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Abstract: In contrast to traditional phase-shifting (PS) algorithms, which rely on capturing multiple
fringe patterns with different phase shifts, digital PS algorithms provide a competitive alternative
to relative phase retrieval, which achieves improved efficiency since only one pattern is required
for multiple PS pattern generation. Recent deep learning-based algorithms further enhance the
retrieved phase quality of complex surfaces with discontinuity, achieving state-of-the-art performance.
However, since much attention has been paid to understanding image intensity mapping, such as
supervision via fringe intensity loss, global temporal dependency between patterns is often ignored,
which leaves room for further improvement. In this paper, we propose a deep learning model-based
digital PS algorithm, termed PSNet. A loss combining both local and global temporal information
among the generated fringe patterns has been constructed, which forces the model to learn inter-frame
dependency between adjacent patterns, and hence leads to the improved accuracy of PS pattern
generation and the associated phase retrieval. Both simulation and real-world experimental results
have demonstrated the efficacy and improvement of the proposed algorithm against the state of
the art.

Keywords: fringe projection; relative phase retrieval; phase shifting; deep learning; 3D reconstruction

1. Introduction

In optical interferometry [1] as well as in 3D reconstruction using fringe projection
profilometry (FPP) [2,3], phase retrieval is a common but fundamental step that often
consists of two stages: wrapped or relative phase retrieval and phase unwrapping. While
extensive efforts have been made to reduce phase errors induced via gamma nonlinear
error elimination [4], color cross-talk [5], highlights [6], interreflection [7] and motion [8],
which leads to improved phase accuracy, the efficiency is still unsatisfactory for real-time
applications due to the projection of multiple fringe patterns with different frequencies and
phase shifts [9]. For instance, during relative phase retrieval with a standard N-step phase-
shifting (PS) algorithm, at least N ≥ 3 fringe patterns with different phase shifts are needed,
which limits the algorithm to a relatively narrow range of applications. In particular,
capturing multiple patterns in FPP makes relative phase retrieval more prone to ambient
disturbances, as well as limiting it to static scenarios. Additionally, the two-stage process
(relative phase retrieval followed by phase unwrapping) for absolute phase retrieval is
too cumbersome.

To reduce the number of fringe patterns, single-fringe-pattern-based phase retrieval
methods have been proposed. For instance, composite fringe projection methods such
as those proposed by [10,11] try to embed multiple fringe patterns with different PS or
frequencies, or to embed spatial coded patterns in a single pattern. With some demodula-
tion methods, these embedded patterns can be decomposed from the captured composite
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pattern, and are then used for relative phase retrieval and unwrapping. However, the
embedding of additional patterns may reduce the spatial resolution of the phase or reliabil-
ity during decomposition. Therefore, more advanced algorithms have been developed to
extract absolute phases directly from a single-shot, single-frequency fringe pattern. Typical
works include the untrained deep learning-based method [12] and wavelet-based deep
learning method [13]. The former achieves absolute phase retrieval with two networks,
where the first one refines the relative phases and produces a coarse fringe order for
unwrapping and the second one unwraps the relative phases with the fringe order and
then refines them. While this achieves absolute phase retrieval with only a single-shot
pattern, at least two cameras are required, which increases the system’s complexity and
cost. The wavelet-based method combines both wavelet and deep learning techniques,
where the wavelet provides a preprocessing tool to enhance speed while deep learning
tries to directly estimate the depth of a scene. The speed of the process has been increased
significantly via this method. However, considering the insufficient information in only one
fringe pattern for absolute phase retrieval, the performances of these single-shot methods
are still unsatisfactory for practical applications.

In contrast to absolute phase retrieval, relative phase retrieval is much easier and thus
single-shot methods have been the focus in related fields. The traditional PS method has
already achieved satisfying accuracy in relative phase retrieval, which is less efficient due
to the projection of patterns with different phase shifts. To reduce the number of PS steps, a
two-step PS algorithm has been presented, where only two patterns are required. To further
reduce the patterns, digital PS algorithms with only a single fringe pattern have been
proposed. In a typical work, a digital four-step PS algorithm was developed based on Riesz
transform (RT) [14]. Given only one fringe pattern, three π/2 phase-shifted patterns can
be generated using the RT algorithm. With the resulting four-step PS patterns, phases can
be retrieved pixel-wisely using conventional PS algorithms. While the RT algorithm per-
forms well for patterns with a high signal-to-noise ratio (SNR), the performance decreases
dramatically in the case of degenerated patterns with variations in surface curvature and
reflectance. Additionally, the number of generated PS steps is limited to four due to the
π/2 phase shift, which makes the algorithm more sensitive to noise. Finally, a single-shot
N-step PS method [15] has been proposed. With an algebraic addition and subtraction
process, arbitrary-step PS patterns can be generated. However, since this method relies on
Fourier transform, it may perform poorly on the sharp edges of an object.

To enhance the phase quality of sharp edges or in situations of discontinuity, deep
learning-based relative phase retrieval methods have been proposed. Assuming a mapping
between the phase and fringe pattern, a two-stage algorithm [16,17] was used to try to
solve this as a typical regression task. More specifically, it was used to try to regress an
intensity map from a single fringe pattern in the first stage; guided by this, the wrapped
phase was then estimated via regressing the numerator and denominator from the same
pattern in the second stage. To achieve further improvement, a new loss in the predicted
modulation of the fringe was introduced in [18]. Building upon these methods, the influ-
ence of the basic U-Net network structure and hyper-parameters was investigated [19], and
inspired the establishment of better structures and parameter settings for improved accu-
racy. These methods have also been extended to scenarios containing multiple stages [20]
or patterns [21], demonstrating promising performance. These kinds of methods are among
the earlier and representative works using deep learning in fringe analysis. However, since
mapping is a significant ill-posed problem, directly learning mapping from the fringe to the
phase (or equivalently from the numerator to denominator) without additional constraints
is still challenging for a deep learning model.

To simulate PS and achieve pixel-wise relative phase retrieval, researchers proposed
a one-stage algorithm called FPTNet [22]. In contrast to the aforementioned two-stage
approaches, FPTNet treats relative phase retrieval as an image generation task. It tries to
generate N-step PS patterns using only a single pattern. This novel technique used in [22]
enables us to naturally leverage the additional and abundant constraints in the intensity of
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PS fringe patterns. Consequently, this algorithm has demonstrated improved performance
in relative phase retrieval. However, it is worth noting that these methods often focus on
intensity loss during model training, which captures only local temporal information for
fringe generation. Less attention, however, has been paid to the temporal dependency
between patterns, which models the global temporal information. Therefore, there remains
room for further improvement.

In this paper, we followed the ideas of “image generation” and proposed a deep
learning model-based digital PS algorithm, termed PSNet, which can accurately predict
other PS patterns from a single pattern. Our method incorporates both local and global
temporal information during the training process, thus helping to learn inter-frame depen-
dence between adjacent patterns. Consequently, it enables more accurate digital N-step
PS generation and hence enhances relative phase retrieval. The main contributions can be
summarized as follows.

(1) The proposed PSNet allows for the generation of N-step PS patterns using only one
pattern. Additionally, the relative phases can be retrieved in a pixel-by-pixel fashion
with a typical PS algorithm, which thus performs more robustly for regions with
phase discontinuity.

(2) Unlike previous works that rely only on image intensity loss (typically regraded as
local temporal information), our method incorporates both local and global tempo-
ral information in the predicted fringe intensity, which significantly improves the
accuracy of relative phase retrieval.

(3) Since a single fringe pattern is sufficient for relative phase retrieval, the efficiency of
the PS algorithm can be improved, which will benefit its real-time application.

2. Fundamental Principle of the Proposed Algorithm
2.1. Phase Shifting Technique

A typical captured fringe pattern with a phase shift is expressed as

Ii(x, y) = a(x, y) + b(x, y) cos[ϕ(x, y) + δ(i− 1)] (1)

where a, b and ϕ are the average intensity, modulation and wrapped phase of the captured
fringe pattern, respectively. (x, y) denotes the camera image coordinate. δ is the phase shift,
and i = 1, . . ., N indicates the pattern with an i-th phase shift. N is the total number of
phase shifts.

With the conventional PS algorithm, the wrapped phase, ϕ, can be retrieved using

ϕ(x, y) = −arctan
S
C

= −arctan

N
∑

i=1
Ii sin(δi)

N
∑

i=1
Ii cos(δi)

(2)

where S and C are the sine and cosine summations, respectively.

2.2. Architecture of the Proposed PSNet

According to Equation (2), at least N ≥ 3 patterns are required for relative phase
retrieval, which means it is time-consuming to capture them. To this end, we propose a
deep learning model, called PSNet, to predict patterns Ii i = 2, . . ., N with different PSs from
a single fringe pattern, i.g. Ii, i = 1. The model is constructed with a typical Unet [23] as the
backbone. The detailed architecture of PSNet is shown in Figure 1.

As shown in Figure 1, the input of PSNet is a single fringe pattern with 640 × 480 pixels
(denoted as I1), and the output is the sequence of predicted N PS patterns, i.e., Ii, i = 1, 2, 3,
. . ., N. please note that I1 is also included in the output, but it can be optionally removed.
PSNet has an approximatively symmetric architecture, as shown in Figure 1. Near the
input end, there is one “Conv” layer, four “Conv2 + Max pooling” layers and one “Conv2”
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layer, which forms the “down sampling” process and produces a 40 × 30 × 512 feature
map. Conv represents a typical convolutional layer. Conv2 means performing convolution
operation twice sequentially on its input, and“Conv2 + Max pooling” indicates a layer
combining Conv2 and max pooling operations. In contrast to the down-sampling pro-
cess, the up-sampling process includes four Deconv + conv layers and one Conv layer.
Deconv + conv layer firstly performs deconvolution operation on the input, and its out-
put is then concentrated with the Skip connection’s output before being processed by a
convolutional layer. All convolution kernels have a size of 3 by 3.
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Figure 1. Architecture of PSNet.

2.3. Learning Temporal Dependency among the Predicted Sequence

We observe that a sine/cosine wave can be fitted to the intensity of each pixel with
different PSs. This implies a strong temporal dependency between the predicted PS patterns,
which provides an additional constraint to digital PS learning. Therefore, we have designed
a loss function to enforce PSNet to learn such a temporal dependency, which is expressed as

Ltemp = ‖S− S∗‖2 + ‖C− C∗‖2 (3)

where S* and C* are the ground truth and S and C are predicted ones in Equation (2).
Since S and C are the summation of intensity with different PSs, as shown in Equation (2),

encoding temporal dependency among the sequence, the designed loss Ltemp can succes-
fully guide PSNet to learn the temporal information during training.

Other than the mentioned loss function, we also incorporate intensity loss, Lintensity,
into the overall loss, L, as follows:

L = Lintensity + λLtemp (4)
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where λ is a weight factor. Lintensity is expressed as

Lintensity =
N

∑
i=1
‖Ii − Ii

∗‖2 (5)

These two types of information, intensity and temporal dependency, contribute to a
more accurate prediction of PS patterns.

2.4. Phase Unwrapping for Absolute Phase Retrieval

Since only wrapped phase of the fringe can be retrieved from the digital phase-shifting
patterns generated from our method, an additional unwrapping algorithm is needed to
unwrap them to absolute phases, which can then be used for 3D reconstruction. A typical
unwrapping approach based on a multi-frequency fringe pattern is explanation as follows.

Given the wrapped phases, ϕw
k, of different-frequency fringes, where k = 1, 2, . . ., M,

phase unwrapping can be achieved sequentially as follows:

ϕuw
k (x, y) = ϕuw(x, y) + Round

 ϕuw
k

fk
fk−1
− ϕw

k

2π

2π (6)

where, ϕuw
k is the unwrapped phase of the fringe with frequency, f k. f M > f M−1 > f M−2. . . >

f k > f k−1. . . > f 2 > f 1 (where k = 1, 2, . . ., and M) are the frequencies of the multi-frequency
fringes, and M is a positive integer representing the total number of frequencies. There
is only one fringe in the pattern with frequency, f 1, and there is no phase wrapping; thus,
ϕuw

1 = ϕw
1. Round(x) is the round function.

By utilizing at least two frequencies, we can obtain the absolute phase from the
wrapped phases. To evaluate the performance of our method, both the wrapped phases
and the absolute phases after unwrapping are considered. The retrieved wrapped phases
from our method are further unwrapped using the mentioned unwrapping algorithm,
resulting in the absolute phases. More details regarding the fringe frequencies can be found
in the experiment section (Section 4).

2.5. Dataset and Training

To the train the proposed model, we introduced a simulated PS pattern dataset con-
sisting of approximately 180 objects, which cover diverse shapes, reflectance and poses.
In our simulation environment, we implemented a FPP system of one 640 × 480 pixel
camera and a 1280 × 800 pixel projector. With this FPP, we captured a set of eight-step
PS patterns for each object in a particular pose. This set of patterns was considered one
training sample. We collected five samples for each object in different poses, as shown in
Figure 2. Consequently, our dataset consists of 900 samples, some of which are shown in
Figure 3.

The training of the our model was implemented in Pytorch [24]. After approximately
seven epochs, the performance of training tended to stop improving, and accordingly,
we stopped training after 20 epochs. During training, data augmentation was applied to
overcome sensitiveness to varying surface curvatures, reflectance, and lighting conditions
in the real scenario. This further enhanced the generalization of PSNet. Specifically, each
sample was augmented randomly in accordance with the following equation:

Iaugmented = kIi + Ioffset (7)

where k and Ioffset are the scale factor and intensity offset, respectively, which are selected
randomly from ranges [0.5, 1.2] and [−0.05, 0.05], respectively.
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Figure 3. Samples in the dataset.

The simulation environment was implemented using the 3Ds Max 2018 platform [25].
As one of the mainstream simulation platforms, 3Ds Max accurately simulates the imaging
processes of physical cameras and those of image projection. Furthermore, like most of similar
works [26,27], constructing a simulated dataset is “cheaper” than capturing images in real world
is. Before training, the dataset was spilt into training, validation and testing sets in a ratio of 8:1:1.
This resulted in approximately 720 samples for training, and 90 samples each for validation and
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testing. The training and testing of the proposed model were performed on a computer with
Intel Core i9-10900X@3.70 GHz, a 32 GB RAM and a Nvidia GeForce RTX3080Ti card.

3. Results

We evaluated the performance of our algorithm on both simulation and real-world
data. For comparison, we also implemented the two-stage algorithm [15] and FPTNet [22]
as the baselines. The captured fringe patterns and their retrieved phases and reconstruction
results were regarded as the ground truth (GT). Compared to the baselines, our algorithm
demonstrated comparable and even superior performance in both fringe generation and
phase retrieval. The results are provided as follows.

3.1. Evaluation on Simulation Data

Simulation was performed based on the same FPP system used during the generation of
the training data. The FPP system consisted of a camera with 640× 480 pixels and a projector
with 1280× 800 pixels. The fringe frequency and number of phase shift steps of projected fringe
patterns were 1/10 and four steps, respectively. The captured fringe patterns and predicted
ones are shown in Figure 4. It is evident that the fringe patterns predicted via PSNet are visually
identical to the GT. Furthermore, from a closer look at the cross-sections, we can also observe
that the intensity distribution of the predicted fringe is very close to the GT, except for a few
regions with random errors, as shown in Figure 4. The results above suggest the promising
performance of the proposed PSNet in the accurate prediction of PS patterns.
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cross-sections whose positions are marked by red lines in the first two columns; (from top to bottom)
fringe patterns with PS π/2, π and 3π/2.

For further validation, an additional comparison of the retrieved phase was performed.
As shown in Figure 5, the wrapped and unwrapped phases retrieved using the predicted
four-step PS patterns are also very close to the GT. Similarly, only minor differences between
the results of the proposed PSNet and GT can be observed from the comparison of cross-
sections in Figure 5. Even in regions with noticeable phase jumps in the cross-section of the
unwrapped phase, the proposed algorithm also achieved comparable performance, providing
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evidence of the effectiveness of the proposed PSNet. Please note that the unwrapped phase
was retrieved using the multi-frequency fringe phase unwrapping (MFPU) algorithm [28],
where the projected fringe frequencies for unwrapping were 1/80 and 1/1280, respectively.
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We also compared our results against the baselines. As shown in Figure 6, the retrieved
phases and reconstruction results using our algorithm remain highly consistent with
those obtained via the two-stage algorithm and FPTNet. Additionally, obvious phase and
reconstruction errors can be observed in regions with a relatively large slope in the results
of the baselines, as shown in regions in a red box in Figure 6. In contrast, the errors in
our results are considerably smaller, demonstrating the higher accuracy of our algorithm
compared to that of the baselines.
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3.2. Evaluation on Real Data

To validate the performance of our method in real-world applications, we conducted
extensive experiments in various scenarios and obtained a real-world dataset for validation.
We implemented a FPP system of a 3384× 2704-pixel camera and 1280× 800-pixel projector
to capture samples for the dataset. The frequency and number of phase shift steps for
the fringe patterns used were 1/10 and eight, respectively. The captured patterns with
0 PS were fed into our PSNet model, while the patterns with different PSs (i.e., iπ/8, i
= 1, 2, . . ., 7) were treated as the ground truth. The phases retrieved using the phase-
shifting algorithm with the captured fringe patterns were also considered the ground truth.
The captured patterns were resized from 3384 × 2704 to 640 × 480 to fit the input format of
PSNet. Similarly, additional patterns were projected for phase unwrapping, where fringe
frequencies were 1/80 and 1/1280, respectively. The dataset consisted of fringe patterns
captured on diverse objects, where the results of the three most representative objects such
as boxes (with simple planes), walnuts, and a statue with complex freeform surfaces are
presented. Please note that the real-world dataset was only used for evaluation and was
not used during the training of the PSNet.

The results of two boxes are shown in Figures 7 and 8. Similarly, there are no
noticeable differences between the predicted patterns and the GT, as shown in Figure 7.
Furthermore, comparable phase retrieval results were achieved using the predicted
patterns, as shown in Figure 8, with only small phase errors in the phase error maps.
To demonstrate the performance on discontinuous surfaces with large phase jumps, we
compared cross-sections of the phases marked with red lines in Figure 8. As shown
in Figure 9, PSNet demonstrated comparable performance for both wrapped and un-
wrapped phases in comparison to the GT. In particular, around the discontinuity between
the two boxes, there is an obvious phase jump, where the proposed PSNet performed as
well as the GT did with only minor deviations. Th results above validate the effectiveness
and generalizability of our proposed algorithm in real-world complex scenarios with
significant discontinuities.
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We also demonstrated the capability of our algorithm in generating arbitrary-step PS
patterns. As shown in Figure 10, it is obvious that PSNet-predicted PS patterns are visually
identical to the GT, and additionally, achieved accurate relative phase retrieval compared
to the GT results.

Similarly, we further compared our algorithm with the baselines, and the results are
shown in Figure 11. As expected, our algorithm still performed well for real-world complex
data. Compared with the baselines, our algorithm significantly improved phase retrieval
accuracy and reconstruction quality, demonstrating superior performance.

To further evaluate the performance quantitatively, we also provided comparison
results with respect to the following two aspects: the accuracy of fringe pattern generation
and accuracy of phase retrieval.

To assess the accuracy of fringe pattern generation, we used both the peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM) [29], the two mostly used
image quality metrics, to comprehensively and quantitatively measure the image similarity
between the predicted pattern and the ground truth. Higher values of PSNR and SSIM
indicate better similarity and hence better performance. As shown in Table 1, both the
baseline and our algorithm performed well, with a PSNR and SSIM greater than 40 and
97%, respectively, indicating the quite-good-quality generation of fringe patterns. In
addition, in contrast to the baseline, which was trained only on the image intensity loss,
our method achieved an improvement in image quality because it learnt both global and
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local temporal dependency between the generated patterns. This verifies the efficacy of our
proposed method.
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Table 1. Quantitative comparison of image similarity and phase accuracy.

Methods
Image Similarity Phase Accuracy

PSNR/dB SSIM/% MAE/Rad

FPTNet 41.3 97.2 0.217
Ours 43.5 98.2 0.133

For the evaluation of phase accuracy, we used the mean absolute error (MAE) to
characterize the phase error. The lower MAE indicates higher accuracy. The results
are shown in the last column in Table 1. Similarly, both methods achieved high phase
retrieval accuracy, with our method achieving improved accuracy compared to that of the
baseline. This further validates the effectiveness of introducing global and local temporal
dependency supervision.

We further compared the processing time (PT) of the traditional N-step phase-shifting
(PS) algorithm, FPTNet and our method. We processed around 30 samples and then
calculated the average PT for each method as its result. More specifically, for the traditional
PS algorithm, the PT for each sample only covered the time cost for phase retrieval, and the
PTs for 30 samples were averaged to produce the final processing time. For the FPTNet and
method, the PT for one sample included the time costs for both fringe pattern generation
and phase retrieval, and then, similarly, the average PT for 30 samples was used as the
result. All these comparisons were conducted using the same hardware.

The results are shown in Table 2. As we can see, while our method costed the most time
compared to the other two counterparts, reaching 0.07 s, the PT of our method remained
relatively efficient, achieving a processing speed of 14FPS, which is promising for (quasi)
real-time applications.

Table 2. Comparison of processing time cost.

Methods Traditional PS FPTNet Ours

Processing time/s 0.03 0.04 0.07

4. Discussion

According to the above experimental results, the proposed method has demonstrated
promising performance in relative phase retrieval with a single-shot fringe pattern. This
implies that the time required for image acquisition can be reduced since only one fringe
pattern is needed, demonstrating potential for real-time 3D reconstruction applications.
However, the accuracy of relative phase retrieval with our method is still lower compared
to that of the traditional PS algorithm. There is still room for accuracy improvement. In
addition, with a PSNet trained on a specific dataset with N-step PS patterns, say N = 8,
the PSNet can only generate patterns with the same number of PS steps. To generate PS
patterns with a different number of steps (e.g., N = 12), the network needs to be fine-tuned
or completely re-trained on the N = 12 PS patterns. This process may be cumbersome for
practical applications, since the additional retraining may take several hours. Therefore, a
more advanced network which is capable of arbitrary-step PS pattern generation after being
trained only once on a dataset of specific-step PS patterns needs to be further investigated.

5. Conclusions

A deep learning model-based digital phase-shifting algorithm termed PSNet is pro-
posed in this paper. Other than previous works using only intensity information for super-
vision, which only captures local temporal information, our method attempts to extract
both local and global temporal information from the generated PS patterns. The long-term
or global temporal dependency between patterns provides an additional constraint for
the PSNet to learn the digital generation process of phase shifting, which consequently
contributes a performance improvement to both the quality of the generated patterns and
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the accuracy of retrieved relative phases. Simulation and real-world data both demonstrate
the comparable and even superior performance of the proposed algorithm compared to
that of the state of the art. The proposed algorithm can be widely used in phase retrieval in
FPP, and can significantly reduce the time costs of capturing multiple patterns.
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