based on the Fourier Transform

Technique. Sensors 2023, 23, 1045.

https://doi.org/10.3390/s23021045

Academic Editors: Rosario Schiano

Lo Moriello and Giorgio de Alteriis

Received: 16 December 2022

Revised: 10 January 2023

Accepted: 12 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Turntable IMU Calibration Algorithm Based on the Fourier
Transform Technique
Yury Bolotin *,† and Vladimir Savin †

Mathemaitcs and Mechanics Department, Moscow Lomonosov State University, Moscow 119991, Russia
* Correspondence: ybolotin@ya.ru; Tel.: +7-916-225-5722
† These authors contributed equally to this work.

Abstract: The paper suggests a new approach to calibration of a micromechanical inertial measure-
ment unit. The data are collected on a simple rotating turntable with horizontal (or close to) rotation
axis. For such a turntable, an electric screwdriver with fairly low rotation rate can be used. The
algorithm is based on the Fourier transform applied to the rotation experimental data, implemented
as FFT. The frequencies and amplitudes of the spectral peaks are calculated and collected in a small set
of data, and calibration is done explicitly with these data. Calibration of an accelerometer triad and
choosing the IMU coordinate frame are reduced to approximating the collected data with an ellipsoid
in three dimensions. With rotation frequency calculated as the peak frequency of accelerometer
readings, calibration of the gyros is a straightforward linear least square problem. The algorithm is
purely algebraic, requires no iterations and no initial guess on the parameters, and thus encounters
no convergence problems. The algorithm was tested both with simulated and experimental data,
with some promising results.
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1. Introduction

Calibration of an inertial measurement unit (IMU) is a necessary step in preparing
the IMU for operation, that being either inertial navigation or some supplementary task in
biomechanics or robotics. The purpose of calibration is to provide formulas and estimate
parameters needed to convert the raw accelerometer and gyro readings into the specific
force and the angular rate of the unit. The majority of calibration models found in the
literature are linear and include scale factors and biases; similar models are used in this
paper. The calibration procedure consists of experiments with the IMU and algorithms to
process the collected data.

Calibration of an IMU is fairly straightforward if done on a precise turntable with two
or three degrees of freedom, measuring rotation angles with high accuracy. The table is
usually well-calibrated, and its azimuth angle relative to the North is known, thus the true
angular velocity and specific force are also known. In such a case, the calibration procedure
usually consists of several steps—different static positions and rotations with prescribed
angular velocities. Therefore, the data processing algorithms consist of several respective
steps to calibrate biases and scale factors of accelerometers and angular velocity sensors.
Mathematical formulas for these steps are often straightforward and can be reduced to
linear least squares [1,2], or Kalman filtering [3,4].

A series of papers considers IMU calibration when a so-called low-grade turntable [5]
is used. Such a turntable delivers rotation, but either it does not provide information
about rotation rate or angles, or this information is inaccurate. Thus, the only information
available is the data taken from the IMU sensors. In such settings, IMU calibration cannot
be done step-by-step, and dynamic equations of motion must be taken into account. In
Refs. [3,5], an algorithm for calibration on a low-grade turntable based on the extended
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Kalman filter was suggested, with very good results, including applications for calibrating
both low-cost and tactical grade IMUs. The Kalman filter algorithm is optimal under the
well-known more or less reasonable assumptions, and is easy to implement. Unfortunately,
in practice, to converge, it requires a fairly good initial guess on the IMU orientation and
scale factors. Another difficulty arises from the necessity to know the IMU sensors noises
to obtain the optimal results.

When we consider calibrating low-cost micromechanical IMUs, which are now broadly
used, in, for instance, biomechanics, robotics or pedestrian dead reckoning (see earlier
work [6], later [7,8], or recent [9–11]), the calibration procedure should be straightforward
and reliable. In most practical cases, using a precise turntable is impossible. A lot of ap-
proaches to calibration of micromechanical IMUs without special equipment such as a
turntable are known, see, for example, earlier work [12], or more recent [13–15]. For calibrat-
ing accelerometers, the IMU is put to several (about eighteen) static positions. For calibrat-
ing gyros, the IMU is rotated from one such position to another by hand. With collected
data, the calibration problem is set as a maximum likelihood optimization problem, which
is usually solved by numerical optimization. Note that there is one drawback of IMU
calibration without putting it on a turntable: it is difficult to produce consistent regular
rotations by hand; thus, the angular velocity sensors scale factors and misalignments can
be estimated inaccurately. Another drawback lies with numerical optimization: it requires
an initial guess and can diverge if such a guess is not good.

Having in mind the argument above, we think that using some turntable for calibra-
tion, preferably the simplest one, is advisable. In a recent paper [16], a thorough procedure
to calibrate a low-cost IMU on a rotation bench is proposed, with excellent experimental
verification. The procedure allows to estimate not just linear, but also a nonlinear cali-
bration model. It should be noted, however, that the algorithms are based on numerical
optimization of the cost function and thus require an initial guess on some parameters.

This paper proposes an approach to calibration of a micromechanical IMU using either
a low-grade turntable, or just a common home tool such as an electric screwdriver. Such
a screwdriver often allows two speeds of rotation and reverse rotation. The proposed
calibration experiment is as follows. The screwdriver is rigidly mounted on a workbench
with the rotation axis approximately horizontal. The IMU is fixed in some position to
the screwdriver shaft and is rotated for several tens of revolutions. Then, the position of
the IMU on the shaft is changed, and revolutions are repeated, and so on. The number
of positions must not be less than three, the positions must differ from one another by
turns around axes approximately perpendicular to the shaft. The screwdriver orientation,
angular velocity or the number of revolutions are not measured otherwise but by the IMU
sensors. The screwdriver rotation can be nonuniform due to imperfections of the motor or
gearbox, but must be monotonic with approximately constant duration of one revolution.

The proposed data processing algorithm first applies FFT (fast Fourier transform) to
obtain the Fourier transform of the sensor data. The next step is to localize the frequencies
corresponding to the peaks of the spectrum, and to calculate the amplitudes and phases
of the spectrum at the peaks. The peaks are at zero frequency, at screwdriver revolution
frequency, and maybe at some higher frequencies due to imperfections of the screwdriver
gearbox. The frequencies, amplitude and phase data are collected in a small data array.
The subsequent steps of the algorithm work with this data array, and are purely algebraic.

First, the accelerometers are calibrated. We apply here the well-known idea of fitting
the raw accelerometer data with an ellipsoid [17]. The only difference from [17] is that,
here, the ellipsoid lies in the space of spectral coefficients, not in the physical space of
accelerometer readings. Since the ellipsoid-fitting algorithm is purely algebraic, it does not
require any initial guess, and the convergence issues do not arise. Along with calibrating
the accelerometers, the algorithm selects the instrument coordinate frame and computes the
angular velocities of rotation in the instrument frame. Provided that the instrument frame
is selected, the mean angular velocity of revolutions is computed and the accelerometers
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are calibrated, the angular rate sensor calibration is reduced to a straightforward linear
algebraic problem.

We have not found many papers about IMU calibration by applying the Fourier
technique to the turntable experiment. One such paper is Ref. [18]. The calibration model in
Ref. [18] is the same as ours. However, the big difference is that in Ref. [18], the true angular
velocity and the true specific force are assumed known from the turntable data. With this
assumption, the equations are completely linear and can be solved without iterations both
in the time domain and in the spectral domain. In our case where the true sensors readings
are unknown, the initial equations are nonlinear, thus, as far as we know, non-iterative
algorithms in the time domain do not exist, which leaves the spectral approach we propose
the only non-iterative one. Some preliminary results were published by us in Ref. [19].

The paper is organized as follows. First, we state the problem. Next, the necessary
mathematical formulas are derived and analyzed. Further on, we present results of simula-
tion and experiments with a micromechanical IMU that support our reasoning. The bold
letters such as f denote column vectors in the three-dimensional space, the bold capital let-
ters such as F denote column vectors in the three-dimensional space of Fourier transforms.
When the coordinate frame the column vectors are written in is of importance, we write
them as f .z, where z1z2z3 are the coordinate frame axes.

2. Calibration Problem Statement
2.1. Calibration Model

The IMU measures the angular rate ω of the sensor relative to the inertial frame
and the specific force f acting on the proof mass M of the accelerometer. In some cases,
especially for IMU operating in the environment with high angular rates, it is necessary
to assume several proof masses. However, here, we assume just one proof mass. Both the
angular rate and the specific force are given by the column vectors of their coordinates ωz

and f z in the so-called instrument frame Mz1z2z3. The origin of this frame is at the proof
mass, its axes z1, z2, z3 are rigidly connected with the instrument body.

Under the linear calibration model, the raw accelerometer data a(t) and the raw gyro
data w(t) are connected with the true specific force f .z and angular velocity ω.z written in
the instrument frame Mz1z2z3 by the calibration formulas [3,7]:

f .z(t) = S f a(t) + b f + δ f (t), (1)

ω.z(t) = Sωw(t) + bω + δω(t), (2)

where δ f (t), δω(t) are the unmodeled measurement errors. The goal of calibration is to
estimate the 3× 3 matrices S f , Sω and the 3× 1 column vectors b f , bω. Many calibration
procedures can be found in the literature; some are mentioned in the introduction section.
In this paper, we consider the following calibration procedure settings.

The IMU is mounted on the shaft of a turntable or a screwdriver in several positions
and, in each position, it is rotated for several tens of revolutions using the screwdriver
motor. These rotations are called “experiments”. The screwdriver body does not move
relative to the Earth during all the experiments.

We use the following coordinate frames (Figure 1). The navigation frame On1n2n3
is connected with the Earth, its axis n3 points up, the axis n1 is the projection of the shaft
rotation axis on the horizon. The axes origin O lies on the shaft rotation axis. The azimuth
angle between n1 and the East direction is denoted as ψ. The frame Os1s2s3 is rigidly tied
to the body of the screwdriver, its s1 axis is directed along the shaft, the angle 0 < α < π/2
of this axis with the horizon is constant. The axis s3 lies in the vertical plane, the axis s2
lies in the horizontal plane. The frame Oe1e2e3 is rigidly tied to the shaft: the axis Oe1
points along the shaft, the axes Oe2, Oe3 rotate in the plane perpendicular to the shaft
during experiments. The IMU instrument frame Mz1z2z3 is rigidly tied to the shaft in each
experiment but changes its orientation relative to the shaft from experiment to experiment.
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The proof mass M of the accelerometer can lie out of the shaft rotation axis: the centrifugal
forces induced by the shaft rotation are accounted for by the algorithm.

Figure 1. Coordinate frames. The axes e1, e2, e3 form the shaft frame; the axes z1, z2, z3 form the IMU
instrument frame. The axis n1 is horizontal and lies in the vertical plane of the screwdriver shaft and
diverges by the angle ψ from the East direction, the axis n3 points up. The angle α is the angle of the
shaft to the horizon.

2.2. Experiments and Data Models

Let P be the number of experiments (different rotations) numbered by p = 1, . . . , P:
in each experiment, the shaft axes e2, e3 rotate around the axis e1, the angle of the axis e2
relative to the stand axis s2 is denoted by θp(t):

θp(t) = ωpt + γp + δθp(t), −Tp/2 ≤ t ≤ Tp/2. (3)

Here, Tp is the duration of the experiment, ωp is the angular velocity of the shaft, γp is
the phase shift, δθp(t) is the disturbance due to imperfection of the turntable. For brevity,
we set δθp(t) to zero in the theoretical section of this paper (influence of this term can
be compensated for by analyzing the higher frequency spectrum of the sensors). Let us
complement experiments—rotations with static experiments were the IMU stands still at
different positions, denoting these experiments with numbers q = 1, . . . , Q:

θq(t) = γq, −Tq/2 ≤ t ≤ Tq/2. (4)

Let g and u be the gravity and the Earth angular velocity vectors, g and u be their
absolute values. In the navigation frame, these vectors are written as

g = −gn3, u = n1 sin ψ cos φ + n2 cos ψ cos φ + n3 sin φ, (5)

where φ is the latitude, ψ is the azimuth angle of the screwdriver shaft. In the screwdriver
frame Os1s2s3, these vectors can be written as

−g = g1s1 + g2s3,

u = u1s1 + u2s2 + u3s3.
(6)

Here, we use the notation

g1 = g sin α, g2 = g cos α,

u1 = cos α sin ψ cos φ + sin α sin φ, u2 = cos ψ cos φ,

u3 = cos α sin φ− sin α sin ψ cos θ.

(7)
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Note that ψ, α are unknown before calibration, thus the constants in (7) are also
unknown. In the shaft frame, the gravity g and the Earth angular velocity u during the p-th
experiment can be written as

−gp(t) = g1e1 + g2[e2p sin θp(t) + e3p cos θp(t)],

up(t) = u1e1 + e2p[u2 cos θp(t) + u3 sin θp(t)] + e3p[−u2 sin θp(t) + u3 cos θp(t)].
(8)

Now, we remember that the sensor angular velocity and the specific force acting on
the proof mass in the p-th experiment can be written as

ωp(t) = up(t) + θ̇p(t)e1,

f p(t) = −gp(t) + ωp(t)×ωp(t)× ρp,
(9)

where ρp = const is the vector of displacement of the proof mass relative to the shaft. In
the instrument frame in the p-th experiment, the above vectors can be written as

f p(t) = g1e1p + g2[e2 sin θp(t) + e3 cos θp(t)]− θ̇2
p
[
e2pρ2p + e3pρ3p

]
, (10)

ωp(t) = [u1 + θ̇p(t)]e1+

+ [u2 cos θp(t) + u3 sin θp(t)]e2p + [−u2 sin θp(t) + u3 cos θp(t)]e3p. (11)

Here, ρ1p, ρ2p, ρ3p are the components of ρp along the e1p, e2p, e3p axes. Writing down the
centrifugal force, we have neglected its component due to the Earth rotation.

Turning e3p, e2p, e3q, e2q appropriately in the plane perpendicular to the shaft, we can
assume without loss of generality that γp = 0, γq = 0 in (3), (4). Thus, we can write
θp(t) = ωpt + δθp(t), θq = 0.

For the static experiments (4), where the screwdriver motor is switched off, the IMU
measurements can be written as

f q = g1e1q + g2e3q, (12)

ωq = u1e1q + u2e2q + u3e3q. (13)

Equations (10)–(13) were written in the invariant vector form. Further on, we assume
that they are written as column vectors in the instrument frame: f = f .z, etc. However,
since the instrument frame is the only frame used below, we omit the superscript .z. Note
that the column vectors e1p, e2p, e3p and e1p, e2p, e3p written in the instrument frame are
constant during each experiment but change from experiment to experiment.

The calibration task is to estimate S f , b f , Sω, bω from (10), (12), and from (11), (13)
for calibration models (1), (2). The required mathematical formulas are discussed in the
next section.

3. Calibration Algorithm

This section covers mathematical foundations of the proposed algorithm; some techni-
cal details of implementation are discussed in the results section.

3.1. Fourier Transform for Accelerometer Calibration Formulas

In this section, we neglect imperfections of the motor, setting δθp(t) = 0, thus setting
θp(t) = ωpt. Note that these imperfections do not influence the gyro calibration due to
their high-frequency spectrum, but can cause a bias in accelerometer calibration due to the
centrifugal force bias. However, these biases can be calculated by analyzing the oscillations
in the angular velocity measurements. We do not pursue this matter further here.
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Let us apply the Fourier transform [20] in (1), (10) and denote the Fourier images as
f p(t) → F p(ω), etc.:

f p(t) → F{ f p(t)} = F p(ω) =
1

2π

∞∫
−∞

e−iωt f p(t) dt. (14)

The Fourier transform in (1) for both rotations and static experiments takes the form

F p(ω) = S f Ap(ω) + δ(ω)b f + δF p(ω), p = 1, . . . , P, (15)

Fq(ω) = S f Aq(ω) + δ(ω)b f + δFq(ω), q = 1, . . . , Q, (16)

where δ(ω) is the delta-function. The Fourier transform in (10) takes the form

F p(ω) =
[

g1e1p −ω2
pρ2pe2p −ω2

pρ3pe3p

]
δ(ω)+ (17)

+
g2

2
[
ie2p + e3p

]
δ(ω−ωp),+

g2

2
[
−ie2p + e3p

]
δ(ω + ωp)

Fq(ω) =
[
g1e1q + g2e3q

]
δ(ω). (18)

We have used the following well-known Fourier transform formulas [20]:

c = const → cδ(ω),

sin θp(t) = sin
(
ωpt

)
→ − i

2
δ(ω−ωp) +

i
2

δ(ω + ωp), i =
√
−1,

cos
(
ωpt

)
= cos

(
ωpt

)
→ 1

2
δ(ω−ωp) +

1
2

δ(ω + ωp).

(19)

Comparing (17), (18) and (15), (16), we see that the Fourier transform Ap(ω) has
delta-function-type peaks at ω = 0, ω = ±ωp, while the Fourier transform Aq(ω) has
delta-function-type peaks at ω = 0. Let us denote the amplitudes of these peaks as

ε∫
−ε

Ap(ω) dω = Āp,

±ωp+ε∫
±ωp−ε

Ap(ω) dω =
1
2
(Rp ± Ip),

ε∫
−ε

Aq(ω) dω = Āq. (20)

The Fourier transforms Ap(ω), Ap(ω) take the form

Ap(ω) = Āpδ(ω) + Rp[δ(ω−ωp) + δ(ω + ωp)] + iIp[δ(ω−ωp)− δ(ω + ωp)],

Aq(ω) = Āqδ(ω).
(21)

Note that ωp here can be calculated as the position of a peak of Ap(ω) in the interval
ω > 0, if the rotation was clockwise, or in the interval ω < 0, if the rotation was counter-
clockwise. Equations (15) and (16) can now be rewritten as

F p(ω) = (S f Āp + b f )δ(ω) + S f (Rp + iIp)δ(ω−ωp) + S f (Ri − iIp)δ(ω + ωp) + δF(ω),

Fq(ω) = (S f Āq + b f )δ(ω).
(22)

Collecting coefficients at delta-functions in the equation above and in (17), (18), we
obtain

g1e1q + g2e3q = S f Āq + b f ,

g1e1p + g2e3p −ω2
pρ2pe2p −ω2

pρ3pe3p = S f Āp + b f ,

g2e3p = S f Rp,

g2e2p = S f Ip.

(23)
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Equation (23) are the base for calibrating the accelerometers. They can be resolved in
the unknowns S f , b f , g1, g2, e1p, e2p, e1p, e2p in several ways. We take the simplest way here,
not claiming it to be the most accurate one.

Let us exclude the unknown constants g1, g2, e1p, e2p, e3p, e1q, e2q from (23) by algebraic
manipulations:

g2 = g2
1eT

1qe1q + g2
2eT

2qe2q = ĀT
q ST

f S f Āq + 2ĀT
q ST

f b f + bT
f b f ,

0 = g2
2eT

1pe2p = ÎT
p ST

f S f R̂p,

0 = g2
2(e

T
2pe2p − eT

3pe3p) = ÎT
p ST

f S f Îp − R̂T
p ST

f S f R̂p.

(24)

Equation (24) can be resolved to find S f , b f . Note that the choice of the sensor frame is
arbitrary provided it is fixed in the instrument body; thus, S f includes only six independent
variables [3]. For a given number P, Q of experiments, we have Q + 2P equations. It
looks like that to calculate 6 + 3 = 9 calibration parameters, it suffices to set Q = 3, P = 3.
However, a more careful look shows that we must take Q ≥ 4, see below.

3.2. Fitting Accelerometer Data to an Ellipsoid

Equation (24) is quadratic. To reduce these to linear equations, we use the well-known
trick [17]: introduce the symmetric positive matrix M, the vector m, and the constant m0 as

M = ST
f S f , m = ST

f b, m2
0 = bTb = mT M−1m. (25)

Equation (24) can then be rewritten as

g2 = ĀT
q MĀq + 2mT Āq + m2

0,

0 = IT
p MRp,

0 = IT
p MIp − RT

p MRp.

(26)

Equation (26) defines an ellipsoid in the three-dimensional space. To obtain its param-
eters, let us divide the first equation in (26) with g2 −m2

0, and use the notation

M̄ =
1

g2 −m2
0

M, m̄ =
1

g2 −m2
0

m. (27)

We get
1 = ĀT

q M̄Āq + 2m̄T Āq,

0 = IT
p M̄Rp,

0 = IT
p M̄Ip − RT

p M̄Rp.

(28)

Note that if Q = 3, and the column vectors Ā1, Ā2, Ā3 are linearly independent, then
the system (28) allows the false trivial solution

M̄ = 0, m̄T =
1
2
[
1 1 1

]
·
[
Ā1 Ā2 Ā3

]−1, (29)

which will follow with the estimate of the scaling matrix as S f = 0. Thus, for reliable
calibration, we must set Q ≥ 4.

Expanding coefficients for M̄, m̄ to a vector as

Row (A, B) =
[
A1B1 A2B2 A3B3 A1B2 + A2B1 A1B3 + A3B1 A2B3 + A3B2

]
, (30)

and expanding the unknowns to the vector
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x =
[
M̄11 M̄22 M̄33 M̄12 M̄13 M̄23 m̄1 m̄2 m̄3

]T , (31)

we obtain the system of linear equations in x

1 = [Row (Āq, Āq) 2ĀT
q ] · x, q = 1, . . . , Q

0 = [Row (IT
p , Rp) 01×3] · x, p = 1, . . . , P,

0 = [Row (IT
p , Ip)− Row (RT

p , Rp) 01×3] · x.

(32)

The overdetermined system (32) can be solved in the mean square sense to obtain x,
then M̄, m̄ from (31), and further on

M =
g2

1 + m̄T M̄−1m̄
M̄, m =

g2

1 + m̄T M̄−1m̄
m̄. (33)

Finally, the calibration parameters for the accelerometers S f , b f are obtained by fac-
torizing M in upper triangular, lower triangular or symmetric form, depending on the
situation:

M = ST
f S f , b f = S−T

f m. (34)

Knowing the calibration parameters, we can find g1, g2, α from (23) as:

g2 =

√√√√ 1
2P

P

∑
p=1

[
‖S f Rp‖2 + ‖S f Ip‖2

]
, g1 =

√
g2 − g2

2, α = asin
g1

g
. (35)

Next, we calculate the orts e1p, e2p, e3p as column vectors in the instrument frame as:

e3p =
1
g2

S f Rp, e2p =
1
g2

S f Ip, e1p = e2p × e3p. (36)

Now, we have to discuss one question. If the directions of rotation are known before-
hand, then the signs of ωp are also known, and the formulas (36) are quite correct. Now
suppose that we do not know these signs, and have taken the wrong sign of some ωp. Then,
the sign of Ip will be wrong; consequently, the signs of e1p, e2p will be also wrong. To find
the correct sign, let us multiply the second equation in (23) with eT

1p taken from (36): we
get g1 = eT

1 (S f Āp + b f ). We know that the value g1 = g sin α is positive; thus, the scalar
product on the right must be also positive. If it is negative, we must change the sign of ωp
and change the signs of e1p, e2p before proceeding to calibrate the gyros.

Note that the vectors e1q, e2q, e3q cannot be explicitly calculated from the above equa-
tions. However, if the experiments were done in such a way that each q-th static experiment
precedes to or follows after some p-th rotation experiment without dismounting the IMU
from the screwdriver shaft, then we can set e1q = e1p. However, we cannot do the same with
e2q, e3q, because the rotation angle of these unit vectors around the shaft can be different
from the rotation angles of e2p, e3p.

3.3. Calibration of Angular Rate Sensors

When calibrating accelerometers, we have obtained the axes e1p, e2p, e3p of the shaft
frame in the sensor frame. We have also obtained the rotation angular rates ωp as frequen-
cies of the peaks of the Fourier transform of the accelerometer data.

To calculate the gyros calibration parameters, let us perform the Fourier transform in
(11), (13): ωp(t)→ Ωp(ω), wp(t)→W p(ω), to obtain

Ωp(ω) = SωW p(ω) + 2πbωδ(ω) + δΩp(ω),

Ωq(ω) = SωWq(ω) + 2πbωδ(ω) + δΩq(ω).
(37)
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Here,
Ωq(ω) = (u1e1q + u2e2q + u3e3q)δ(ω),

Ωp(ω) = (u1 + ωp)e1pδ(ω) +

+
1
2
[
(u2e2p + u3e3p) + i(u2e3p − u3e2p)

]
δ(ω−ωp)+

+
1
2
[
(u2e2p + u3e3p)− i(u2e3p − u3e2p)

]
δ(ω + ωp).

(38)

As earlier mentioned, introducing the peak values of the angular velocity spectrum

ε∫
−ε

W p(ω) dω = W̄ p,

±ωp+ε∫
±ωp−ε

W p(ω) dω =
1
2
(Rp ± Ip),

ε∫
−ε

Wq(ω) dω = W̄q, (39)

we can write

W p(ω) = W̄ pδ(ω) + (Rp + iIp)δ(ω−ωp) + (Rp − iIp)δ(ω + ωp). (40)

When we collect factors before the delta-functions in (37), (38), we obtain the system
of 9P + 3Q equations

u1e1q + u2e2q + u3e3q = SωW̄q + bω, q = 1, . . . , Q (41)

(u1 + ωp)e1p = SωW̄ p + bω,

u2e2p + u3e3p = SωRp, p = 1, . . . , P, (42)

u2e3p − u3e2p = Sω Ip.

We have 21 unknowns here: besides the twelve calibration parameters Sω, bω, we do
not know nine more: u1, u2, u3, eq2, eq3. Further on, we can select one of two ways.

If we are calibrating a low-accuracy IMU, we can neglect the Earth angular velocity,
and get the system of 3P + 3Q linear equations in the twelve unknowns:

0 = SωW̄q + bω, q = 1, . . . , Q,

ωpe1p = SωW̄ p + bω, p = 1, . . . , P.
(43)

If P ≥ 3, Q ≥ 1, these equations allow us to calculate the elements of Sw, bω.
If we are calibrating a high-accuracy IMU, then we must take into account the Earth

angular velocity. To get rid of the unknown vectors e2q, e3q, we multiply (41) with eT
1q to get

the system of equations

u1 = eT
1qSωW̄q + eT

1qbω, q = 1, . . . , Q

(u1 + ωp)e1p = SωW̄ p + bω,

u2e2p + u3e3p = SωRp, p = 1, . . . , P,

u2e3p − u3e2p = Sω Ip.

(44)

This is a system of Q + 9P linear equations, with additional unknowns u1, u2, u3, 18 un-
knowns in total. If P = 3, Q = 4, which is the minimal number of experiments for
calibrating the accelerometers, we get 31 equations—more than enough. Note that we need
to know only the absolute value of the Earth angular velocity here—no need to know the
azimuth angle or even the latitude.

4. Results

The algorithm was tested both with simulated data and with the commercial micro-
IMU named x-IMU (Figure 1) from the x-io Technologies Limited company [21]. The goal
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of simulation was to estimate the potential accuracy of calibration. Since x-IMU is a low-
accuracy IMU, the Earth angular velocity was not taken into account in data processing.

4.1. Calculating the Fourier Transform with FFT

In the above mathematical formulas, we have assumed infinite duration of exper-
iments; thus, the Fourier transforms of the sine wave and of the constant signal were
delta-functions. In the real world, experimental data are recorded at some finite time
intervals of duration Tp, p = 1, . . . , P for rotations, or Tq, q = 1, . . . , Q for static experiments.
Thus, the Fourier transform is calculated for a finite support function weighted with some
window function h(t)

f p(t) → f ′p(t) =

{
f p(t)h(t), t ∈ [−Tp/2, Tp/2],

0.
(45)

It is well known that this provides spectral leakage [20]: the Fourier transform for a
windowed exponential eiωpt is H(ω−ωp), where H(ω) is the Fourier transform for h(t).
The Fourier transform for windowed f ′p(t) is

F ′p(ω) =

∞∫
−∞

F p(ν)H(ω− ν) dν. (46)

The choice of the window h(t) depends on the purpose. For maximal resolution of
the spectrum, the rectangular window is the optimum. In this case, H(ω) = sinc(ωT/2)
which is a fast oscillating function with minimal width of the central peak. If it is important
to avoid false peaks of the spectrum, windows with nearly monotonically decreasing H(iω)
are preferred. When the rotation rate is not very stable (as was the case in our experiments,
see below), it is better to widen the spectral window so that it would cover the varied
main frequencies.

Another consideration arises when we remember that the spectrum is calculated by
FFT at discrete set of frequencies with the frequency step ∆ω = 2π/Tp [20]. In addition, we
need to estimate not just the peak frequency and amplitude, but also the real and imaginary
parts of the spectrum which can change fast near the peak frequency. To calculate these
values with discrete frequencies, it is preferable to use a window function with a fairly
wide central lobe.

As a good compromise, accounting for most of the factors mentioned above, we use
here the Hann window function

h(t) = 1 + cos
2π

Tp
t, −

Tp

2
≤ t ≤

Tp

2
. (47)

To increase the frequency sampling rate of FFT, we use zero padding [20], adding zeros
to the signal on the left and right of the time interval. When N zero signal intervals each
of duration Tp are padded to the signal both on the left and on the right of the recorded
data, the frequency sampling rate increases 2N + 1 times, to ∆ω = 2π/Tp/(2N + 1). To
preserve the spectral amplitudes with zero padding, appropriate scaling of the spectrum is
done. In the experiments described in the next subsections, we set N = 10.

4.2. Calibration with Simulated Data

When generating the simulated data, their sampling rate was set to 100 Hz, the shaft
rotation main frequency ωp was chosen as 2.1 rotations per second, the number of rotation
experiments was P = 3, while the number of static experiments was set to Q = 4. In each
of the three rotation experiments, one of the axes of the instrument body pointed along
the rotation shaft. The generated noise was a Gaussian white noise; RMS of the accelerom-
eter noise was set to σf = 0.01m/s2; RMS of the angular rate sensor noise was set to
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σω = 0.1 rad/s. Duration Tp = Tq of the experiments was varied. The results are shown in
Table 1. The errors in S f , Sω are relative, the errors in b f , bω are in m/s/s and rad/s, respec-
tively. When rotations are done for 10 s at each position (about 20 full revolutions of the
body), the calibration accuracy is mediocre. When rotations are done for 80 s (about 160 full
revolutions of the body), calibration results become very good. Note that the accuracy of
angular rate sensor calibration is considerably higher than that of accelerometer calibration.
Probably this is due to using the ellipsoid fitting method to calibrate the accelerometers,
which is known not to be the most accurate.

Table 1. Calibration errors depending on duration Tp = Tq of each experiment. The errors in S f , Sω

are relative, the errors in b f , bω are absolute, in m/s/s and rad/s, respectively.

Tp S f Error b f Error Sω Error bω Error

10 s 0.004 0.05 0.0007 0.006
20 s 0.002 0.03 0.0005 0.004
40 s 0.001 0.02 0.0003 0.002
80 s 0.0007 0.015 0.0002 0.001

4.3. Calibration with Experimental Data

We show here the results of just one test with x-IMU [21], with the data recording rate
of 256 Hz. Data recording was done via bluetooth connection. We used a consumer screw-
driver as a turntable (Figure 2). This screwdriver is two-speed, the revolution frequency in
the slow mode is about 4 rotations per second. The IMU was fastened to the shaft in three
different positions: p = 1, 2, 3 = P. The static experiments were just the positions of the
IMU on the shaft before and after rotations: q = 1, 2, 3, 4 = Q. No data were collected when
the IMU was not fastened to the shaft. All rotations were done clockwise.

Figure 2. The IMU mounted on the shaft of a screwdriver. The IMU is inside a small wooden box
which is fixed to the shaft in several positions by the adhesive tape. The trigger of the screwdriver
is held by a rope in the partly pushed position to limit the angular rate of rotations (otherwise, the
gyro readings are saturated). Unfortunately, for the partly pushed trigger, the low angular rates
of the screwdriver we use are fairly unstable. Books on inertial navigation are of great help in
the experiments.

We used a factory pre-calibrated IMU. Thus, the raw data we obtained were actually
close to the true data; the accelerometer readings were in fractions of g, while the angular
rate sensor data were in degrees per second. Duration of experiments, including the
time taken by mounting and dismounting the IMU on the shaft of the screwdriver, took
approximately 15 min, as can be seen from Figure 3.
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Figure 3 shows the graph of angular sensor raw reading records during the whole
sequence of the experiments. The trigger of the screwdriver was pressed only partially
to limit the angular rate of rotations to be within the working range of the IMU angular
velocity sensor which is about three rotations per second (see the rope holding the trigger).
With the half-pushed trigger, the angular velocity can be seen to be unstable; this fact is
seriously decreasing the accuracy of our spectral method, as the main spectral peak at
revolution frequency tends to spread wider. Figure 4 shows a fragment of raw accelerometer
readings. We see high-frequency oscillations in the data which are probably due to the
imperfections of the gearbox. Figure 5 shows a fragment of the FFT of the accelerometer
data near the peak at the revolution angular rate of approximately 700 deg/s. We see that
the spectrum is spread near the central frequency, partly due to the instability of rotations,
partly due to the spectral leakage discussed above [20]. To make the leaked spectrum more
smooth, time weighting of the data with the Hann window was done. To increase the
sampling frequency in the frequency domain to obtain better estimates of positions of the
peaks, the data in time were zero-padded, increasing the length of the data vector 21 times.
Figure 6 shows a fragment of FFT of the angular rate sensor data near the zero frequency.
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Figure 3. The raw gyro data wp(t) for p = 1 in degrees per second in time (red—axis 1, blue—
axis 2, green—axis 3). The IMU was put in three positions on the shaft. In each position, three
rotation experiments and four standing still experiments were done. The thick magenta line marks
the duration of the rotation experiments. The thick black lines mark the duration of standing still
experiments. Note that the angular velocity drifts with time during rotations due to the screwdriver
imperfection.
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Figure 4. A fraction of the accelerometer data f p(t) for p = 1 in fractions of g in time (red—axis 1,
blue—axis 2, green—axis 3). High-frequency oscillations we see in the data are caused mainly by the
imperfections of the screwdriver bearings and gears. High amplitudes up to 1.5 g are caused by the
centrifugal forces.
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Figure 5. The raw accelerometer data spectrum Fp(ω) for p = 1 at the zero frequency. The blue line
is the absolute value of Ap(ω), the red and green lines denote the real and imaginary parts of Ap(ω).
The marker shows the estimated amplitude peaks. The frequency along the x-axis is in rad/s.
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Figure 6. The raw gyro data spectrum W p(ω) for p = 1 near the zero frequency. The spectrum is
normalized in such a way that the peak amplitude W̄ p is the rotation frequency in deg/s. The blue
line is the absolute value of W p(ω), the red and green lines denote the real and imaginary part of
W p(ω). The marker shows the estimated amplitude peaks. The frequency along the x-axis is in rad/s.

The factory set scaling matrices S f , Sω and these produced by our calibration algorithm
for the x-IMU instrument are shown below:

Factory: S f =

1 0 0
0 1 0
0 0 1

, Sω =

1 0 0
0 1 0
0 0 1

.

Fourier: S f =

1.0028 −0.0008 −0.0019
0 1.0024 −0.0002
0 0 1.0033

, Sω =

 0.9994 −0.0009 −0.0017
0.0005 0.9987 −0.0022
−0.0079 −0.0011 0.9998

.

The differences in alignment (non-diagonal elements in the matrices) are not more
than 0.06 degrees; the differences in scaling factors (diagonal elements of the matrices) are
not more than 0.2%. We consider this as a sound verification of our algorithm, since factory
calibration of x-IMU has proved to be very accurate in our experiments in pedestrian
navigation [10].

We do not discuss here the estimates of the sensor biases since for the micromechanical
IMU, the biases are usually fairly unstable and change from switch-on to switch-on.
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5. Discussion

The paper presented an approach for calibration of a micro-mechanical IMU using
a simple turntable, such as a domestic screwdriver, with a calibration algorithm based
on the Fourier transform of the data. Verification of our calibration algorithm was done
in two ways. First, we used the simulation data and showed that when the duration
of experimental rotations was taken more than 40 s (80 revolutions at two rotations per
second), the calibration accuracy became sufficient for any purpose. When duration of
rotations was below 10 s (20 revolutions at two rotations per second), calibration results
were inaccurate. The latter can be explained by the effect of “spectrum leakage” when
using FFT on a short time interval.

Second, we performed experiments with the micromechanical inertial measurement
unit called x-IMU [21] and compared the results of calibration using our algorithm to the
x-IMU factory calibration data, which had proved to be very accurate in our experiments
in pedestrian navigation [10]. The differences in the scale factors were around 0.2%, the
errors in estimating directions of sensitivity axes were around 0.06 degrees. However,
the calibration accuracy was not as high as was expected from simulations. We see the
reason for this in that, in our experiments, the rotation angular velocity drifted considerably
due to instability of screwdriver RPM. We expect the results to be much better when we
use a better turntable than our screwdriver. Another way to increase accuracy is to use
reverse rotations, which we did not do.

Some rough estimates not included here show that the accuracy of our algorithm
is considerably lower than that of the well-known Kalman filter approach to calibration
on a rotating turntable [3], which can be seen to be asymptotically optimal under the
assumption of the sensor errors being Gaussian white noise. Nevertheless, a big advantage
of our algorithm, which comes from purely algebraic formulas used, is its guaranteed
convergence without any need for an initial guess. Without such a guess, the Kalman filter
algorithm often diverges. The results of calibration with our algorithm can be used as an
initial guess for the Kalman filter algorithm. Joining together the Fourier approach and
the Kalman filter approach, with an initial guess provided by the former, is an aim of our
future work.

Our algorithm has two versions—for high-grade and low-grade IMU. For the case
of low-grade IMU, which is discussed in this paper in more detail, we do not account
for the Earth angular velocity, and the algorithm becomes much simpler. Note that when
rotation rates become about one turn per second, the Earth angular velocity influence on
estimating the gyro scaling matrices is negligible since the rotation rates are several orders
of magnitude higher than the Earth rotation rate of 13 degrees per hour. We think that the
high-grade IMU version of our algorithm should be used only when a turntable with fairly
constant rotation rate is used.

One of the popular micromechanical IMU calibration methods is the so-called calibra-
tion without external equipment [13,14], etc., which we have used a lot in our experiments
in pedestrian navigation [9]. We have found (the results are not included here) that the new
algorithm performs considerably better when it comes to the angular rate calibration of
the sensors because their scale factors are estimated better with relatively fast and lengthy
rotations, which are impossible to perform by hand. Moreover, contrary to our algorithm,
the rotation-by-hand angular rate calibration requires an initial guess on the parameters.
Accuracy of accelerometer calibration for the two approaches is comparable. We note also a
general advantage of the spectral approach which is that the spectrum provides additional
information about the IMU, helping to find out certain effects such as proof mass separation
the initial mathematical calibration model has not accounted for.

As already mentioned in the Introduction, we have found just one paper [18] about
IMU calibration by applying the Fourier technique which is in relation to ours. The big
difference is that in Ref. [18], the true angular velocity and the true specific force are
assumed known from the turntable data; thus, the equations are completely linear and
can be solved without iterations both in the time domain and in the spectral domain.
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In our case where the true sensor readings are unknown, the initial equations are nonlinear,
which makes the spectral approach we propose look special from the point of view of
guaranteed convergence.
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