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Abstract: Internet of Things (IoT) devices are increasingly popular due to their wide array of
application domains. In IoT networks, sensor nodes are often connected in the form of a mesh
topology and deployed in large numbers. Managing these resource-constrained small devices
is complex and can lead to high system costs. A number of standardized protocols have been
developed to handle the operation of these devices. For example, in the network layer, these small
devices cannot run traditional routing mechanisms that require large computing powers and
overheads. Instead, routing protocols specifically designed for IoT devices, such as the routing
protocol for low-power and lossy networks, provide a more suitable and simple routing mecha-
nism. However, they incur high overheads as the network expands. Meanwhile, reinforcement
learning (RL) has proven to be one of the most effective solutions for decision making. RL holds
significant potential for its application in IoT device’s communication-related decision making,
with the goal of improving performance. In this paper, we explore RL’s potential in IoT devices
and discuss a theoretical framework in the context of network layers to stimulate further research.
The open issues and challenges are analyzed and discussed in the context of RL and IoT networks
for further study.

Keywords: Internet of Things; machine learning; reinforcement learning; resource management

1. Introduction
1.1. Context

The use of Internet of Things (IoT) devices has increased tremendously, and each
year, increasingly more users are utilizing IoT-based solutions for personal [1], finan-
cial [2], and commercial applications [3]. The IoT networking paradigm provides com-
munication between devices to connect our physical world [4]. The IoT is a network of
smart devices operating in a lossy environment to enable connectivity between things,
people, or services. These IoT devices are often battery-powered and contain limited
computational capabilities. These resource-constrained sensor devices operate in a
lossy environment and are often deployed in harsh environments [5]. IoT application
areas span from the smart grid [6], smart transportation [7], and smart industries [8],
to smart homes [9]. IoT-based applications can lead to a true realization of smart city
environments. This requires a massive number of efficiently deployed IoT devices.
The enormous use of IoT-based devices has created a complex network infrastructure
generating large amounts of data. The increases in network size and data volume lead to
poor network performance. Since these devices are battery-powered, they are therefore
referred to as low-power and lossy networks (LLN) devices [10]. Apart from their low
power, these devices are not equipped with adequate processing capabilities. Deploying
nodes is also challenging and costly due to the complexity and variability of IoT environ-
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ments. In a complex networking environment, maintaining information and resources is
becoming challenging amid growing IoT services [11].

These devices’ communication mechanisms are managed by lightweight protocols
specially designed for low-power and lossy devices. For example, in the medium access
control (MAC) layer, some IoT devices use an IEEE 802.15.4-based MAC mechanism, which
slightly differs in operation compared to the standard IEEE 802.11 MAC protocol [12,13].
The IEEE 802.15.4 standard is a fundamental building block designed for devices with
limited access to power sources and limited processing capabilities.

Similarly, the network layer plays a vital role in the architecture of IoT devices.
One key protocol designed for IoT networks is the routing protocol for low-power and
lossy networks (RPL) [14]. The RPL is also specifically tailored to address the unique
challenges of IoT devices. The network created using the RPL protocol is based on a
destination-oriented directed acyclic graph (DODAG). The RPL creates a DODAG using
a number of control overheads. The periodicity of these control messages is managed by a
trickle timer mechanism. The IEEE 802.15.4 MAC and RPL networks based on the trickle
timer mechanism are standardized protocols for LLN devices [15]. IoT devices often
struggle to manage their limited computation and energy resources using standardized
protocols. For example, backoff exponent (BE) is a parameter used in IEEE 802.15.4 and
IEEE 802.11 standards, but it functions slightly differently in each standard. In the IEEE
802.15.4 MAC layer, the BE is incremented by one each time the channel is found to be
busy, leading to an increase in the BE before frame transmission. A larger BE means
the devices wait longer before attempting to transmit. Thus, if the network density or
transmission rate increases, the blind increase in BE causes performance degradation [16].
Similarly, in the network layer, the transmission and reception of control overheads
consume valuable resources, particularly if the network size increases [17]. To enhance
the capabilities of an IoT network, an intelligent DODAG construction mechanism could
be employed in the RPL, avoiding the introduction of high control overheads.

1.2. Motivation

These resource management challenges have motivated the research community
to look for efficient ways to manage the operation of IoT devices. Thus, this opens up
new opportunities for the machine learning (ML) paradigm. ML models can enable
the classification, detection, and prediction of future events [18]. With such models,
resource sharing [19], load balancing [20], channel access [21], and routing can be
performed efficiently [22]. Recently, ML, particularly reinforcement learning (RL), has
shown promising solutions in the field of network security [23], computer vision [24],
natural language processing [25], cognitive radios (CRs) [26], 6G communication [27],
and so on. RL is a powerful tool that provides machines with the ability to perform
a specific action without being programmed. In RL, an agent learns how to perform
actions within an environment to achieve certain goals by receiving feedback in the
form of a reward [28].

RL-based techniques have achieved remarkable success in various domains during
the past few years. RL algorithms are able to utilize learning processes to adapt to chang-
ing environments and make intelligent, long-term decisions. For example, RL has been
studied for wireless networking, particularly to enhance specific networking layers [29].
Similarly, an RL-based model for a workflow scheduling framework for edge-cloud
environments was proposed to reduce congestion and execution delays [30]. RL-based
algorithms have also shown their potential in fog computing environments [31]. In ad-
dition, the integration of deep learning with RL (DRL) has demonstrated an improved
performance in complex control tasks [32]. DRL has also been applied for trajectory
planning for the unmanned-aerial-vehicle-assisted IoT [33]. The RL algorithm is also
utilized to simplify the NP-hard optimization resource management problem, demon-
strating its effectiveness in optimizing renewable energy use within long-range (LoRa)
networks [34]. RL-based approaches have shown their potential to enhance CR capa-
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bilities [35]. In a similar manner, RL-based approaches have been applied to solve the
issue of limited licensed spectrum availability. RL algorithms address the challenge of
achieving both efficient and fair coexistence between long-term evolution and Wi-Fi tech-
nologies [36,37]. Numerous algorithms driven by RL have been suggested to enhance
the efficiency of IoT devices, such as a computation offloading scheme for healthcare
applications [38], spectrum access [39] for IoT networks, and target localization for IoT
sensor selection [40]. The resource management problem is also handled by using RL
for efficient networking protocols. These studies present a viable option for effectively
managing resources within IoT devices through the application of the RL framework.

1.3. Contributions

This paper presents a comprehensive review of state-of-the-art RL-based techniques
to address resource management challenges in an IoT networking environment. Addi-
tionally, this paper also discusses a theoretical framework for applying RL in solving
routing problems in IoT devices. IoT and RL-related concepts and the literature review
have led to the development of a theoretical framework that aims to increase researchers’
understanding and knowledge for future RL-based studies for IoT devices. The frame-
work also aims to serve as an explanation for RL and IoT device’s decision-making
scenarios. In the field of the IoT, we are still at an early stage regarding ML-based
devices in general and RL-based IoT networking decisions in particular. Gregor [41]
presented their seminal paper on the nature of theory in information systems, and we
are at a stage in which we are describing the attributes of RL-based networking and
developing taxonomies, i.e., a theory for analyzing and explanation. Numerous research
opportunities exist for future development and utilization of design artifacts rooted in
robust theories to provide explanations and predictions across various levels of analysis.
To highlight prospective areas for future research in the field of RL and the IoT, both
areas could significantly benefit from exploring how RL features can be integrated into
digital design elements within IoT interfaces.

• We highlight key issues regarding IoT network resource management with a focus on
network layer improvements.

• We examine the RL concept as a potential solution to enhance IoT network
routing performances.

• A detailed overview of how RL is being applied within the IoT network layer environ-
ment is provided.

• We discuss the challenges and explore associated open issues when using RL algo-
rithms in the context of IoT networks.

The remainder of the paper is organized as follows. Section 2 presents the key concepts
of the IoT environment, including its system model, network, and MAC layer. Section 3
provides an overview of the fundamentals of RL. Section 4 comprehensively reviews
existing works and explains the RL model for IoT networking management. Section 5
discusses the challenges and open issues, followed by Section 6, which concludes the paper.

2. Internet of Things Environment
2.1. System Model

The end devices in an IoT network consist of a number of IoT sensors generating large
volumes of data in irregular patterns. Generally, the IoT network consists of one sink node
and a set of N sensor nodes. The IoT network, created using the RPL protocol, splits the
N sensor nodes further into a set of child and parent nodes. The network N = PUC,
where P = {p1, . . . , px} is the set of parent nodes and C = {c1, . . . , cx} are the child nodes.
Each sensor node participates in generating the data packet at random intervals. All the
generated data are directed toward the root node. The parent–child topology creates a
network graph, i.e., a DODAG. The node’s position in the network graph is defined with
the term ‘rank’. Rank is used to assign a numerical value to each node in the network.
These numerical values represent the distance (or cost) of the node from the root node.
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The rank serves as an indication of the node’s position within the network hierarchy. Rank
is measured with a specific objective function (OF). The standardized mechanism uses
OF zero (OF0) based on hop counts and minimum rank with hysteresis OF (MRHOF),
which is based on the expected number of transmission counts (ETX) metric. DODAGs
created using a specific OF are maintained by a control message known as a DODAG
information object (DIO). IoT nodes operating in a lossy environment can have fluctuating
traffic patterns. In the IEEE 802.15.4-based MAC layer for medium access, channel sensing
occurs only once at the end of the BE period, and the BE increases each time the channel is
found to be busy.

2.2. Network Layer

The network layer based on the RPL mechanism creates routing table entries
with the help of three control messages, i.e., the DODAG advertisement object (DAO),
DODAG information solicitation (DIS), and the DIO. These messages help to construct
the DAG structure. DODAG construction begins with the initiation of the sink node,
which broadcasts the DIO messages to propagate information about the network’s
structure and configuration, including rank information. The rank information in DIO
messages helps nodes assess their position in the network topology. Upon receiving the
DIO message, the neighboring nodes measure their rank and broadcast the information
to neighboring nodes. This process continues until all nodes within the DODAG have
received the DIO message.

DAO messages are used by non-root nodes to build reverse routes, allowing parent
nodes to track the routes to their child nodes. If a node does not receive the DIO message,
it can request to join the DODAG network by sending a DIS message. These messages help
the node to discover its neighbors and help ensure the scalability of the DODAG to allow
seamless integration of new nodes into the network. An RPL network model with a control
message sequence is illustrated in Figure 1.

Figure 1. RPL network model with a control message sequence.

The OF defines how nodes translate specific metrics, such as the link quality, energy
consumption, or latency, into a value known as rank. Rank is represented as follows [42]:

RC = h + RP + Rincrease (1)

where h represents the one hop distance defined in RFC 6719 [43]. The RC is the child
node rank, and RP is its preferred parent node rank. Rincrease refers to the numerical value
added to a node’s current rank when it becomes a parent for another node in the network.
For example, it is the ETX metric for the standardized MRHOF. Since IoT nodes are limited
in computational and energy resources, limiting the control overheads is essential. The
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RPL uses a trickle timer mechanism to control the frequency of DIO messages. It increases
the transmission frequency of DIO messages exponentially if the network is unstable.
The transmission frequency is reduced to the initial level if the network is stable. The trickle
algorithm is based on three key variables, i.e., a consistency counter referred to as counter,
the length of the trickle interval denoted as I, and a random interval of length t. It also has
two configuration parameters, i.e., minimum interval length Imin and maximum interval
length Imax, to determine the range within which the transmission intervals can vary. Each
node also maintains a trickle timer state using the current interval I and the number of
messages received within that interval k. Initially, the value of I is set within the range
of [Imin, Imax], and counter is initialized to 0. Subsequently, a transmission interval t is
selected from the interval [I/2, I]. When a node receives a DIO message, it first checks the
message consistency. In the event of consistent transmission, which means no change in
the rank status of the node, counter is incremented by 1. The DIO is transmitted if counter
is below k; otherwise, transmission is suppressed. After the expiration of I, the trickle
algorithm doubles the interval length until it reaches Imax. In the case where an inconsistent
transmission is received, the timer is reset to the initial value [44]. Thus, by using the trickle
timer algorithm, RPL nodes dynamically adjust their transmission intervals based on the
stability of the network.

2.3. MAC Layer

The IEEE 802.15.4 MAC layer operates slightly differently compared to the IEEE 802.11
access mechanism. The 802.11 MAC protocol operates based on the distributed coordinated
function (DCF) mechanism, which first senses the channel and then waits for random
backoff if the channel is found busy. If the channel is idle, it waits for a period known as
the DCF interframe space (DIFS). After the DIFS period, it randomly selects a contention
window (CW) size from 0 to 2BE − 1. The value of BE increases by one each time there
is a collision [45]. Similar to the 802.11 MAC, IEEE 802.15.4 has three variables, i.e., a
BE, the number of backoffs (NB), and a CW. The initial value of BE is set to 3 and can
increase up to a maximum of five backoff stages. Transmission starts if the channel is free.
Otherwise, the node takes a deferred approach and increases the BE period by one prior to
frame transmission [46]. Incrementing the BE during channel sensing is an energy-efficient
approach; however, this approach performs poorly as the network size increases. If the
BE is increased and no collision is detected after frame transmission, this may add an
unnecessary access delay, resulting in network performance degradation.

2.4. Resource Management Problems in IoT Environments

A significant characteristic of ubiquitous IoT devices is their constrained resources.
IoT devices contain limited resources such as low power and limited memory and pro-
cessing capabilities. The deployment of IoT devices encounters a number of limitations
at the node, network, and application levels. For example, at the network level, one
of the major problems in IoT RPL routing is the absence of a proper mechanism for
network topology discovery. This can lead to suboptimal routing and decreased
network performance. The IEEE 802.15.4 MAC layer also faces significant resource
management problems. These limited resources pose major challenges when it comes
to network scalability.

IoT devices in a large-scale network are generally heterogeneous in terms of com-
putational power, storage capacity, and communication capabilities. In many practical
applications, the complex heterogeneity of the IoT network is a critical challenge for the
devices to accomplish the aims of enhancing performance. For instance, OFs are employed
within the RPL to enhance particular network metrics, such as energy utilization, delay,
and network throughput.

One of the commonly used OFs is the ETX, which provides an estimate of the num-
ber of transmission attempts required to successfully deliver a packet between nodes
in a network. In a heterogeneous network, where the traffic transmission rate is also
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heterogeneous, as the network size grows, the computation and maintenance of ETX
values for all nodes in the network become more complex and computationally expen-
sive. The ETX metric is determined based on the reception ratio of acknowledgments
(ACKs) received from the destination node for the data packets transmitted over the link.
The calculation of ETX relies on regular data packet transmissions and the observation
of ACKs. When a source node sends a data packet to the destination node, it waits for
an ACK to confirm successful reception. If the destination node successfully receives
the packet, it returns an ACK to the source node. ETX is sensitive to network conditions,
including interference, congestion, and dynamic changes in link quality. Fluctuations in
link quality can lead to varying ETX values, making it challenging to maintain stable and
consistent routing decisions. ETX is also biased towards shorter paths, since a longer
path with more hops requires more transmissions, leading to higher ETX values. This
bias can result in suboptimal routing decisions, favoring shorter paths even when longer
paths may have a better link quality.

In the MAC layer, increasing the BE during channel sensing is an energy-efficient
approach to avoid node collisions. The idea is to increase the waiting time for a node
before accessing the shared communication channel, reducing the likelihood of collisions.
However, this approach may not perform well in larger networks or under heavy traffic
conditions. As the network size or traffic transmission increases, the likelihood of
collisions also increases, making it less effective to rely on the BE alone to manage
access to the channel. Furthermore, if the BE is increased and no collision is detected
after frame transmission, it results in an unnecessary access delay, further degrading
network performance.

3. Reinforcement Learning
3.1. Basic Concept

RL is a type of ML that focuses on learning the environment to maximize the cumula-
tive reward [47]. RL can be broadly classified into two main approaches, i.e., model-based
and model-free RL [48]. In a model-based approach, the agent considers the range of future
possibilities to decide the possible action beforehand. AlphaZero is one of the notable
examples of a model-based approach [49]. In a model-based approach, the agent’s model
based solely on its experiences can create challenges such as bias, leading to subpar perfor-
mance in a real environment. In addition, this approach is very computationally intensive,
which can lead to failures. In contrast, model-free methods are not based on “models” and
thus are easier to implement and tune, leading to a lower sample efficiency. Model-free
approaches can be split into two types based on the learning they are designed to perform.
The first is policy optimization and the second is Q-learning. Advantage actor–critic and
asynchronous advantage actor–critic [50], as well as proximal policy optimization [51], are
prime examples of this optimization method. In Q-learning, an optimal function Q∗(s, a)
is learned by approximating it using Q(s, a). Most optimization techniques either use
policy optimization or the Q-learning method. However, some algorithms such as [52] use
both methods.

In the standard RL mechanism, at each time step t, the agent takes action at based
on its current state st [53]. This action leads to a change in the environment’s state, transi-
tioning from the current state to a new state. The agent then receives a reward rt from the
environment, which informs us about the quality of the current state. The agent’s ultimate
goal is typically defined in terms of maximizing the cumulative rewards over time. Thus,
the RL algorithm provides a way for the agent to learn the optimal behavior that leads
to achieving its goal [54]. The common symbols used in RL frameworks are described in
Table 1. Figure 2 depicts the fundamental operation of an RL framework.
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Table 1. List of notations.

Parameters Labels

t Time step t
st State of the agent at t
at Action of the agent at t
rt Reward of the agent at t
A Action space
S State space
R Cumulative reward or return
π Policy
β Discount factor
α Learning rate

Figure 2. The fundamental operation of the RL mechanism.

3.2. State Space

The training of the RL system involves learning from trial and error by interacting
with the dynamic environment. The state of the environment plays a crucial role in
determining the action taken by the agent. RL models use a state–action pair or an
estimated value function that represents the desirability of the current state. In most
environments, the state transition follows the Markov property, meaning that the current
state st provides sufficient information to make an optimal decision [55]. The model
containing state, action, reward, and state transition T is referred to as the Markov
decision process (MDP). The MDP is a tuple of 〈S, A, T, R〉, in which S is the set of
all possible states, A is the set of possible actions, T is the transition function, and R
is the reward function. The system is said to be Markovian if the future state of the
environment depends only on the current state and the action taken in that state and it is
independent of the sequence of states that preceded it.

3.3. Action Space

The action space refers to the set of all possible actions that an agent can take in a
given environment. The agent’s decisions are completely dependent on the environment
in which it operates. Thus, different environments result in different action spaces [56].
In some environments, such as Atari and Go, the action space is discrete, meaning that
only a finite number of actions are available to the agent [57]. In these cases, the agent must
choose one of the available actions at each step. On the other hand, in other environments,
such as controlling a robot in a physical world, the action space is continuous [58]. This
means the agent can choose an action from a continuous range of values rather than a
limited set of options.
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3.4. Reward Function

The reward function, r(st, at), represents the value of taking a particular action, at, in a
given state, st. The goal of the agent is to determine the best policy that maximizes the total
reward. The reward function specifies the learning objectives of the agent and is updated
at each step based on the new state and action taken.

3.5. Policy

The policy refers to a strategy or a set of rules that an agent employs to determine its
actions in various states of an environment. The policy represents the strategy to map the
states to actions. A deterministic policy directly maps states to specific actions, where it
provides a probability distribution over actions. The policy is often represented by π(a|s),
where a is an action and s is a state. The optimal policy, π∗, is the one that maximizes the
expected cumulative reward received by the agent.

3.6. State Value and State–Action Value Function

The state value function, denoted as Vπ(s), is used to specify the long-term desirability
of being in a specific state. On the other hand, the state–action value function, referred
to as the Q-function (Qπ(s, a)), specifies how good it is for an agent to take certain action
a in state s under a given policy π. In Q-learning, the Q-values of state s and action a,
i.e., Q(s, a), is determined as follows [59]:

Qπ(st, at) = Eπ

[
rt+1 + β max

a′
Qπ(s′, a′) | st = s, at = a

]
(2)

Equation (2) is referred to as Bellman’s equation, in which Qπ(s, a) is the Q-value for
state s and action a under policy π, Eπ is the expected value under policy π, rt+1 is the
immediate reward received, β is the discount factor, s′ and a′ are the next state and action,
respectively, and st = s and at = a are the current state and action.

In addition, we obtain the expected discounted returns for the next potential state–
action pair. The update rule for the Q-value function is described as follows:

Q(st, at) = (1− α) ·Q(st, at) + α

(
R(st, at) + β ·∑

a′
π(a′|st+1) ·Q(st+1, a′)−Q(st, at)

)
(3)

The values of α and β are between 0 and 1. The learning rate α indicates to what extent
new information overrides the previous information. If α is 0, the agent learns nothing
and relies on previous knowledge only, whereas if α is 1, the agent only considers new
information irrespective of previous knowledge. Similarly, the discount factor β indicates
the importance of future rewards. If β is 0, that means only the current reward is considered,
and if β is 1, the agent considers long-term future rewards. The estimated Q-values are
stored in a look-up table for each s and a pair. The update rule adjusts the current Q-value
estimate based on the observed reward and the maximum expected cumulative reward
from the next state. This allows the Q-value estimate to converge towards the true Q-value
as more and more experience is gathered.

4. Reinforcement Learning for IoT Networking Management

This section presents an overview of the key algorithms that use RL to handle resource
management issues in an IoT environment. The focus of this review is to explain how
RL-based solutions in the IoT environment formulate the state space, action space, MDP,
and reward. This section also discusses the theoretical framework for applying the RL
model for RPL management.
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4.1. Related Research Studies

Routing management is crucial for decentralized and autonomous networks, particu-
larly for networks with limited resources. In addition, wireless networks are affected by
various factors, such as signal interference, signal propagation, or network traffic. All such
factors impact network communication and connectivity. The changing network dynamics
in the wireless environment affect decisions related to routing or network management.
In traditional routing, each device should learn and adapt its routing policy to handle
the varying network conditions. Conventional routing protocols rely heavily on rule-
based decisions that cannot adapt to the dynamic nature of network environments. Such
protocols cannot make performance-based routing decisions that can optimize network
throughput and reduce latency. As a result, there is a growing research focus on developing
intelligent decision-making strategies that are context-aware and employ RL techniques.
These techniques have the potential to enhance network performance in the presence of
environmental fluctuations and other uncertainties.

Numerous studies are present in the literature that have adopted RL for efficient
routing decisions. For example, Ref. [60] proposed RL-based congestion-avoided routing
(RCAR) for underwater acoustic sensor networks to reduce end-to-end delays and energy
consumption. The RL mechanism in RCAR is based on the status of the buffer size, bat-
tery, and neighboring node locations. In a similar context, Ref. [61] presents a distributed
RL-based protocol called CARMA for channel-aware RL-based multi-path adaptive rout-
ing, which facilitates next-hop selection for a node based on the number of unsuccessful
transmissions. This approach enables efficient routing decision making by dynamically
adapting to the evolving network conditions, thus improving the overall network perfor-
mance. Similarly, RL was applied in routing for CR-enabled IoT communication [62]. This
approach incorporates channel selection decisions with routing decisions at the network
layer to provide improvements to the average data rate and throughput. Another approach
proposed by Mao et al. [63] introduced a solution for routing in software-defined networks
(SDNs) that leverages convolutional neural networks (CNNs) for periodic learning of
network dynamics. This approach enables the network to continuously adapt and optimize
its routing decisions based on network conditions.

The authors of [64] explore RL of routing in CR ad hoc networks with the aim to
reduce protocol overheads and end-to-end delays and improve the packet delivery ratio.
Stampa et al. [65] proposed a DRL approach for optimizing routing in SDNs. The agent
in this approach adapts to traffic conditions to minimize network delays. The proposed
method is able to effectively learn the underlying network dynamics and optimize the
routing policy accordingly, resulting in an improved network performance. Similarly,
the authors of [66] proposed a machine-learning-assisted centralized link-state routing
system for an SDN-based network. This paper explores a routing algorithm called MLaR
that makes real-time routing decisions based on historical network parameters such as
the latency, bandwidth, signal-to-noise ratio, and distance with the help of ML. Their
proposed approach highlights the innovative aspect of applying ML to the centralized
link-state routing algorithm.

Cheng et al. [67] introduced a Q-learning-based adaptive zone partition (QAZP)
approach. In this method, an agent within a mobile anchor node is equipped with a
directional antenna to divide the network into distinct zones corresponding to individual
sinks. The zone size is adjusted to balance the power consumption, leveraging the
remaining energy of sensor nodes situated in proximity to each sink. In [68], a Q-
learning-based approach has been developed for task modeling in dynamic wireless
sensor networks (WSNs) that focuses primarily on task scheduling for cooperative sensor
nodes involved in target tracking. Wei et al. [69] proposed ISVM-Q, an algorithm that
combines the Q-learning RL technique with an enhanced supervised learning model.
ISVM-Q is designed for optimizing task scheduling within sensor nodes. In [70], a link
quality monitoring mechanism based on RL was introduced for the RPL protocol. This
approach aims to continuously update the network’s routing information and promptly
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respond to fluctuations in link quality and changes in topology, which may occur as a
result of node mobility. The authors of [71] proposed an approach to enhance the quality
of service (QoS) and security of routing in SDN-based IoT environments. The reward
function for QoS-aware routing considers parameters such as the end-to-end delay,
packet loss rate, and energy consumption. A Q-learning reliable routing approach with
a weighting agent (QLRR-WA) was introduced in [72]. The QLRR-WA algorithm aims to
optimize network performance by learning a set of weights that minimize the weighted
cost equation. The weights are represented as the states of the agents, and the agents
take continuous actions to improve their weights. The reward is determined based on
the average network latency and expected network lifetime, which encourages the agent
to improve the network’s reliability.

The authors of [73] introduced QGeo, an extension to Q-routing designed to in-
corporate unmanned robot mobility. QGeo employs periodic Hello packets to update
the GPS locations of nodes, enabling them to select the next hop based on the geographic
distance to the destination. As a result, the distance metric serves as the primary guide for
routing decisions. This approach enables more efficient and effective routing in scenarios
where unmanned robots are utilized, thereby contributing to the advancement of robotic
systems. In [74], Sharma et al. proposed tailored Q-learning in WSNs to optimize the rout-
ing efficiency by minimizing the energy consumption in sensor nodes through a modified
Q-learning technique. This technique explores alternative routes through local information
sharing. Sink nodes act as agents, broadcasting messages to other sensor nodes, allowing
them to iteratively learn and build their routing tables based on these messages.

The authors of [75] also propose a new routing approach for WSNs that aims to
improve energy efficiency during information transmission. This approach allows nodes
to dynamically select optimal neighboring nodes for energy-efficient transmission. In this
approach, the sensor nodes gather and analyze different parameters related to neighboring
nodes, such as their transmission direction, distance, and energy consumption. This
information is used to update the Q-values of the neighboring sensors, which enables the
wireless sensor to determine the most suitable neighboring sensor to transmit information
based on the Q-value. Akbari and Tabatabaei [76] also present a routing mechanism that
utilizes fuzzy logic and RL to determine optimal routes based on sensor nodes’ remaining
energy, bandwidth, and distance to the sink. The proposed approach prioritizes maximizing
the lifetime of sensor networks.

The authors of [77] proposed a routing algorithm for mesh IoT networks. The authors
aimed to enhance the energy efficiency of the routing approach by introducing a cost
function based on the transmission power and remaining energy of both the transmitting
and receiving nodes. Another RL-based technique called RLProph [78] was proposed to
treat the opportunistic environment as an MDP and apply a dynamic programming-based
iterative algorithm to enhance delivery performance. The study in [79] introduces a rout-
ing agent that utilizes Q-learning to adjust the routing policy based on local information,
aiming to achieve an optimal solution that balances network latency and lifetime. The pro-
posed agent is rewarded for actions that extend the network lifetime and decrease the
average network latency. The work in [80] proposes a multi-hop routing technique for QoS
optimization in LoRa networks using the RL mechanism. This approach optimizes trans-
mission policy parameters such as the spreading factor, bandwidth, code rate, and carrier
frequency to achieve a high QoS in LoRa communication. Kaur et al. [81] also proposed
a DRL approach to enhance the routing scheme for IoT-enabled networks. The proposed
DRL-based intelligent routing scheme reduces delay and improves the overall network
lifetime. The authors suggested a novel clustering method that aims to prevent energy
imbalances within the network. This scheme utilizes unequal clustering, multiobjective
optimization, and load balancing to enhance the network performance and lifetime. In [82],
the authors introduced a multi-hop state-aware routing approach based on traffic flow
predictions. This strategy employs recurrent neural networks in conjunction with a deep
deterministic policy gradient technique.
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Krishnan et al. in [83] proposed a model that aims to avoid energy hole issues and
inefficient data collection to preserve network stability while improving the routing
performance using a Q-learning approach. The authors of [84] present a new adaptive
routing protocol called AQ-Routing, which is based on RL to handle mobile ad hoc
network (MANET) IoT systems. The AQ-Routing technique can detect each node’s
mobility level in the network. The mobility detection model allows each node to adjust
its routing behavior based on the updated mobility factor. Pandey et al. in [85] addressed
the issue of establishing extensive connectivity among IoT devices spanning a wide
geographic region. The paper proposes an RL-based technique to address multi-hop
data transmission challenges such as higher latency, increased interference, and reduced
throughput. The proposed approach periodically updates the network’s Q-matrix and
makes relay device selections at discrete time intervals to optimize the cumulative
reward value for chosen device gateway pairs.

The authors of [86] proposed MeFi to address the challenges of maximizing the energy
efficiency and network lifetime of battery-powered sensor networks. MeFi is based on
the mean-field RL mechanism and considers the average behavior of the network nodes
instead of dealing with each node individually. The authors leverage mean field theory
to manage the vast state space caused by numerous devices by focusing on interactions
among neighbors. The authors also introduce a prioritized sampling loop-free algorithm
to prevent routing loops and discard suboptimal routing strategies. In [87], the authors
proposed a routing scheme for Internet of Medical Things networks. The proposed scheme
categorizes network traffic into three classes, customizing the QoS for each, and divides the
network into zones to reduce message exchanges. Table 2 presents a summary of related
work in the field, highlighting their contributions, application domains, and the algorithmic
models they employed.

Table 2. Related research studies on the use of RL for network management.

Reference Year Contribution Application Domain Algorithm Model

Jin et al. [60] 2019 The authors of this paper propose RL-based
congestion-avoided routing for underwater acoustic
sensor networks to reduce end-to-end delay and energy
consumption.

Underwater acoustic
sensor
networks—RCAR

Q-learning

Di Valerio
et al. [61]

2019 In this paper, the authors propose an RL-based data
forwarding scheme for a node based on the number of
unsuccessful transmissions. The node adaptively switches
between single-path and multi-path routing to optimize
energy consumption and the packet delivery ratio.

Underwater
WSN—CARMA

Q-learning

Safdar Malik
et al. [62]

2023 This paper presents a routing approach based on RL for
CRs. The idea of this study is to add the channel selection
decision capability to provide improvements in the
average data rate and throughput.

CRs—RL-IoT Q-learning

Mao et al. [63] 2019 In this paper, the authors propose a CNN-based scheme
that continuously adapts and optimizes routing decisions
based on network conditions. This approach computes
the routing path combinations with high accuracy.

SDNs CNN

Safdar
et al. [64]

2015 The authors of this paper propose RL-based routing in CR
ad hoc networks to reduce the protocol overhead and
end-to-end delay and improve the packet delivery ratio.

CRs ad hoc
networks—CRAHN

Q-learning

Stampa
et al. [65]

2017 This paper proposes a DRL approach for optimizing
routing in SDNs. The agent in this approach optimizes the
routing policy based on traffic conditions to minimize
network delays.

SDN DQL
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Table 2. Cont.

Reference Year Contribution Application Domain Algorithm Model

Cicioğlu
et al. [66]

2023 The authors of this paper proposed an ML-assisted
centralized link-state routing system for an SDN-based
network. This scheme utilizes historical data of
parameters such as the latency, bandwidth, signal-to-noise
ratio, and distance to make routing decisions.

SDN—MLaR Supervised
learning

Cheng
et al. [67]

2012 In this paper, the authors proposed load balancing in a
multi-sink WSN. This approach divides the network into
several zones based on the remaining energy of hotspots
around the sink node. ML is applied to the mobile anchor,
enabling it to adapt to traffic patterns and discover an
optimal control policy for its movement.

WSNs—QAZP Q-learning

Wei et al. [68] 2017 In this approach, the authors present a task scheduling
algorithm for dynamic WSNs that minimizes the
exchange of cooperative information and balances
resource utilization.

WSNs—QS Q-learning with
shared value
function

Wei et al. [69] 2019 In this paper, the authors introduce a Q-learning
algorithm for task scheduling in WSNs based on support
vector machine. Their proposed approach optimizes the
application performance and reduces
energy consumption.

WSNs—ISVM-Q Q-learning and
support
vector machine

Ancillotti
et al. [70]

2017 This paper proposes a link quality monitoring strategy for
the RPL in IPv6-WSN using a multi-armed bandit
algorithm. The proposed approach minimizes overhead
and energy consumption by employing both synchronous
and asynchronous monitoring.

WSNs—RL-Probe Multi-armed
bandit

Guo et al. [71] 2020 The authors of this paper propose a DRL-based
QoS-aware secure routing protocol for the SDN-IoT.
The primary objective is to design a routing protocol that
efficiently routes traffic in a large-scale SDN.

SDN—DQSP DQL

Künzel
et al. [72]

2020 This paper introduces a Q-learning approach in which an
agent adjusts weight values in an industrial WSN, leading
to improved communication reliability and reduced
network latency.

Industrial
WSN—QLRR-WA

Q-learning

Jung et al. [73] 2017 In this paper, the authors introduce Q-learning-based
geographic routing to enhance the performance of
unmanned robotic networks and address the challenge of
network overhead in high-mobility scenarios.

Unmanned robotic
networks—QGeo

Q-learning

Sharma
et al. [74]

2017 The authors of this paper introduce a tailored Q-learning
algorithm for routing in WSNs with a focus on
minimizing energy consumption, addressing the
challenge of reliance on non-renewable energy sources.

WSNs Tailored
Q-learning

Su et al. [75] 2022 This paper presents an approach to enhance energy
efficiency and prolong network lifetime using
Q-learning-based routing for WSNs. It allows nodes to
select neighboring nodes for transmission by considering
various energy consumption factors, resulting in a
reduced and balanced energy usage.

WSNs Q-learning

Akbari
et al. [76]

2020 This paper addresses the need for efficient routing
structures in sensor networks to optimize their lifetime
and reduce energy consumption. The paper combines
fuzzy logic and RL, utilizing factors such as the remaining
node energy, available bandwidth, and distance to the
sink for routing decisions.

WSNs RL with fuzzy
logic
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Table 2. Cont.

Reference Year Contribution Application Domain Algorithm Model

Liu et al. [77] 2019 The authors of this paper address the importance of
connectivity solutions for wide-area applications in IoT
networks. The proposed technique uses a distributed and
energy-efficient RL-based routing algorithm for wide-area
scenarios.

Wireless mesh
IoT networks

Temporal
difference

Sharma
et al. [78]

2020 In this paper, the authors propose routing in opportunistic
IoT networks using the Policy Iteration algorithm to
automate routing and enhance message delivery
possibilities.

IoT
networks—RLProph

Policy Iteration
algorithm

Chakraborty
et al. [79]

2022 In this paper, the authors proposed a routing algorithm
that adjusts its routing policy based on local information,
aiming to find an optimal solution that balances the
network latency and lifetime in wireless mesh
IoT networks.

Wireless mesh IoT
networks

Q-learning

Muthanna
et al. [80]

2022 This paper presents a system that optimizes transmission
policy parameters and implements multi-hop routing for
a high QoS in LoRa networks.

LoRa IoT networks—
MQ-LoRa

Soft actor-critic

Kaur
et al. [81]

2021 The authors of this paper proposed an algorithm that
divides the network into clusters based on sensor node
data loads, preventing premature network failure. This
paper addresses issues such as high communication
delays, low throughputs, and poor network lifetimes.

IoT-enabled WSNs DQL

Zhang
et al. [82]

2021 The authors of this paper use recurrent neural networks
and the deep deterministic policy gradient method to
predict the network traffic distribution. They employ a
double deep Q-network to make routing decisions based
on the current network state.

IoT-enabled WSNs RNN and the
deep deterministic
policy gradient

Krishnan
et al. [83]

2021 This paper focuses on addressing the challenge of
maximizing the network lifetime in WSNs. Q-learning is
employed to facilitate automatic learning to find the
shortest routes.

IoT-enabled WSNs Q-learning

Serhani
et al. [84]

2020 This paper explores the challenges of integrating MANETs
with the IoT and focuses on the issue of network node
mobility. The authors introduce an adaptive routing
protocol that enhances link stability in both static and
mobile scenarios.

MANETs- IoT
systems—AQ-
Routing

Q-learning

Pandey
et al. [85]

2022 In this paper, the authors address the challenge of
establishing large-scale connectivity among IoT devices.
They introduce a multi-hop data routing approach
utilizing the Q-learning method.

Low-power
wide-area networks
for IoT

Q-learning

Ren et al. [86] 2023 In this paper, the authors address the challenges of energy
efficiency and network lifetime using the mean field RL
method. Mean field theory simplifies interactions among
nodes, and a prioritized sampling, loop-free algorithm
prevents routing loops.

IoT-enabled WSNs Mean field RL

Serhani
et al. [87]

2023 In this paper, the authors introduce an efficient routing
mechanism for the Internet of Medical Things.
The proposed technique categorizes network traffic into
three classes, optimizes paths based on QoS and energy
metrics, and employs RL for path computation.

Internet of Medical
Things—EQRSRL

Q-learning
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4.2. RL Model for RPL Management

We can observe from the previous section that devices such as IoT nodes can learn
certain policies to improve the network performance. This section describes how the
RPL-based network layer described in Section 2.2 can be mapped to the RL mechanism. RL-
based RPL routing is illustrated in Figure 3. The RPL forms a DAG according to a specific
OF. The nodes construct and maintain these DODAGs using DIO messages. DIO messages
significantly contribute to the total network control overheads as they are periodically
broadcasted to maintain and update the network topology. To conserve scarce resources,
the RPL must generate minimum control overheads while maintaining network quality.

(1) State Space: State st (st ∈ S) can be defined as the state observed by the DODAG
child at time t, which refers to the rank status of the child node in the DAG. Each child
node has a set of i states, S = (0, 1, 2, . . . , i). The selection of the forwarding path in the RPL
mechanism can be based on node rank values. The MRHOF-based RPL mechanism uses
ETX for rank calculation. The rank is measured as,

Rank(x) = h(x) + Rank(y) + ETX(x, y) (4)

where h(x) is the hop-count of child node x towards the root node, Rank(y) is the selected
parent y rank, and ETX(x, y) is the ETX value between child x and parent y. The ETX value
acts as a reward function for Equation (4). The reward function is described in Equation (12).
Based on the reward function, each node updates its rank value during each state transition
process. The rank of the root node is Rank(root) = 1. Each node broadcasts a DIO message
containing its rank value. After receiving DIO messages, the nodes can generate a list of
potential parents as,

Yx = {nx ∈ N | h(nx) < h(x), ETX(x, nx) < δ} (5)

where Yx represents the list of potential parents of child node x, nx represents the set of
all one-hop neighboring nodes of child x, and δ is a threshold to remove neighbors with
unreliable links. To avoid routing loops, the child selects a forwarding path only if its
number of hops from sink nodes is less than its own hop counts h(nx) < h(x).

Figure 3. Illustration of RL-based RPL routing.
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(2) Action Space:A node can select a parent from the list of potential parents. The action
at (at ∈ A) is defined as the selection of forwarding parent y from the list of potential
forwarding parents. Environment E is defined as a wireless medium. When the IoT node
performs the action at at the time t, the state changes from st to st+1. The IoT node receives
a reward from the environment E. A node x selects a parent yx from a list of potential
parents Yx.

In a given time period t, a node x has some rank value obtained from the last iteration
using (5). At a given rank status, the node can select the next parent from the list of a finite
number of potential parents (Yx). Thus, at each state s, there is a set of a finite number of
permissible actions, which are elements of set A.

The state–action space is S× A, where S = (s1, s2, . . . , si) and A(s) =
(
a1, a2, . . . , aj

)
.

The Q-values are stored in a look-up table for each state–action pair as,

y1 · · · yj

Rank(x1)

[
Q(Rankx1,y1)

pπ
(s1,a1)

]
· · ·

[
Q(Rankx1,yj)

pπ
(s1,aj)

]

Rank(x2)

[
Q(Rankx2,y1)

pπ
(s2,a1)

]
· · ·

[
Q(Rankx2,yj)

pπ
(s2,aj)

]
...

...
. . .

...

Rank(xi)

[
Q(Rankxi ,y1)

pπ
(si ,a1)

]
· · ·

[
Q(Rankxi ,yj)

pπ
(si ,aj)

]


(6)

The reward is utilized to update the Q-value matrix Q(st, at) using Equation (2). This
current Q-value matrix affects the subsequent action selection. For action selection, we can
adopt the ε greedy mechanism. In the learning process, the learning agent balances the
short-term and long-term gains with exploration and exploitation. The ε greedy mechanism
performs the exploration using ε as a probability parameter. For action selection, a random
number rand between 0 and 1 is generated, which is then compared with the probability
parameter ε.

at =

{
argminyx∈Yx{Rank(yx)}, rand < ε,
argminai Q(st, aj), rand ≥ ε,

(7)

Exploration is performed if rand < ε. During the exploration phase, node x selects its
best alternative parent yx with a minimum rank. If rand ≥ ε, the action with the largest
return reward will be selected. Let i be the index of action from a set of actions A and ai
represent the i-th action in action set A.

(3) Reward Function:The core of Equation (4) is the reward function r(st, at). The learn-
ing objectives are achieved using appropriate reward functions. With each action at, state st
changes to st+1 and reward function r(st, at) updates to r(st+1, at+1). The reward function
r of the RPL-based network layer algorithm can be defined with regard to link quality
assessment between the child and parent node. The number of link layer retransmission
attempts reflects the throughput of an individual link. The ETX measures MAC layer frame
transmissions and retransmissions. ETX estimation involves measuring the probability of
the frame loss ratio at the link l to each neighboring node in both the forward (d f ) and
reverse (dr) directions. The probability of unsuccessful frame transmission from node x to
node y is calculated as follows [88]:

p = 1−
(

1− p f

)
× (1− pr) (8)
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where p f is the probability of a transmission failure and pr is the probability of a reception
failure. The ETX for a successful delivery of a frame within a single hop after k attempts is
measured as:

ETXl =
∞

∑
k=1

k× pk × (1− p)k−1 =
1

(1− p)
(9)

The measurement of ETX with respect to the forward delivery ratio d f , i.e., (1− p f ),
and reverse delivery ratio dr, i.e., (1− pr), is calculated as:

ETXl =
1(

d f × dr

) (10)

Alternatively, the ETX of the link is the inverse of the probability of successful packet
delivery or link reliability, represented as:

ETXl =
1

reliability (l)
(11)

The reward associated with transmitting from a child node to a parent node is defined
as follows:

R = sgn(ETXnew − ETXold) (12)

where ETXnew represents the new value of ETX, ETXold represents the previous value
of ETX, and the sign function sgn returns -1 if ETX increases and +1 if the value of
ETX decreases.

4.3. Federated Learning Model for RPL Management

This section briefly summarizes how the components of federated learning (FL)-based
solutions in the IoT environment are formulated. This section highlights the key FL concepts
and visions of using FL in IoT networks. FL has the potential to further enhance current
IoT systems. It is a particularly attractive solution to build a distributed IoT system due to
growing privacy leakage concerns.

FL in IoT networks is composed of two primary components: the data clients, such as
IoT devices, and an aggregation server acting as either a base station or an access point. FL
allows the IoT devices and a server to train a global model while keeping the raw data in
the devices. In FL-based training, each IoT device learns and trains a model using its local
dataset. This locally trained model in FL is referred to as a local model. After the training,
the devices transmit their local model to the server node or base station and then aggregate
to create a shared model, which is referred to as a global model. This FRL-empowered
mechanism can be introduced for LLN optimization. The goal of the FL mechanism is to
train a global model. To generate an FL route update model, the IoT nodes can exploit the
FL algorithm by which the participating child nodes collaboratively learn a shared model
while keeping all the training data locally. Thus, FL is a distributed collaborative approach
of IoT devices for data training with a central server node.

The general FL process includes the following key steps. (1) Initialization:The child
nodes first set up a learning parameter, such as rank measurement within the network
hierarchy. The child nodes can share their rank values with neighboring nodes through
the use of a DIO control packet. (2) DistributedLocal Training: The nodes with a similar
rank hierarchy form a learning group, and one of the nodes in the group assumes the role
of the learning server node, responsible for coordinating the training process. The learning
agent, acting as the server node, initiates the training by updating the learning model using
a locally learned model from child nodes. Each child node in a group obtains its value
function using its own local data, thereby creating a local model. (3) ModelAggregation:
After completing local training, the local models are aggregated to create a global model.
At this stage, each device has undergone local training using its own local dataset. Each
node sends its local model to the server node. After collecting all model updates from
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local IoT devices, the server aggregates them to calculate the global model. One of the
main challenges of model aggregation is the need for efficient communication between the
learners and the server node. Transmitting the entire local model from each node to the
server node can be impractical due to bandwidth constraints. The learning devices exchange
only model parameter updates such as Q-values. The frequency of communication between
child nodes and the server node depends on the FL application and network conditions.
It can be periodic, event-driven, or adaptive based on factors such as data availability or
resource constraints. In addition, synchronization in terms of the timing of model updates
is a crucial aspect of FL systems. Inconsistency in updating the local learning models may
lead to convergence issues. Convergence criteria can be based on the change in global
model parameters.

After federated averaging, the server node uses this aggregated value to obtain its
next value function. The learning agent updates the learning model using a locally learned
model from other child nodes with the same wireless environment. Model aggregation in
this scenario operates iteratively, with multiple rounds of local training and aggregation.
In each round, nodes update their local models based on the global model, and these
updates are subsequently aggregated. In this way, child nodes computing the forwarding
path can learn the wireless environment faster using a global learning model from the
learning agent. The child nodes assume a learning agent for global learning of the wireless
environment. Individual learned values may suffer from an overestimation of reward
information, leading to suboptimal or biased decision making. Each node integrates its
learned Q-values in the DIO packet to collaborate with the learning agent. Thus, it provides
a second value function for the learning agent. The global learned values in the learning
agent represent a fair estimation of the Q-value. In other words, both the local learned
values and global learned values are obtained from the same set of experiences in the same
environment. In this way, the learned Q-values have a lower chance of error variance.

5. Challenges and Open Issues of RL-Based Algorithms in IoT Networks

IoT-based applications have experienced tremendous growth, providing new perspec-
tives on data gathering and transmission. These applications, such as smart and sustainable
cities, can potentially affect diverse areas of our lives. Smart city IoT infrastructures span
from local area networks to city-wide area networks. These networks include a number of
IoT applications, such as smart street lights, smart parking management, smart surveillance
systems, and so on. These applications generally depend on the limited resources of IoT
devices, particularly energy and efficient communication resources. The RPL protocol can
be applied to manage and route data in smart street lights, facilitating real-time control
and energy conservation. Similarly, in smart surveillance systems, numerous cameras and
sensors are deployed across a city to monitor security. The RPL ensures that the data from
these devices are efficiently transmitted to central monitoring stations. RPL-protocol-based
routing aided by the RL mechanism can be helpful for such applications to reduce com-
munication overheads and energy consumption. Devices learning to route with minimum
overhead support would enable working for longer periods of time. While RL has proven
to be a robust methodology to infuse intelligence into IoT devices for communication
operations, several issues and challenges still hinder the full exploitation of RL’s potential
to aid the IoT paradigm.

This section discusses the critical challenges and corresponding open issues that need
to be addressed to employ RL-based approaches to enhance IoT device capabilities. RL-
based algorithms require time and resources to process large volumes of data during
the exploration and exploitation phases. Meanwhile, IoT device resources are limited in
terms of storage, energy, and computation. Running an RL algorithm for a long time
on IoT devices is challenging and, therefore, requires a lightweight and appropriate al-
gorithm design to handle such challenges. This section outlines the following primary
challenges and investigates the open issues related to employing RL-based methods for IoT
device networking.
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(1) Synchronization:Devices learning routes through RL-based algorithms such as
Q-learning or the policy gradient method can lead to different routing information due to
the stochastic nature of the network. The synchronization problem refers to the challenge
of ensuring that all devices in the network have consistent and up-to-date information
about the optimal routes.

(2) HighDimensions of the State–Action Space in Large Networks: The dimensions
of the state–action space can considerably affect the performance of RL-based routing
mechanisms. Particularly, if the network size increases, it makes it difficult for an IoT
device running the RL algorithm to explore all possible state–action pairs. Such a problem
is also referred to as the “curse of dimensionality,” where the number of possible states
and actions grows exponentially. Exploring the large number of samples to explore the
state–action space causes poor performance and slow convergence.

(3) Accuracyin RL Decision Making: Achieving accuracy in decision-making is one of
the critical challenges, especially in scenarios where precise actions are essential. Generally,
RL algorithms are concerned with achieving maximum rewards. However, making more
optimal decisions, such as in a scenario like autonomous driving, is of utmost importance.
Accuracy is also particularly challenging in noisy and uncertain environments. Selecting
appropriate metrics for evaluating accuracy in RL is non-trivial. Metrics should align
with the specific goals of the RL problem. For example, in the case of IoT networks,
the devices may be heterogeneous in nature and often have specific QoS requirements, such
as low latency for real-time applications or energy-efficient routing for battery-powered
devices. Finding the right balance between these objectives can be challenging, as it requires
considering multiple factors simultaneously. Accuracy can be evaluated on a per-episode
basis or aggregated over multiple episodes to obtain a more stable estimate of the agent’s
overall performance. However, in more complex tasks, accuracy may require a more
nuanced definition.

(4) ConvergenceDelay: Convergence is one of the critical factors in the operation of
the RL algorithm. The convergence rate of an RL-based routing mechanism depends on the
network size. As the number of nodes increases, the convergence rate decreases due to the
large number of state–action pairs that need to be explored. In addition, traffic patterns
and node mobility also affect the convergence rate. Due to convergence delays, the agent
or IoT device would take longer to learn and adjust its routing decision. With longer
delays, the agent may continue to transmit packets through a sub-optimal path, leading
to a high packet loss rate and lower throughput. Suboptimal path choice may also lead
to load balancing issues, leading to instability and congestion in the network. Certain
RL-based routing models can handle dynamic link properties, such as delay, reliability,
and utilization. In addition, they can manage temporary link cancellations by adjusting
the attribute weights to zero or infinity. However, they face significant challenges when
the structure or configuration of the network topology changes, such as the addition of
new links or nodes to the network. The introduction or removal of nodes from the network
results in dimensional changes in the state–action pairs of the RL model. Such a scenario
increases the computation overload, training time, and complexities.

(5) DelayedReward: Generally, immediate feedback is often available in an RL mech-
anism. However, some IoT applications can lead to a delayed or sparse reward that can
complicate the operation of the learning process. For example, adjusting a device’s power
consumption may not yield instantaneous changes in energy consumption. This delay
in receiving the feedback may hinder the agent’s ability to make intelligent decisions.
The learning agent making decisions in such environments must account for their actions’
delayed effects. Similarly, the agent must determine the contribution of past actions to
the current outcome. Approaches like value iteration, policy gradients, and model-based
RL can help agents make informed decisions in such environments. Temporal difference
learning and eligibility traces are also commonly used to handle these situations.

(6) HierarchicalLearning: In an IoT network, devices may be organized in hierarchical
structures with varying levels of abstraction. This creates a challenge and complexity in
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coordinating and optimizing actions across different levels of the hierarchy while account-
ing for local and global objectives. Such structures also introduce temporal dependencies,
where actions at one level may have cascading effects on higher levels. RL agents in such
scenarios need to be able to learn policies at different hierarchical levels while considering
their distinct objectives.

(7) DistributedDecision Making: In a large-scale network, multiple IoT devices can
collaborate to optimize a common objective, such as reducing the network delay or energy
consumption. In such coordination among agents, handling dynamic network conditions
and ensuring convergence to optimal solutions are challenging. Generally, distributed
decision making for resource-constrained IoT device networks can be achieved with the
help of edge computing to process the data. Distributed decision making may or may not
involve learning; the IoT devices can make decisions based on fixed, pre-defined rules.

(8) Multi-AgentLearning: The typical IoT network consists of a large number of IoT
devices with heterogeneous sensing, computation, and communication capabilities. Multi-
agent learning problems arise due to the distributed and dynamic nature of IoT networks.
When dealing with multi-agent learning, the RL algorithm must be able to handle limited
device resources in changing network conditions. Multi-agent learning can be applied to
develop self-organizing routing algorithms that adapt to changing networking conditions
and traffic patterns. Multi-agent systems also face problems such as credit assignments, in
which it becomes hard to determine which actions of an agent contribute to a particular
outcome. Particularly in a large-scale system, agents must be able to determine not only
their own learning objectives but also the potential consequences of their actions on other
agents. Similarly, the agents may have conflicting objectives that can lead to suboptimal
outcomes. In terms of IoT device routing scenarios, the devices can converge to Nash
equilibrium, where no device is incentivized to unilaterally change its routing strategy,
especially in a non-convex and dynamic environment. In such scenarios, techniques from
game theory can be employed to analyze and identify a Nash equilibrium.

(9) Real-timeResponsiveness: Some IoT applications, such as in healthcare or factories,
may require devices to transmit real-time information. RL algorithms have long processing
times when dealing with large-scale state–action–reward tuples, which further increases in
scenarios where state and action spaces are multi-dimensional [89]. It becomes even more
complex when the IoT network is heterogeneous, where some devices are delay-sensitive
while others are delay-tolerant. DRL algorithms can be more efficient and quick in learning
such complexities; however, running the DRL in tiny IoT devices is quite challenging.
In such scenarios, edge computing can be leveraged to offload some of the computation
and memory requirements of DRL algorithms. However, transferring a large amount of
training data increases the number of overheads and burdens on the IoT networks. Another
way to solve such a problem is through transfer learning, in which the agent shares their
learned parameters. However, this would require an effective coordination mechanism
among the devices, which would increase the convergence delay.

(10) Explorationand Exploitation Performance Trade-off: The exploration–exploitation
trade-off involves a decision between selecting already known good actions or choosing
actions that are not explored yet. Balancing exploration and exploitation directly impacts
the performance of IoT devices. Using an effective exploration strategy such as the upper
confidence bound (UCB) algorithm can help the devices to avoid actions that are known to
be suboptimal. However, the UCB algorithm requires calculating the confidence bound
for each action, which can be computationally expensive. Similarly, stochastic algorithms
like UCB usually assume that the probabilities of different outcomes occurring stay the
same over time. Such an assumption of stationarity can result in the algorithm selecting
suboptimal actions. Similarly, UCB also assumes a fixed reward function, which may not
hold in IoT applications. In IoT devices, the reward function can be dynamic due to the
varying nature of the application requirements or environmental conditions. Similarly,
algorithms like Thompson sampling, which can solve the exploration–exploitation dilemma,
are susceptible to local optima, particularly when the number of actions is large or the
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environment is complex. The large action space and complex environment also face an
exploration bias problem.

(11) EnergyEfficiency Trade-off in RL-Enabled IoT Environments: RL algorithms require
a significant number of samples to effectively learn optimal policies. In IoT networks with
limited resources, sample efficiency is crucial to reduce data collection overheads and speed
up learning. During learning, the algorithms may involve frequent exchanges of information
between nodes, leading to increased communication overheads in IoT networks. Finding
lightweight communication mechanisms is essential to minimize energy consumption.

(12) DynamicChanging Environment for RL Algorithms: IoT devices often operate in
a non-stationary environment where the underlying distribution of rewards and states can
change over time. This leads to poor performance if the environment changes significantly.
In such a scenario, meta-learning [90] can be useful for an agent to adapt to new environ-
ments. Meta-learning also often faces limited generalization problems, i.e., the ability to
adapt to a new and unseen scenario. For example, the nodes in IoT networks may join and
leave frequently. This dynamic topology can cause instability in RL algorithms, and the
routing decisions made by an RL agent may quickly become obsolete as the network topol-
ogy changes. The quick adaptation to a dynamic changing environment also depends on
the sample efficiency.

(13) Implementationin Real-World Scenarios: The primary goal of employing RL
algorithms is to optimize the network’s performance, including improving the quality of
service, enhancing the network’s energy efficiency, and reducing latency, among other
metrics. RL algorithms have proven to be an effective solution for enabling intelligent
approaches for IoT device operation and management. However, the majority of current
studies solely assess the suggested RL-assisted control strategy through simulations based
on random data or models. This approach is far from the practical environment and may
not accurately reflect the challenges and complexities of real-world wireless networks. Thus,
to enable the widespread deployment of RL-aided schemes in real-world IoT networks, it
is necessary to develop robust and efficient algorithms that operate in changing network
conditions, such as changes in traffic patterns, user behavior, and device connectivity.

(14) Multi-ObjectiveReward Design Optimization: In heterogeneous IoT networks, de-
vices can have different and multiple performance objectives, e.g., energy efficiency op-
timization or delay minimization. Thus, designing a practical multi-objective reward
function is still a challenge. Devices with different performance objectives need to coexist.
Designing a practical multi-objective reward function requires careful consideration of
the trade-offs between these objectives. One approach is to assign weights to different
objectives which determine their relative importance. However, determining these weights
can be challenging, as different devices may have different preferences. One of the ways to
find optimal multiple-objective solutions is to use Pareto optimization. However, Pareto op-
timization can also face the curse of yjr dimensionality problem as the number of objectives
increases. With the increase in decision objective variables, the computational complexity
of Pareto optimization algorithms can become prohibitively expensive.

(15) Issueswith Enabling FRL: Enabling federated learning is an even bigger challenge
for heterogeneous IoT devices with very limited resources. Apart from learning the
environment, the devices would need to share their local learning model parameters with
other devices, putting a huge burden on a tiny device. Locally computing the learning
model and sending the learned model to other devices in a network with a massive
number of heterogeneous devices are difficult. Heterogeneity refers to differences in
computation resources (i.e., CPU cycles/sec), memory resources, communication, and en-
ergy resources. Having heterogeneous parameters can lead to significant differences in
learning model accuracy.

6. Conclusions

The integration of IoT networks has extended to numerous application areas, making
IoT devices ubiquitous in facilitating seamless connectivity and data exchange. Despite the
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widespread adoption of the IoT, the IoT paradigm also presents a number of challenges,
particularly in managing scarce resources and complex networking operations. Traditional
standardized protocols, while effective in some scenarios, struggle to cope with the increas-
ing network size and data volume, leading to suboptimal network performance. These
challenges stress the need to develop a more intelligent and adaptive approach to unlock
the true potential of the IoT paradigm. To this end, machine learning, particularly RL, has
been demonstrated as a promising avenue to handle the resource management challenges
in IoT networks. This paper highlights the potential of RL for IoT device networking
mechanisms. The concept of RL is briefly introduced to emphasize its pivotal role and algo-
rithmic model in facilitating optimal decision making across various practical applications.
The objective of this study was accomplished by developing a theoretical framework that
serves as a foundational basis for advancing research within the domains of RL and IoT
device networking. The primary contribution of the proposed framework is a finer-grained
understanding of the strategic decision of the IoT networking layer by adopting an RL
algorithm, and while this contribution holds substantial theoretical implications, this study
has some limitations that should be addressed in future research. Taking the example of an
RPL-based networking layer, this article echoes the call for more research to assess more
issues related to the IoT from an RL perspective. The proposed theoretical framework
requires additional support through empirical validation.
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BE Backoff exponent
ML Machine learning
CRs Cognitive radios
LoRa Long-range
DRL Deep learning with RL
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OF0 Objective function zero
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DIS DODAG information solicitation
DCF Distributed coordinated function
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MDP Markov decision process
RCAR RL-based congestion-avoided routing
CARMA Channel-aware RL-based multi-path adaptive routing
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ISVM-Q Q-learning-based improved support vector machine
QLRR-WA Q-learning reliable routing approach with a weighting agent
SDNs Software-defined networks
CNNs Convolutional neural networks
QAZP Q-learning-based adaptive zone partition
WSNs Wireless sensor networks
MANETs Mobile ad hoc networks
MiFi Mean field RL
UCB Upper confidence bound
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