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Abstract: Rice canopy height and density are directly usable crop phenotypic traits for the direct
estimation of crop biomass. Therefore, it is crucial to rapidly and accurately estimate these phenotypic
parameters. To achieve the non-destructive detection and estimation of these essential parameters in
rice, a platform based on LiDAR (Light Detection and Ranging) point cloud data for rice phenotypic
parameter detection was established. Data collection of rice canopy layers was performed across
multiple plots. The LiDAR-detected canopy-top point clouds were selected using a method based
on the highest percentile, and a surface model of the canopy was calculated. The canopy height
estimation was the difference between the ground elevation and the percentile value. To determine
the optimal percentile that would define the rice canopy top, testing was conducted incrementally
at percentile values from 0.8 to 1, with increments of 0.005. The optimal percentile value was
found to be 0.975. The root mean square error (RMSE) between the LiDAR-detected and manually
measured canopy heights for each case was calculated. The prediction model based on canopy
height (R? = 0.941, RMSE = 0.019) exhibited a strong correlation with the actual canopy height. Linear
regression analysis was conducted between the gap fractions of different plots, and the average rice
canopy Leaf Area Index (LAI) was manually detected. Prediction models of canopy LAIs based on
ground return counts (RZ=0.24, RMSE = 0.1) and ground return intensity (R% = 0.28, RMSE = 0.09)
showed strong correlations but had lower correlations with rice canopy LAls. Regression analysis was
performed between LiDAR-detected canopy heights and manually measured rice canopy LAIs. The
results thereof indicated that the prediction model based on canopy height (R2 =0.77, RMSE = 0.03)
was more accurate.
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1. Introduction

Rice is one of the world’s major staple crops, as it constitutes the primary diet for
over half of the global population [1,2]. Crop protection operations in rice cultivation are a
crucial aspect of rice management due to the occurrence of pests and diseases throughout
the plant’s lifecycle. During pesticide application, rice canopy parameters can significantly
influence the dispersion and retention of droplets [3,4]. The deposition of spray droplets in
dense canopies has been 40% lower than in canopies with moderate and low densities [5].
Consequently, the effective detection of rice canopy density can offer valuable insights for
the calculation of spray quantities during variable-rate application processes.

The primary metrics for assessing rice canopy density include the LAI [6] and plant
height. The LAl represents the total area of plant leaves per unit of ground surface area [7,8].
A higher LAl value indicates a canopy with a greater leaf area density, signifying a higher
canopy density. Field surveys have revealed that rice canopy density undergoes significant
changes from the tillering to the jointing stage, with LAIs increasing rapidly during this
period. After jointing, the trend of LAI variation will become more stable and canopy
density changes will be less pronounced [9].
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Plant height is a key trait that affects the yield potential of rice [10]. It refers to the
vertical distance from the ground to the top of the plant. Crop height can directly reflect the
growth status of the crop and be used to estimate its biomass [11]. Traditional destructive
sampling to assess LAl is both labor-intensive and time-consuming, making it unsuitable for
measuring a large number of crop samples. Various non-destructive methods for estimating
LAI have inevitably introduced measurement errors associated with operators. Currently,
there is no established method for non-destructively estimating crop LAIs throughout the
entire growing season [12], and a similar issue exists for the measurement of plant height.
However, there is a significant difference in the relationship between LAI and vegetation
height for various vegetation types and heights [13,14].

Various sensing technologies, such as RGB cameras [15], ultrasonic sensors [16],
multispectral and hyperspectral sensors [17] and laser scanners [18], have been utilized
to characterize crop canopies [19]. Stereo vision technology has been employed to
describe intricate geometric features and extend traditional two-dimensional (2D)
imaging methods in order to characterize three-dimensional (3D) plant structures using
multiview images [20]. However, these techniques have certain drawbacks, including
stereo matching errors caused by lighting and shadows, incomplete reconstructed data
due to occlusion between plant components and a trade-off between accuracy and
efficiency [21].

Ultrasonic sensors are relatively inexpensive and easy to use, but they often have
lower measurement accuracy and are susceptible to interference from their surroundings
and issues based on measurement distance. Spectral images provide rich spectral and
texture information but lack structural information that would aid in understanding plant
functionality. Optical images can effectively extract specific 3D phenotypic features (such
as leaf area, canopy size and plant height) in controlled environments. However, accurately
and comprehensively characterizing 3D plant structures in outdoor environments often
presents limitations.

The emergence of optical detection and LiDAR technology has provided a pow-
erful tool for the acquisition of 3D structural crop data. LiDAR technology actively
emits laser pulses and measures the distance to each target using time-of-flight prin-
ciples. It has found wide applications in forest resource surveys [22] and ecosystem
monitoring [23]. The laser beam emitted by a LIDAR sensor has advantages such as
high energy density, a small divergence angle and a long linear propagation distance.
It can partially penetrate vegetation canopies and overcome challenges associated
with image-based phenotyping, such as illumination and saturation effects. Recently,
LiDAR has gained increased attention in plant phenotyping research [24]. LiDAR sys-
tems installed on unmanned aerial vehicles or ground platforms can provide accurate
measurements of the phenotypic traits of crops such as peanuts, maize and fruit trees
at the regional level [25-27].

However, these crops are more inclined to grow in the early stages, with clear row
spacing and less leaf overlap, thus possessing distinct crop features. In contrast, the rice
canopy will become dense in the mid to late growth stages, making it difficult to distinguish
planting rows. Rice is cultivated in paddies, making it challenging for conventional ground
platforms to access the fields. Moreover, water-filled channels and depressions in the
paddy fields make it difficult for ground platforms and LiDAR systems to maintain smooth
movement. The airflow generated by drones can disturb the rice canopy. These factors
collectively increase the difficulty of using LiDAR technology to measure the dense canopy
heights and LAIs of rice in the later growth stages. Therefore, the primary objective of this
research was to utilize LIDAR technology in paddy fields to estimate these parameters, with
the aim to provide support for the sustainable development of the variable-rate spraying
and agricultural production of rice.
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2. Materials and Methods
2.1. Plant Materials

This experiment was conducted in a rice field located in the Runguo Agricultural Base
in Zhenjiang City, Jiangsu Province, China, in the year 2022. The geographical coordinates
of this area are approximately 32°54'19” N in latitude and 116°23/28” E in longitude
(Figure 1). The rice sample variety used in this study was “Nanjing 9108”. This rice was in
the heading stage of growth during this experiment, with a planting configuration of 18 cm
between rows and 10 cm between individual plants within a row.

Figure 1. Rice sampling field.

2.2. System Architecture

The LiDAR data collection platform (Figure 2A) consisted of a spray boom sprayer
(Swan Group Essen SWAN3WP-500) and a framework equipped with a ground-based
LiDAR sensor (RS-LiDAR-16; SICK AG, Waldkirch, Germany). This setup also included an
industrial control unit, a battery unit (24 V, 18.0 Amp.Hr.) and other necessary cables. The
specifications of the LiDAR are presented in Table 1. The specifications of the spray boom
sprayer are presented in Table 2.

Table 1. The LiDAR specifications.

Indicator Value
Laser Beams 16
Range 20 cm~150 m
Range Resolution +/—2cm
Scan FOV 30° x 360°
Vertical Angle Resolution 2°
Rotation Rate 300/600/1200 (r/min)
Laser Wavelength 905 nm
Size 109 mm (diameter) x 82.7 mm (height)
Working Temperature —10°C~+60°C

Weight 0.84 kg
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Figure 2. Point cloud data acquisition platform and system. (A) Point cloud data acquisition platform.
(B) Point cloud data acquisition system.

Table 2. The spray boom sprayer specifications.

Indicator Value
Size (mm) 3430 (length) x 1750 (width) x 2360 (height)
Track Width (mm) 1540
Minimum Ground Clearance (mm) 1055
Quality (kg) 880
Engine Power Rating (KW /rpm) 17.1/3600
Travel Speed (km/h) 0-11
Battery 12V 45 Ah

The LiDAR was mounted on a high-clearance sprayer platform situated 1.5 m above
the ground (Figure 2A). Due to the front installation of the boom of the spraying machine,
to obtain a larger scanning area and avoid the obstruction of the spray boom and other
devices to the LiDAR, the installation angle of the LIDAR was determined to be horizontal
and inclined downward by 30°. To obtain a comprehensive view of the entire rice canopy,
the LiDAR was configured to operate in a continuous line-scanning mode, covering a 360°
field of view with a resolution of 0.09°. For each line scan, the LiDAR output 320,000 points
per second. To ensure high-speed data collection, the LIDAR was connected to an industrial
control unit (Figure 2B) via a serial-to-Ethernet converter. The LiDAR scan data, including
distance, angle and reflectivity information, were encapsulated into packets using the Main
Stream Output Protocol (MSOP) and sent to the industrial control unit. RSVIEW 1.4.3
was employed for point cloud data collection and storage as well as communication with
the LiDAR. It correctly received data packets, extracted point cloud data, converted polar
coordinates into Cartesian coordinates and eventually saved the data in a Pcap file. All line
scan data were timestamped with distance and time information.
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2.3. Field Setup and Data Acquisition

The point cloud data collection platform was utilized to gather information about
the rice canopy in the designated field. The sprayer machine traveled along the planting
rows, minimizing damage to the rice plants and ensuring that the LiDAR’s detection of
rice canopy information remained unaffected. Each field plot was 12 m wide and 8 m
long. The 12 plots were arranged in three rows in the field, separated by 2 m of border
space (Figure 3). The point cloud data collection system scanned the entire field, covering
all 12 plots. The scan data for each individual plot were stored in a separate file on the
industrial control unit.
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Figure 3. The distribution of rice canopy point cloud data collection plots.

2.4. Ground-Truth Data Collection

To validate the estimated values obtained with the LiDAR, four 1 m x 1 m rice canopy
parameter sampling areas were established within each of the 12 rice fields. These areas
were designated for the measurement of the rice canopy height and the single leaf area of
all rice plants in the sampling area. The sampling areas were uniformly distributed across
each field plot. Rice plant heights were measured manually, while rice leaf areas were
collected using a CI-203 Leaf Area Meter produced by CID, USA (Figure 4). This portable
leaf area meter has a maximum measurement width of 102 mm, accuracy of <1% and a
resolution of 0.05 mm?2. The LAI for each field plot was calculated using Formula (1).

4
Y LA(n;)
iz

LAI =" — 1)

Figure 4. The leaf area meter was used to measure the leaf areas of rice plants.
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In the formula, LAI represents the Leaf Area Index of the field plot, LA stands for
the total leaf area of the plants within the sampling area and n; denotes the identification
number of the sampling area.

2.5. Raw Data

The raw data primarily consisted of distance, angle, timestamp and reflectivity infor-
mation. The LiDAR was configured with their center as the origin, using horizontal rotation
angles and distance parameters. The resolution of the horizontal rotation angle values was
0.01 degrees. The angle and distance information in the polar coordinates was transformed
into Cartesian coordinates (xyz) in the LIDAR’s coordinate system. The defined timestamps
were used to record the system’s time with a resolution of 1 ms.

The data also included reflectivity information about the measured objects. Reflectivity
is the measure of an object’s ability to reflect light and is greatly influenced by the material
properties of the object. During the collection of the rice canopy point cloud data, the
LiDAR moved along the data collection system, continuously capturing the data at a
sampling interval of 0.1 s.

2.6. Data Preprocessing

Each LiDAR dataset from the 12 plots was collected based on the predefined experi-
mental setup and required preprocessing. The process thereof involved defining the region
of interest and using the point cloud data collection system to scan with a horizontal width
of 12 m while moving uniformly along the rows for 8 m within the plot. This scanning
process captured the rice canopy point cloud data within each plot. The point cloud data
were then converted from polar coordinates to Cartesian coordinates and integrated into a
common reference coordinate system. Subsequently, the point cloud data were registered,
overlapping points were trimmed and redundant points were removed.

Once integrated, the point cloud data of the region of interest appeared as shown in
Figure 5, in which all the datasets have been combined and processed to depict the rice
canopy information accurately.

0
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Number of cloud points
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Figure 5. Illustrations of the determination of canopy height using LiDAR. (A) The distance-area
accumulation plot relative to LIDAR. (B) A side view of the point clouds from the same column
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as (A). Non-ground points are represented by green point clouds, ground points are represented by
red point clouds and the red line corresponds to the height at the percentile of 0.975.

2.6.1. Rice Canopy Height Calculation

To determine rice canopy height using LiDAR, it is necessary to estimate the ground
elevation and subtract it from the absolute height of the points. In this study, the nominal
distance from the LiDAR to the ground was relatively fixed and the LiDAR'’s position
was above the rice canopy. The method used involved selecting the top point cloud of
the canopy detected with the LiDAR using a percentile-based approach and calculating
a surface model for the rice canopy [25]. The estimated canopy height was the difference
between the ground elevation on the Z-axis and the percentile value.

To determine the optimal percentile value that would define the top of the rice canopy,
a range of percentile values from 0.8 to 1, with increments of 0.005, was tested. Manual
measurements of the canopy height were performed using a ruler [28]. The RMSE was cal-
culated between the canopy height estimated with the LIDAR and that measured manually
in each case. This provided an assessment of the accuracy of the LiDAR-based estimation
of the canopy height compared to manual measurements.

2.6.2. Rice Canopy LAI Estimation

The LAI estimation model was primarily determined through its correlation with the
gap fraction derived from the LiDAR data [29]. The underlying theory thereof is based on
the transformed equation of the Beer-Lambert law (Equation (2)).

1. 1
LAI = X ln(g) )

In Equation (2), LAI stands for the Leaf Area Index, I represents the light intensity
below the canopy, Iy represents the light intensity above the canopy and k is the extinction
coefficient.

Various laser penetration metrics (LPMs) were used as proxies for I/Ij to estimate the
LAL For point cloud data, LPMs can be calculated as the ratio of ground echoes to total
echoes or the ratio of ground echo intensity to total echo intensity [30,31].

To establish an LAI estimation model for rice canopies, a linear model following the
Beer—Lambert law was used to compare LiDAR-derived LPM; and LPM,. Regression
analysis was performed between these LPM values and the LAI measurements obtained in
the field. This regression analysis helped establish a relationship between the LPMs and
the actual LAI of the rice canopy.

N
LPM; = ground 3)
total
S
LPM, — ground @)
Stotal

In Equations (3) and (4), LPM; and LPM, refer to LPMs. Specifically, LPM; is the ratio
of the number of ground echoes (Ngoung) to the total number of echoes (Niota1). LPM;
was calculated based on echo intensity and is the ratio of the intensity of ground echoes
(Sground) to the total intensity of echoes (Siotal)-

3. Results and Discussion
3.1. Rice Canopy Height Estimation and Accuracy Assessment

The LiDAR detection of the rice canopy height is illustrated in Figure 5. This analysis
involved examining the Z-axis coordinates of all point clouds within the region of interest
detected with the LIDAR. A histogram (Figure 5A) was constructed with the accumulated
data of the maximum Z-axis values from the point clouds. Figure 5B provides a side view
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of the point clouds in the region of interest. In this representation, the blue line represents
the ground obtained from the peak of the histogram, while the red line corresponds to the
height at the percentile of 0.975.

From the point cloud side view in Figure 5B, it is evident that points closer to the
ground are fewer in number. This is attributed to the dense canopy formed in the middle
and later stages of rice growth, which reduces the likelihood of laser penetration into
the canopy interior. Consequently, the majority of the point cloud concentrated on the
upper part of the canopy. The results of the rice canopy height verification are shown
in Figure 6. An analysis of the Z-axis coordinates of all point clouds within the region
of interest detected with the LIDAR was conducted. Percentiles ranging from 80% to
100%were calculated with increments of 0.5%. The optimal percentile was determined by
minimizing the RMSEs between the manually measured canopy heights and those obtained
from various percentiles of the LIDAR detection. The optimal percentile was found to
be 0.975 (Figure 6A). Linear regression analysis was performed between the manually
measured and LiDAR-detected canopy heights. The coefficient of determination (R?) was
0.941, the RMSE was 0.019 m and the slope was 1.266 (Figure 6B).

1.0
R2: 0.94
RMSE  0.01
lope: 126
“OQ.... ,-\09 slope
. S
se0 e St
L1 -
L2 ] .g)
.. * 'S 0.8
L] <
e v e % o B
e j—
“le S
207
(<5}
S <
é‘z
a 0.6
3
0.5
80 85 90 95 100 0.70 0.75 0.80 0.85
Quantile for top-of-canopy determination (%) Manual measured height (m)
(A) (B)

Figure 6. Validation of rice canopy height. (A) The RMSEs between manually measured canopy
heights from different plots and those derived with LIDAR at different percentile values. (B) A
scatter plot and a fitted plot comparing the average manually measured canopy heights from various
plots with the canopy heights obtained with LiDAR detection at the percentile of 0.975. Error lines
represent the positive and negative standard deviations for each plot.

A comparison between the manually measured average rice canopy heights from the
different plots and those detected using LiDAR is provided here. Table 3 not only presents
the detection errors between the two methods but also includes the standard deviations
of the manually measured canopy heights. The minimum and maximum errors in the
detected canopy heights were 0.24% and 12.98%, respectively.

This experiment has demonstrated that estimating rice canopy height through LiDAR
is feasible, yet accurate ground elevation data are still crucial. Table 3 shows the differences
between the manual and LiDAR measurements of rice canopy height, indicating that the
height detected with the LiDAR was slightly lower than that measured manually. Due
to the fact that rice is planted in wetlands, the LiDAR data acquisition platform remains
stationary in the wetland, so it will cause the wheels to sink into the ground due to the
pressure of its own weight. The ground elevation was determined based on the distance
between the LiDAR and the ground at this time. While the platform is traveling, the degree
of wheel sinking decreases, which increases the relative distance between the LiDAR and
the ground. When calculating canopy height, the distance between the LiDAR and the
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ground used for calculation was a fixed value, and its absolute value may be smaller than
the actual absolute value of the distance between the lidar and the ground. More lidar
point clouds were ignored, and the distance between the ground and canopy point clouds
decreased. This may be the reason for the underestimation of rice canopy height. Different
plots had different bearing capacities for the LIDAR data collection platform. For example,
in plot 9, the detection error for the height of the rice canopy was the smallest, at 0.24%,
while in plot 4, the maximum detection error for the rice canopy height was 12.98%.

Table 3. Detection and estimation results of average rice canopy height.

Average Rice Canopy Height (m)

Plot Manually Measured Std Measured with LIiDAR Error (%)
1 0.72 0.13 0.67242 7.08
2 0.74 0.06 0.66734 10.89
3 0.83 0.09 0.78127 6.24
4 0.76 0.06 0.67266 12.98
5 0.85 0.04 0.79745 6.59
6 0.77 0.11 0.7214 6.74
7 0.84 0.09 0.8204 2.39
8 0.85 0.08 0.79758 6.57
9 0.86 0.04 0.85796 0.24
10 0.82 0.08 0.78918 3.91
11 0.87 0.13 0.85257 2.04
12 0.71 0.16 0.65143 8.99

3.2. LAI Estimation Using LiDAR Data

The rice canopy point cloud data collected with the LIDAR were used to assess and
compare two methods for estimating rice LAls. The impacts of key parameters, namely
two LPMs, on LiDAR-detected LAls were evaluated. Regression analysis was conducted
between the LiDAR-derived LAls using the two LPMs and the field-measured LAls. The
coefficient of determination (R?) and the RMSE were calculated to evaluate the fitness of
the constructed models. Table 4 provides the data for the two penetration metrics, as well
as the manually measured LAIs and standard deviations.

Table 4. Measurement and estimation results of rice LAIs.

LAI of Rice (m?-m—2)

Plot
Measurement Std LPM1 LPM2
1 0.803 0.085 0.315385 0.278176
2 0.787 0.069 0.357357 0.286521
3 0.876 0.097 0.109817 0.078993
4 0.824 0.039 0.410256 0.364966
5 0.855 0.106 0.168514 0.123336
6 0.833 0.081 0.194831 0.165871
7 0.857 0.045 0.117978 0.0979711
8 0.855 0.093 0.0438413 0.0323046
9 0.879 0.104 0.121986 0.0874539
10 0.842 0.065 0.0533563 0.0388916
11 0.851 0.058 0.208683 0.0341212
12 0.792 0.046 0.107438 0.0856531

A factorial analysis of variance was conducted on the two different gap fractions for
various plots to assess the correlation between those fractions. The results thereof indicated
a strong positive correlation between the fractions (F = 12.866, p < 0.05). Figure 7 presents a
comparative illustration of the gap fractions from different plots.



Sensors 2023, 23, 8334

10 0f 13

0.45

~H— LPMI
LPM,

0.40

0.35 |
0.30 |
0.25 |
0.20 |

Gap fraction

0.15 -

P

0.10 N/
0.05 - A\

0.00IIIIIIIIIIII
1 2 3 4 5 6 7 8 9 10 11 12

Plot

Figure 7. Comparison of gap fractions among different plots.

Different inter-row gap scores (LPM; and LPM;) were subjected to factorial analysis
of variance across different field plots to assess the correlation between these gap scores
and the average rice LAI measured manually. The results indicated varying degrees of
correlation between different gap scores and the average rice LAIL Specifically, there was a
weak correlation between LPM1 and the rice canopy LAI (F = 4.599, p = 0.058 > 0.05), while
LPM2 showed a stronger correlation with the manually detected rice canopy LAI (F = 3.499,
p =0.043 < 0.05).

A simple linear regression analysis was performed between the different plots” gap
fractions (LPM1 and LPM2) and manually measured average rice canopy LAls. Different
LPM analyses yielded varying R2 and RMSE values; for LPM1, R2 was 0.24 and the RMSE
was 0.1, and for LPM2, R2 was 0.28 and the RMSE was 0.09. Previous LAI estimation models
based on LPMs achieved variances of 69-94% for most studies, which were primarily
focused on estimating forest canopy LAls. Even for low-statured wetland vegetation
(<2 m), variances of 55-60% in LAI estimation have been attainable [31]. In this study, the
rice canopy height was less than 1 m. LiDAR’s capability to produce ground echoes in
densely vegetated and low-statured canopy regions is limited due to its poor penetration
ability in such environments [32]. In comparison to forests and relatively low-statured
vegetation, rice is much shorter, and its dense canopy reduces the probability of laser pulses
penetrating the canopy to reach the ground. This is a critical factor that affects the accuracy
of LAI estimation using LPM.

In this study, a simple linear regression analysis was conducted between the manually
measured LAls from different field plots and the rice canopy heights detected with LiDAR.
The obtained R? value was 0.77, and the RMSE was 0.03. These results strongly indicate a
significant correlation between rice canopy height and rice canopy LAI A scatter plot of
rice canopy LAl against LIDAR-detected rice canopy height is depicted in Figure 8.
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4. Conclusions

This study demonstrated the feasibility of using LiDAR to detect rice canopy height
and density. Through the analysis of LIDAR point clouds, accurate estimation of canopy
height can be achieved. The use of gap fraction estimation for rice LAIs based on ground
returns and return intensity showed a strong correlation between the different methods of
gap fraction calculation. However, during the heading stage of the rice, the dense canopy
reduced the likelihood of laser penetration to the ground, making it challenging to estimate
the LAI using gap fractions, even though a correlation exists between LAIs and gap fractions
based on return intensity. Moreover, as the density of the rice canopy further increased
with the rice growth, the difficulty of detection became greater. The regression analysis of
the rice canopy heights predicted with the LIDAR and the LAIs revealed the possibility of
estimating LAIs based on the canopy heights of this variety of rice. In summary, LIDAR
point clouds hold significant potential for the assessment of morphological parameters
and distribution in crops, yet challenges persist in applications involving low-stature and
dense crops like rice. This research has contributed to the improvement of the accuracy of
estimating rice canopy heights and LAIs. Further studies are needed to enhance filtering
algorithms for the accurate classification of low-stature and dense crops.
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