
Citation: Nisar, M.A.; Shirahama, K.;

Irshad, M.T.; Huang, X.; Grzegorzek,

M. A Hierarchical Multitask Learning

Approach for the Recognition of

Activities of Daily Living Using Data

from Wearable Sensors. Sensors 2023,

23, 8234. https://doi.org/10.3390/

s23198234

Academic Editor: Carlos M.

Travieso-González

Received: 19 August 2023

Revised: 15 September 2023

Accepted: 29 September 2023

Published: 3 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Hierarchical Multitask Learning Approach for the
Recognition of Activities of Daily Living Using Data from
Wearable Sensors
Muhammad Adeel Nisar 1,* , Kimiaki Shirahama 2 , Muhammad Tausif Irshad 1,3 , Xinyu Huang 3

and Marcin Grzegorzek 3,4

1 Department of Information Technology, University of the Punjab, Lahore 54000, Pakistan
2 Department of Information Systems Design, Doshisha University, 1-3 Tatara Miyakodani,

Kyotanabe 610-0394, Kyoto, Japan; kshiraha@mail.doshisha.ac.jp
3 Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany;

m.irshad@uni-luebeck.de (M.T.I.); x.huang@uni-luebeck.de (X.H.); marcin.grzegorzek@uni-luebeck.de (M.G.)
4 Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE),

23562 Lübeck, Germany
* Correspondence: adeel.nisar@pucit.edu.pk

Abstract: Machine learning with deep neural networks (DNNs) is widely used for human activity
recognition (HAR) to automatically learn features, identify and analyze activities, and to produce
a consequential outcome in numerous applications. However, learning robust features requires an
enormous number of labeled data. Therefore, implementing a DNN either requires creating a large
dataset or needs to use the pre-trained models on different datasets. Multitask learning (MTL) is
a machine learning paradigm where a model is trained to perform multiple tasks simultaneously,
with the idea that sharing information between tasks can lead to improved performance on each
individual task. This paper presents a novel MTL approach that employs combined training for
human activities with different temporal scales of atomic and composite activities. Atomic activities
are basic, indivisible actions that are readily identifiable and classifiable. Composite activities are
complex actions that comprise a sequence or combination of atomic activities. The proposed MTL
approach can help in addressing challenges related to recognizing and predicting both atomic
and composite activities. It can also help in providing a solution to the data scarcity problem by
simultaneously learning multiple related tasks so that knowledge from each task can be reused
by the others. The proposed approach offers advantages like improved data efficiency, reduced
overfitting due to shared representations, and fast learning through the use of auxiliary information.
The proposed approach exploits the similarities and differences between multiple tasks so that these
tasks can share the parameter structure, which improves model performance. The paper also figures
out which tasks should be learned together and which tasks should be learned separately. If the tasks
are properly selected, the shared structure of each task can help it learn more from other tasks.

Keywords: activities of daily living; composite activity; atomic activity; machine learning; wearable
sensors; hierarchical multitask learning

1. Introduction

Human activity recognition (HAR) plays a significant role in various fields like surveil-
lance, medical sciences, and sports. The popularity and availability of wearable devices
have turned wearable-based HAR into a promising research topic in machine learning
and data science in recent years. Many machine learning approaches have been applied to
build robust and generalized models for activity recognition [1–3]. Such models are called
classification models, which are constructed using a training dataset made up of sensor
data that have been labeled with the appropriate classes, such as activities. After that,
the model is utilized to estimate the class of test data that are unknown.
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To create an accurate model, researchers must first identify an appropriate abstracted
representation of the data, known as “features”, that includes discriminant properties
of the data relevant to the objective classification problem. This process is known as
feature extraction. Previously, heuristic methods were used to build features based on
prior knowledge of the sensor data for the target problem [4,5]. However, feature-learning
algorithms have rapidly surpassed these methods in terms of automatically detecting
relevant features in data. These algorithms, which employ neural networks or other
machine learning models, determine which features are significant and relevant without
the need for human intervention. They accomplish this objective by learning features from
labeled examples in datasets without prior knowledge of the problem [6].

Deep learning, also known as machine learning with deep neural networks (DNNs),
is one of the most popular feature-learning methods [7]. A DNN is composed of layers
of artificial neurons that form an ensemble. Each neuron acts as a central computational
unit characterized by its different internal parameters, such as weights and biases. When
training a DNN, these parameters are fine-tuned to allow precise classification of the
training data into their respective categories. Previous research has shown that neurons in
well-trained DNNs encode unique features that outperform the capabilities of conventional
human-evolved features. The effectiveness of DNNs in a variety of wearable computing
applications has been demonstrated repeatedly over the years [3,8].

Deep learning techniques such as Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), and Long Short-Term Memory Networks (LSTMs) are charac-
terized by the automatic discovery of deep features that enable efficient categorization
of unprocessed sensor data [9,10]. CNNs essentially function like feedforward neural
networks. In contrast, RNNs differ from CNNs by introducing a directed cycle to represent
dynamic temporal behavior, which gives them the ability to capture temporal relationships
within time-series data. LSTM networks, on the other hand, improve RNNs by using more
complex memory cells, effectively addressing the problem of the long-term dependence
associated with standard RNNs.

Thus, DNNs not only learn the characteristic features from the raw sensor data but
also perform classification to produce accurate results. However, learning robust features
requires an enormous number of labeled data. Collecting a large dataset using wearable
devices for problem-specific tasks is a difficult and challenging exercise. Most publicly
available datasets focus on specific types of tasks related to their own problem domains.
A dataset with diverse tasks that can be used as a general activity dataset is rare. Therefore,
to implement a deep neural network, either we need to create our own large dataset or we
can use the models trained on different datasets. Recently, transfer learning approaches
have been used where models are pre-trained on existing datasets and then further trained
on a smaller dataset for a particular problem to achieve good results on the latter [11].
However, it brings some challenges; e.g., the models need to be trained sequentially on
different datasets, which increases the overall training time. Another major limitation in
transfer learning is the problem of negative transfer [12]. Transfer learning is effective
when the initial and target tasks have sufficient similarity during the initial training phase.
Another challenge is to determine the appropriate number of training data for transfer
learning to ensure that the model is not overfitted. Multitask learning (MTL) [13] is another
option where multiple related tasks are learned simultaneously so that knowledge from
each task can be reused by the others. MTL can be used to train smaller datasets to achieve
robust performance. It takes advantage of the similarities and differences among multiple
tasks so that they can share the same parameter structure, which improves the performance
of the model. If the tasks are chosen appropriately, the shared structure of each task can
facilitate more learning from other tasks.

This paper presents an MTL technique that employs the combined structure of CNN
and LSTM to recognize activities of daily living (ADLs) like brushing teeth, cleaning a
room, or preparing a meal. As we know, atomic activities function as components of
ADLs or composite activities; e.g., when cleaning a room, a person mainly walks, bends,
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and squats to clean the floor with a mop and sometimes stands to clean surfaces such
as windows and tables. On the other hand, the characteristics of composite activities
may reflect the relationships between atomic activities and help further in the recognition
of atomic activities. Therefore, the proposed MTL technique aims to recognize atomic
and composite activities jointly. In recognizing atomic and composite activities, MTL can
discover the similarities between these two types of activities that are difficult to learn with
single-task learning (STL). At the same time, the differences between atomic and composite
activities are a kind of inductive bias that can help improve the generalization capabilities
of atomic and composite activity recognition models.

We provide the following scientific contributions:

• The main contribution is presenting a novel architecture for multitask learning
for tasks with different temporal scales. They are incorporated into one multitask
learning framework.

• Multitask learning does not always increase performance. Therefore, it is important to
know which tasks should be learned together to yield better results than single-task
learning. We performed extensive experiments and identified such cooperating tasks
that should be learned together, and competing tasks that should be learned separately.

• The third contribution is to present the improved results of atomic and composite
activities of CogAge datasets as compared to the previously produced results on
these datasets.

This paper is organized as follows: Section 2 presents the highly relevant existing
research regarding HAR and MTL. Section 3 provides a brief overview of the proposed MTL
approach. Section 4 provides a detailed description of all STL and MTL methods proposed
in this paper. Section 5 describes the complete evaluation procedure of the proposed
approach, including the description of the datasets, the presentation of the experiments
performed on the datasets, and the results to evaluate the proposed approach against other
state-of-the-art techniques. It also provides a discussion on the outcome of the experiments.
Finally, Section 6 provides a conclusion.

2. Related Work

In this section, we provide an overview of existing research that is highly relevant to
the proposed approach. We begin by mentioning human activity-recognition models and
then discuss approaches that use multitask learning.

2.1. Human Activity Recognition

HAR has made significant research advances in recent years. Many HAR studies, as
summarized in Table 1, are concerned with the recognition of atomic activities. For example,
Gupta et al. [14] and He et al. [15] used a triaxial accelerometer to recognize atomic activities
such as “walking” “sitting”, and “jumping”, whereas Lara et al. in [16] used a smartphone
and a chest strap to recognize similar atomic activities.

In addition to atomic activity recognition, many HAR studies also address the recogni-
tion of composite activities. Composite activity recognition has been attempted in two ways.
The first approach did not differentiate between composite activities and atomic activities,
employing identical techniques originally intended for the recognition of atomic activities.
As Dernbach et al. [17] used motion sensors such as accelerometers and gyroscopes to
detect atomic activities such as “standing” and “sitting”, they also detected composite
activities like “cleaning kitchen” and “cooking”. Bao et al. [18] employed a set of five
biaxial accelerometers to identify a spectrum of twenty human activities. Some of them
are atomic activities like “walking” and “running”, while others are composite activities
such as “working” and “eating”. Their results showed that the recognition accuracy varied
significantly between atomic activities and composite activities.

Given the complex structure of composite activities, existing methods for identifying
atomic activities struggle to categorize them effectively. Therefore, many researchers used
the second approach to recognize composite activities where HAR has been presented in
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the form of multilevel frameworks. Nisar et al. [19] proposed a multilevel framework to
recognize activities of daily living. At the first level of their framework, atomic activities
are recognized using the codebook [20] approach, and then the recognition scores of atomic
activities are used to detect composite activities employing the rank pooling approach at
the second level of their framework. In addition, these approaches [21–27] also present
hierarchical models where atomic activities are recognized at the first level and then the
composite activities that can be seen as the combinations of atomic activities are detected
at the higher level. In our proposed approach, we also present a multi-level architecture.
However, some of the above methods treated HAR as a single-label classification task. They
did not consider the correlation between atomic and composite activities, which could
improve the performance of their HAR models. In this paper, state-atomic, behavioral-
atomic, and composite activity recognition are considered as three related tasks. They are
learned together, and what is learned for one task can help the others be learned better.

Researchers have also implemented deep learning methods for HAR. For example,
Zeng et al. [28] used a CNN to extract characteristic features for HAR that allow it to cap-
ture local patterns and maintain consistency of activity data across different scales. Another
approach presented by Yang [29] employed a deep CNN for automated feature extrac-
tion from time-series data, enabling recognition of human activity and hand gestures.
Guan et al. [30] presents LSTM networks for HAR using time-series data. Their model
used various LSTM networks fused together to improve HAR performance. In the study
presented by Morales et al. [31] related to multimodal human activity detection based
on wearable sensors, they used deep convolutional and LSTM networks. Their research
demonstrated the superior detection accuracy achieved by combining CNN and LSTM
networks compared to using CNN or LSTM alone and served as inspiration for our ap-
proach. Hammerla et al. [32] examined how various deep learning techniques, including
deep feed-forward networks, CNNs, and bi-directional LSTM networks, affected human
activity recognition (HAR). Dua et al. [33] presented a multi-input CNN and Gated Re-
current Unit (GRU)-based activity-recognition approach and produced adequate results.
Challa et al. [34] and Sakorn et al. [35] also implemented approaches based on multi-branch
CNN and LSTM to recognize physical activities.

All of these studies demonstrated the effectiveness of deep learning in HAR. Never-
theless, a common challenge encountered in these studies was that deeper networks tended
to provide superior performance but were more difficult to converge. In order to address
this issue, we have employed a multi-branch architecture that is less complex and easier
to train than the aforementioned models. Notably, this method can achieve equivalent or
even better performance than deeper networks.



Sensors 2023, 23, 8234 5 of 31

Table 1. Comparison of different approaches to recognize human activities, particularly activities of daily living (ADLs).

Comparison of Human Activity Recognition Approaches

S. No. Activity Type Num. of Activities Multilevel Data Acq. Sensor(s) Features Ref.

1. atomic 6 no 1 acc. handcrafted Gupta [14]
2. atomic 4 no 1 acc. handcrafted He [15]
3. atomic 5 no 1 acc, phys. handcrafted Lara [16]
4. atomic, comp. 9, 7 no smartphone handcrafted Dernbach [17]
5. atomic 20 no 4 acc handcrafted Bao [18]
6. atomic, comp. 43 no RFID, motion sensors, camera, mic handcrafted Logan [21]
7. atomic 11 no 3 acc., 3 gyro. handcrafted Bulling [23]
8. atomic 34 no 2 acc. handcrafted Tam [24]
9. atomic, comp. 4, 5 yes smartphone handcrafted Liu1 [25]

10. atomic, comp. 18, 4 yes IMUs handcrafted Liu2 [26]
11 atomic, comp. 8, 9 yes smartphone, smartwatch, chest-starp phys. handcrafted Peng [27]
12. atomic 18 no IMUs CNN Zeng [28]
13. atomic 18 no IMUs CNN Yang [29]
14. atomic 18 no IMUs LSTM Guan [30]
15. atomic 18 no IMUs CNN + LSTM Morales [31]
16. atomic 18 no IMUs CNN + LSTM Hammerla [32]
17. atomic 12 no IMUs CNN + GRU Dua [33]
18. atomic 12 no IMUs CNN + BiLSTM Challa [34]
19. atomic 6 no IMUs CNN + LSTM Sakorn [35]
20. atomic, comp. 61, 7 yes smartphone, smartwatch, smartglasses CB + RP Nisar [19]
21. atomic, comp. 6, 55, 7 yes smartphone, smartwatch, smartglasses CNN + LSTM Proposed Approach

Acq: Acquisition; comp: composite; acc: accelerometer; gyro: gyroscope; phys: physiological sensors; CB: codebook approach; RP: rank pooling approach.
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2.2. Multitask Learning

Multitasking learning refers to a method of using the common structure of a model to
accomplish multiple tasks simultaneously [13]. When tasks are chosen wisely, this shared
structure improves the model’s ability to generalize. Multitask learning has produced
impressive results in areas such as speech recognition, text analysis, and computer vision.

In computer vision, Zhang et al. [36] have fine-tuned the optimization of facial feature
recognition along with different but subtly related tasks such as head pose estimation and
facial feature inference. Another approach [37] used a multitasking CNN architecture to
jointly perform face detection and alignment. Multitask learning has been implemented to
enhance the performance of long-term activity-recognition models by leveraging the need
for an enormous number of labeled data [38]. The learned model simultaneously predicts
activity and recognizes the start and end times of each action instance from unedited video.

Li et al. [39] proposed a framework for multitask human activity recognition that takes
into account not only activity but also the wearer’s identity and gender and the sensor’s
position on the body. They used handcrafted features, encompassing characteristics in both
the temporal and frequency domains of the original data. Classification was conducted
through a multitask learning framework comprising a fully connected network and a CNN.
In contrast to their approach, we do not use handcrafted features and instead automatically
learn features for both atomic and composite activities.

Chen et al. [40] presented a deep multitask learning framework called METIER, which
recognizes a human activity along with the user who performed that activity. Their model
jointly trains activity- and user-recognition models by employing CNN and bi-LSTM
networks on fixed-length segments of sensor data. In contrast to their approach, our
multitask learning model is learned for activities with different temporal lengths.

AROMA [41] is a framework for HAR that is closely related to our approach. The au-
thors presented models that used a CNN-LSTM-based architecture to recognize simple
and complex activities. They have jointly trained both types of activities using multitask
learning. However, our approach is different from theirs in many ways; for example, ours
learns three different tasks. Also, we do not fix the lengths of complex activities. We present
a single architecture for the activities of different temporal scales.

MTL is found to enhance the performance of shared networks compared to single-task
networks by solving multiple tasks together. Standley et al. [42] noted that multitasking can
theoretically offer other benefits as well, such as improving task-prediction accuracy and
reducing training and inference time by requiring only a single network to be trained and
evaluated rather than using separate networks for independent tasks, as well as increased
data efficiency. However, this is not always the case, as multitask performance can suffer to
the point that single-task networks are superior for individual tasks. This phenomenon
could be due to different learning rates on different tasks or due to one task exerting a
dominant influence on the learning process, which then negatively affects performance
on other tasks. Such tasks are considered to be competing tasks. On the other hand,
if the objectives of the tasks do not conflict, joint training can result in maintaining or
even improving performance on both tasks. Such tasks are referred to as cooperating
tasks. Intuitively, the advantages or disadvantages of using multitask learning seem to
depend on the relationship between the jointly trained tasks. Therefore, the authors in [42]
addressed the question of which tasks should be learned using the multitask approach and
which tasks would be better learned independently by proposing a framework that can
empirically examine the relationships among the tasks.

In the proposed multitask approach, we also empirically study these relationships
among different types of activities and propose the method that learns cooperating tasks
together and competing tasks independently. Table 2 presents a summary of the aforemen-
tioned MTL approaches.
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Table 2. Comparison of different multitask learning approaches.

Comparison of Multitask Learning (MTL) Approaches

S. No. Data No. of Tasks Tasks Type Classes per Task Len. Datasets in MTL* MTL Arch. Ref.

1. images 4 h.pose, gen, sm, gl 3, 2, 2, 2 fixed 1 shared Zhang et al. [36]
2. video 2 act, LCE 17 variable 1 shared Li [38]
3. sensors 4 act, user, gen, pos 8, 15, 2, 7 fixed 1 shared Li [39]
4. sensors 2 act, user 17, 33 fixed 1 shared Chen et al. [40]
5. sensors 2 s.act, c.act 34, 4 fixed 1 shared AROMA [41]
6. sensors 3 st, bhv, comp 6, 55, 7 variable 3 shared for comp* Proposed Approach

S. No.: serial number; Len: length of an example; Arch: architecture; h.pose: head pose; gen: gender; sm: smiling; gls: wearing glasses; act: activity; pos: position of sensor; s.act: simple
activity; c.act: complex activity; st: state; bhv: behavioral; comp: composite; Datasets in MTL*: number of datasets trained together; MTL Arch.: Multitask learning architecture; shared
for comp*: shared architecture for composite activity examples but separate channels for state and behavior activities; variable: composite activity length is not fixed.
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3. Overview of the Proposed Approach

The proposed multitask architecture aims to learn three recognition tasks, i.e., state,
behavioral, and composite activities, as shown in Figure 1. Multiple approaches have been
tested to achieve the objective of learning the aforementioned tasks with good accuracy.

Human Activity Recognition Using Multitask Learning

11
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(Brushing Teeth, Cleaning
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Figure 1. A multitask learning approach for human activity recognition using multimodal sensor
data acquired from wearable devices.

An overview of the proposed architecture that produces the best results for all types of
activities is shown in Figure 2. It contains two major parts: time-distributed CNN modules
and LSTM layers. The time-distributed CNN contains two sub-networks of multi-branch
CNN architecture for state and behavioral activities. These two sub-networks are referred
to as “State CNN Model” (SCM) and “Bhv CNN Model” (BCM). Each model consists of a
multibranch CNN module that contains two pairs of convolutional and pooling layers for
the input data of a sensor. The output of the last pooling layer of each sensor module is
concatenated and first sent to the fully connected layers and then to a softmax layer that
produces the output for each of the atomic activities.

The second part of the multitask architecture consists of LSTM and fully connected
layers. This part is used to recognize composite activities. It is important to note that
the atomic activity instances consist of shorter and fixed-length movements, whereas
composite activity instances have longer and variable lengths. The proposed approach uses
a hierarchical model to recognize composite activities. The atomic activities are trained
using their respective multibranch CNN architectures (SCM and BCM), which are also
responsible for generating the atomic scores. Composite activities are trained using a
combined architecture of the time-distributed multibranch CNN and LSTM and fully
connected layers.

The LSTM layers of the model receive input from the combined CNN part and encode
the temporal relationship within an example of a composite activity. The fully connected
and softmax layers are finally used for the prediction of a composite activity.
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Figure 2. Overview of the multitask learning architecture to learn state, behavioral, and composite
activities together.

The model is trained using the following three main steps:

• In the first step, sensor data of the state activities are sent to SCM (outlined with red
color in Figure 2), which generates state atomic scores. The loss is calculated, and the
gradients of the loss with respect to the model parameters are back-propagated to
optimize the training model of the state activities. The weights of SCM are updated in
this step.

• In the second step, the sensor data of behavioral activities are sent to BCM (outlined
with blue color in Figure 2), which generates behavioral atomic scores. The loss is
calculated using the behavioral activity labels and back-propagated to update the
weights of BCM.

• In the third step, each composite activity example is divided into fixed-length segments.
It is important to note that the number of segments is not fixed but depends on the
original length of the composite activity example. These segments are sent to SCM and
BCM to generate the state and behavioral atomic scores. The time distribution layer
gathers the atomic scores of all segments (atomic scores collector) and then passes
them to the LSTM layers. The LSTM layers receive the time-distributed atomic scores
of all segments of a composite activity instance and finds the temporal relationship
between them. The output sequence of the last layer is first sent to a fully connected
and then a softmax layer that generates recognition scores for each composite activity.
The loss function computes the gradients of the loss and performs backpropagation to
update the weights of the entire model for optimization.

This procedure is repeated in the consequent epochs during the training phase.
The proposed multitask architecture yields outstanding recognition scores as compared to
the single-tasking models for each of the three activities.

4. Methodology

This section gives a detailed methodological description of our proposed approaches
that aim to recognize M atomic and N composite activities. We begin with the follow-
ing definitions:

• Definition 1 Atomic activities (A) are simple and fixed-length (la) human activities
like “standing”, “walking”, and “opening door”. Atomic activities are divided into
two categories, state activities (S) and behavioral activities (B), such that S ⊂ A and
B ⊂ A. We have MS and MB labels for state and behavioral activity, respectively,
such that M = MS + MB. Assume that we have KA instances of atomic activities
(Equation (1)), where each instance consists of q sensor modalities. The kth atomic
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activity instance A(k) (1 ≤ k ≤ KA) is described in Equation (2). State and behavioral
activities also exhibit the same structure as mentioned in Equation (3).

A = {A(1),A(2), · · · ,A(KA)} (1)

A(k) = (s
(k)
1 , s(k)2 , · · · , s(k)q ) (2)

A(k) =

{
S (k)

B(k)
(3)

• Definition 2 Sensor modality (sm) represents the raw sensor data stream of a sensor m,
where 1 ≤ m ≤ q and m ∈ {sp− acc, sp− gyr, sp− grav, sp− linAcc, sp−magn, sw−
acc, sw− gyro, sg− acc, sg− gyr}, which yields that q = 9. Each sensor modality has
3 sensor channels, i.e., x, y, and z axes. The data of each sensor modality have their
own length lm depending upon the sampling rate of each sensor m. The length lm of
each sensor modality sm is fixed across all instances of atomic activities. Equation (4)
describes the sensors’ modalities at different time points, whereas Equation (5) shows
the values of three sensor channels at a time point t,

sm = (sm,1, sm,2, · · · , sm,t, · · · , sm,lm) (4)

sm,t = (sm,t,x, sm,t,y, sm,t,z)
T (5)

• Definition 3 Composite activities (Cs) are long-term and complex human activities such
as “brushing teeth”, “cleaning room”, and “styling hair”. Assume that we have KC
instances (as described in Equation (6)) of N composite activity classes where each
instance has its own length. Mathematically, the kth composite activity instance C(k)
(1 ≤ k ≤ KC) has a length of Tk time points. The data of composite activities also
consist of the sensor modalities described in Definition 2.

C = {C(1), C(2), · · · , C(KC)} (6)

• Definition 4 Composite activity segments (c(k)) are fixed-length segments of an instance
of the composite activity. The number of segments lck of any instance k of a composite
activity can differ depending on the length Tk of C(k). An instance of a composite
activity in terms of fixed-length segments can be described in Equation (7). Figure 3
shows the graphical representation of these segments.

C(k) = (c
(k)
1 , c(k)2 , c(k)3 , · · · , c(k)lck ) (7)

• Definition 5 Tasks for atomic activity recognition: Given an atomic activity instance A(k)

and its atomic activity label y(k)A , the goal is to find a mapping function fA : A(k) → y(k)A ,

and the predicted label fA(A(k)) : y
(k)p
A should be the actual label.

• Definition 6 Task for state atomic activity recognition: Given a state atomic activity

instance S (k) and its state activity label y(k)S , the goal is to find a mapping function

fS : S (k) → y(k)S , and the predicted label fS(S (k)) : y
(k)p
S should be the actual label.

• Definition 7 Task for behavioral atomic activity recognition: Given a behavioral atomic

activity instance B(k) and its behavioral activity label y(k)B , the goal is to find a mapping

function fB : B(k) → y(k)B , and the predicted label fB(B(k)) : y
(k)p
B should be the

actual label.
• Definition 8 Task for composite activity recognition: Given a composite atomic activity

instance C(k) and its composite activity label y(k)C , the goal is to find a mapping function

fC : C(k) → y(k)C , and the predicted label fC(C(k)) : y
(k)p
C should be the actual label.
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• Definition 9 Task for the joint recognition of state and behavioral atomic activities: Given
a set of activity instances and its corresponding state and behavioral atomic activity
labels, a state activity classifier fS and a behavioral activity classifier fB are jointly
trained by minimizing total loss L( fS) + L( fB), where L( fS) and L( fB) denote the
loss functions of fS and fB, respectively.

• Definition 10 Task for the joint recognition of state, behavioral and composite activities:
Given a set of activity instances and its corresponding state, the behavioral and
composite activity labels are for a multi-branch joint classifier in which fS and fC are
trained together in the first branch by minimizing total loss L( fS) + L( fC), and the
second branch trains fB and fC by minimizing total loss L( fB) + L( fC), where L( fC)
denotes the loss function of fC.

Figure 3. The figure shows the segmentation of a composite activity instance C(k). Two of the sensor
modalities s1 and sm are shown in the figure. The horizontal axis of the graph represents the time.

The equal-size segments of the composite activity instance are represented by c
(k)
i .

4.1. Single-Task Learning for Atomic Activities

Our approach uses CNN to extract features from the instances of atomic activities. We
first briefly introduce CNN and then explain how our approach employs it.

A CNN consists of input, output, and multiple hidden layers. Each layer contains
multiple units that are used for processing the data. The data are processed layer by layer,
where the output of the previous layer is used as input to the next layer.

The input layer receives activity data collected using wearable devices involving
several sensor modalities sm. Data are then forwarded to the hidden layers for further pro-
cessing. Hidden layers are either convolutional, pooling, or fully connected (dense) layers.

The convolutional layers extract features to provide the abstract representation of
the input data. It convolves the data received from the previous layer by employing
several convolutional kernels to generate feature maps. Equation (8) represents the sensor
modalities provided to the first convolutional layer. For the sake of simplicity, we take three
time points, for example, sm,t−1, sm,t, and sm,t+1, to form a segment f (1)t as input to the first
convolutional layer. Equation (9) explains the convolution operation to produce a feature
map at time point t for a layer l. Equation (10) describes the feature maps convolved over
all time points using one of the kernels for a layer l.

sm = (sm,1, sm,2, · · · , sm,t−1, sm,t, sm,t+1︸ ︷︷ ︸
sm,t= f (1)t

sm,t−1,

sm,t+1= f (1)t+1︷ ︸︸ ︷
sm,t, sm,t+1, sm,t+2sm,t, sm,t+1, sm,t+2, · · · , sm,lm) (8)

f (l+1)
j,t = σ(K(l)

j f (l)t + b(l)j ) (9)

f (l+1)
j = ( f (l+1)

j,1 , f (l+1)
j,2 , · · · , f (l+1)

j,t , f (l+1)
j,t+1 , · · · , f (l+1)

j,lm−1) (10)
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In these equations, f (l+1)
j,t represents the value of the jth feature map at time point t in

layer l + 1, f (l+1)
j represents jth feature map of all time points in layer l + 1, K(l)

j represents

the convolutional filter convolved over the input f (l)t to generate the jth feature map in layer

(l + 1), b(l)j is a bias and σ() represents the activation function to introduce non-linearity in

the output. For a layer l, we use F(l) convolutional filters such that 1 ≤ j ≤ F(l). Therefore,
each convolutional layer outputs F(l) feature maps.

The pooling layer performs non-linear down-sampling by implementing a pooling
function, e.g., maximum and average. It decreases the spatial size of the representations
and also reduces the number of parameters in order to make the outputted features more
robust to variations in the temporal positions of the input data. Equations (11) and (12)
explain the operation of maximum and average pooling, respectively.

f (l+1)
j,t =

p
max
i=1

( f (l)j,t×p+i) (11)

f (l+1)
j,t =

1
p

p

∑
i=1

( f (l)j,t×p+i) (12)

In these equations, f (l)j represents the value of the jth unit in layer l, and p denotes the
size of the pooling region.

Figures 4 and 5a show the CNN architecture for single sensor and multibranch mod-
ules, respectively. We implement two convolutional layers to generate feature maps from
sensor data. After each convolutional layer, we employ a maximum pooling layer to
reduce the network size and control overfitting. The convolution and maximum pooling
operations can be performed either on each sensor modality independently or across all
sensor modalities. In the proposed approach, the convolution and maximum pooling oper-
ations are performed along the time axis, which keeps each sensor channel independent
in CNN and prevents the data-compatibility issues caused by the fusion of sensor data
with different sampling rates. To introduce nonlinearity, we use the rectified linear unit
(ReLU) as an activation function in each convolutional layer. Equation (13) explains the
ReLU operation on a feature map f j.

σ( f j,t) = max( f j,t, 0) (13)

The output of the last pair of convolutional and pooling layers at each branch of CNN
is flattened into a vector sequence (φ(m)), where the time axis remains and the other axes
are flattened.

Output of last pooling layer−−−−−−−−−−−−−−−→


f1,1, f1,2, · · · , f1,C
f2,1, f2,2, · · · , f2,C

...
fR,1, fR,2, · · · , fR,C

 Flattening−−−−−→ φ(m) =



f1,1
f1,2
...

f1,C
f2,1
f2,2
...

fR,C


(14)
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Figure 4. The sensor module represents a CNN branch of our proposed model. The branch receives
raw sensor data sm of a sensor m for convolutional and max pooling layers. Each layer l receives a
feature map f (l) as input and produces an output feature map f (l+1) for the next layer.

Figure 5. The figure shows the architectures of three models. The first figure (a) shows the multibranch
architecture for the single-task learning (STL) model of atomic activities. State and behavioral
activities use this model to generate atomic scores. The second figure (b) is the architecture of the
multitask learning (MTL) model for atomic activities. They share the multibranch CNN module;
however, they exclusively use their own state and behavioral (bhv) modules. The third figure (c)
represents the architecture of the single-task learning model for composite activities. The instances
of composite activities are first sent to either STL or MTL atomic models to generate atomic scores.
Then, these scores are provided to composite activity STL model for the prediction of the labels.

The flattened vectors (φ(m)) are then concatenated to form a big joint vector Φ for all
sensor modalities, as described in Equation (15):

Φ =


φ(1)

φ(2)

...
φ(q)

 (15)

The vector Φ is forwarded to the fully connected layer to produce output vector z, as
described in Equation (16).

z = WΦ + b (16)

where vector z contains unnormalized log probabilities and W is the weight matrix.



Sensors 2023, 23, 8234 14 of 31

We use three fully connected layers in our model and the output of the last fully
connected layer serves as the input to a softmax function. The softmax function converts a
vector of numbers into a vector of probabilities, where the probabilities of each value are
proportional to the relative scale of each value in the vector z as shown in Equation (17),

qA = softmax(z) =

(
exp(z1)

∑M
j=1 exp(zj)

,
exp(z2)

∑M
j=1 exp(zj)

, · · · ,
exp(zM)

∑M
j=1 exp(zj)

)
(17)

where qA contains the atomic scores for an atomic activity instance and exp represents the
exponent function. We have also used the softmax function as a classifier that predicts the
atomic activity label, as shown in Equation (18):

fA(z) = P(yp
A = yA|z) =

exp(zyA)

∑M
j=1 exp(zj)

(18)

where z is the output of the last fully connected layer, which is sent to the softmax function,
yA is the label of the atomic activity, yp

A is the label predicted by the classifier fA, M is
the number of atomic activity labels, and zj refers to the jth element of unnormalized log
probability vector z. The predicted label is assigned to the one with the highest probability,
i.e., yA ← arg maxM

yA=1 qA.

4.2. Multitask Learning for Atomic Activities

Multitask learning for atomic activities is achieved by constructing a joint model
(as shown in Figure 5b) for state and behavioral activities where the multibranch CNN
architecture is shared between them, and then the output vector Φ is sent to the state
and behavioral modules. These modules consist of fully connected layers, as shown in
Figure 5a.

Let fS(S (k)) and fB(B(k)) be two classifiers on state activity instance S (k) and behav-
ioral activity instance B(k), respectively. Both of the classifiers use the softmax function
described in Equation (17) for classification. The respective softmax functions return the
probability vectors qS and qB for state and behavioral activities, respectively. The cross-
entropy loss function is used by these classifiers. The loss function L( fS) computes the loss
for state activities, as shown in Equation (19),

L( fS) = −
1
U

U

∑
u=1

 MS

∑
m=1

y(u)m log

 exp(z(u)m )

∑Ms
j=1 exp(z(u)j )

 (19)

The loss function L( fS) can also shown in a compact form in Equation (20). The other
loss function L( fB) is defined for behavioral activities in Equation (21)

L( fS) = −
1
U

U

∑
u=1

y(u)
S

T
log(q(u)

S ) (20)

L( fB) = −
1
U

U

∑
u=1

y(u)
B

T
log(q(u)

B ) (21)

The joint loss of the atomic activity classifier L( fA) is computed as,

L( fA) = wS · L( fS) + wB · L( fB) (22)

where wS and wB are the weights to balance L( fS) and L( fB). The goal of the proposed
multitask approach is to train the model by minimizing the joint loss function as follows:

fS, fB ← arg min L( fA) (23)
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The classification functions fS(S; θS) and fB(B; θB) have a set of parameters θS and θB
that should be minimized according to the loss function L( fA).

θS
∗, θB

∗ ← arg min
θSθB

L( fA) (24)

After training, we obtain the optimized set of parameters θS
∗ and θB

∗ in the functions
fS(S ; θS

∗) and fB(B; θB
∗), respectively.

Training a multitask model involves the backpropagation process, in which the loss
generated by the classification task of one type of atomic activity also affects the parameters
of the shared layers of the model of both activities. However, the process continues unless
we obtain the optimal set of parameters θS

∗ and θB
∗ with a minimum value of the joint loss.

4.3. Single-Task Learning for Composite Activities

We use an LSTM network for composite activity detection. LSTM networks are an
evolution of RNNs, which belong to a category of artificial neural networks characterized
by cyclic connections between neurons. This structural design makes the output of the
neurons dependent on the state of the network in the previous time steps and allows them
to store information from past data. This special property empowers RNNs to recognize
patterns with extended dependencies and capture the temporal context of input data.

RNNs are susceptible to the challenge of vanishing or exploding gradients, which occur
when the derivatives of the error function with respect to the network weights become
extremely small or excessively large during the training process. In both scenarios, the abil-
ity of the backpropagation algorithm to update the weights is compromised. To solve this
problem, an alternative to the standard neuron, known as the Long Short-Term Memory
(LSTM) cell, was introduced [43]. The LSTM cell is specifically designed to retain informa-
tion over time by storing it in internal memory and making updates, outputs, or deletions
based on the input and the state of the previous time step.

This mechanism, depicted in Figure 5c, is achieved by first generating state and
behavioral atomic scores for the segments of a composite activity instance. These segments
are sent to either the STL or MTL models of atomic activities to produce atomic scores.
The behavioral and state scores of a segment at time t are joined to form an input vector vt to
LSTM layers. The following equations delineate a set of internal computational components
called gates, each with its own weights, biases, and activation functions. These gates include
the input gate, the output gate, and the forget gate, which serve different purposes. The
input gate controls the input to the cell and preserves its memory ct; the output gate
regulates the output of the cell and prevents it from interfering with the computation of
ct+1, and the forget gate ensures that the cell’s internal memory is cleared at time t. All of
these gates operate on the cell’s input vectors vt at time t and the cell’s output from the
previous time step, ht−1, according to the following equations:

yi
t = σ(Wivt + bi +Whiht−1 + bhi) (25)

y
f
t = σ(W fvt + b f +Wh fht−1 + bh f ) (26)

yo
t = σ(Wovt + bo +Whoht−1 + bho) (27)

yc
t = tanh(Wcvt + bc +Whcht−1 + bhc) (28)

ct = y
f
t � ht−1 + y

i
t � yc

t (29)

ht = yo
t � tanh(ct) (30)

where ct and ht are the outputs of the LSTM unit and can be passed to the next time step
to iterate the aforementioned process. Operator � stands for element-wise multiplication.
W is a weight matrix, with subscripts representing the from–to relationship. For instance,
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Wi is the input gate matrix used for input vt. Similarly,W f ,Wo, andWc are also matrices
for forget, output, and cell to operate on inputs, whereas Whi, Wh f , Who and Whc are
hidden-input, hidden-forget, hidden-output, and hidden-cell matrices used to operate on
hidden states. Variables bi, b f , bo, bc, etc., are bias vectors.

We use two LSTM layers with 128 units. The output of our first LSTM unit is in-
put to the next unit. In this way, the temporal context of activity data can be learned.
The output of LSTM layers is passed to a fully connected layer, as shown in Figure 5.
Finally, the output of the fully connected layer is sent to the softmax layer, which employs
a softmax function, as described in Equation (17) and produces the vector qC that contains
probabilities for each composite activity label. Similar to the atomic activity recognition,
the predicted composite activity label is assigned to the one with the highest probability,
i.e., yC ← arg maxN

yC=1 qC, where yC is the composite activity label, and N represents the
number of composite activity labels.

4.4. Multitask Learning for Atomic and Composite Activities

In this model, all of the three types of activities are trained together. The learning
process is described below.

Let fS(S (k); θS), fB(B(k); θB), and fC(C(k); θC) be three classifiers on state activity in-
stance S (k), behavioral activity instance B(k), and composite activity instance C(k), respec-
tively. The terms θS, θB, and θC represent the parameters of the models of state, behavioral,
and composite activities, respectively. All of the classifiers use the softmax function de-
scribed in Equations (17) and (18) for classification. The cross-entropy loss function is used
by these classifiers. The three loss functions L( fS), L( fB), and L( fC) are defined for state,
behavioral, and composite activities in Equations (20), (21) and (31), respectively.

L( fC) = −
1
U

U

∑
u=1

y(u)
C

T
log(q(u)

C ) (31)

In this equation, the log function is applied to vector q(u)
C and produces the output

also in the form of a vector.
Two joint loss functions, L( fSC) and L( fBC), are computed as follows,

L( fSC) = L( fS) + L( fC) (32)

L( fBC) = L( fB) + L( fC) (33)

The goal of the proposed multitask approach is to train the model by minimizing each
of the joint loss functions as follows:

fS, fC ← arg min L( fSC) (34)

fB, fC ← arg min L( fBC) (35)

fC(C; θC) (36)

θS and θC should be minimized according to the loss function L( fSC), and θB and θC
should be minimized according to the loss function L( fBC).

θS
∗, θC

∗ ← arg min
θSθC

L( fSC) (37)

θB
∗, θC

∗ ← arg min
θBθC

L( fBC) (38)

After training, we obtain an optimized set of parameters for functions fS(S ; θS
∗),

fB(B; θB
∗), and fC(C; θC

∗). When training a multitask model of atomic and composite
activities, the backpropagation process in which the loss generated by the classification
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task of composite activities also affects the parameters of the shared layers of both branches
of the model.

5. Experimental Setup and Evaluation of Proposed Approaches

In this section, we first present the evaluation metrics that we use to compare different
methods. Then, we present the datasets we used in our experiments. Later, we discuss the
experimental settings and results for these datasets. We also show a comparative analysis
of our approach with other known and state-of-the-art methods.

5.1. Evaluation Metrics

The performance of an experiment is estimated from the number of correctly predicted
positive labels (TP), the number of incorrectly predicted positive labels (FP), the number of
correctly predicted negative labels (TN), and the number of incorrectly predicted negative
labels (FN). To indicate the classification performance of the different methods, we use
accuracy and F1-score, as mentioned in Equation (39) and Equation (42), respectively.
The F1-score is produced for each class; therefore, we compute the mean of F1-scores of
all classes and show the results in the form of average F1 (AF1) scores, as described in
Equation (43).

Accuracy =
TP + TN

TP + TN + FP + FN
(39)

Precision =
TP

TP + FP
(40)

Recall =
TP

TP + FN
(41)

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(42)

AF1 score =
1
C

C

∑
j=1

F1 scorej (43)

5.2. Dataset Description

In our experiments, we used two human activity datasets, namely CogAge-atomic and
CogAge-composite. Both datasets contain time-series data from wearable devices, as shown in
Figure 1. Each data instance consists of nine sensor modalities, and each modality contains
three sensor channels (x, y, and z). These sensor modalities are mentioned as follows:

1. Smartphone Accelerometer (sp-acc)
2. Smartphone Gyroscope (sp-gyro)
3. Smartphone Gravity (sp-grav)
4. Smartphone Linear Accelerometer (sp-linAcc)
5. Smartphone Magnetometer (sp-magn)
6. Smartwatch Accelerometer (sw-acc)
7. Smartwatch Gyroscope (sw-gyro)
8. Smartglasses Accelerometer (sg-acc)
9. Smartglasses Gyroscope (sg-gyro)

The CogAge-atomic dataset consists of two types of short-term activities, namely
state activities and behavioral activities. State activities indicate the state of a subject,
e.g., standing, sitting, and walking. Behavioral activities indicate the task a subject is
performing, e.g., drinking, cleaning the floor, and opening the door. Data for each atomic
activity instance were collected for 5 s. However, due to data-transmission issues, not
all channels necessarily have a length of exactly 5 s. Therefore, we decided to use the
first 4.5 s of each data instance. The dataset was collected by eight subjects and contains
9029 instances of 61 atomic activities, out of which 886 instances belong to 6 state activities
and the remaining 8143 instances belong to 55 behavioral activities.
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On the other hand, the CogAge-composite dataset contains the data for composite
activities in which a subject performs activities of daily living, e.g., brushing teeth, cleaning
room, and preparing food. The length of each composite activity varies according to
natural conditions. In our experiments, we used the actual length of a composite activity.
The dataset is collected by six subjects, and it contains around 900 instances of seven
composite activities.

5.3. Recognition of Atomic Activities

We used two approaches to recognize atomic activities, namely the STL and MTL
approaches. The data distribution for the experiments of the two approaches is described
in the following section.

5.3.1. Data Distribution of Atomic Activities

The data collection for CogAge-atomic was conducted separately for training and
testing phases on different days because we wanted to include variations while performing
these activities. We name such data settings as train–test settings, in which data of all sub-
jects are included in training and testing datasets. However, these datasets are completely
non-overlapping. We used 474 instances for training state activity models and tested these
models with 412 instances. To train behavioral activity models, we used 4407 instances and
tested these models with 3736 instances.

5.3.2. Description of Existing Approaches on CogAge-Atomic

The following approaches have been implemented on CogAge-atomic by Shira-
hama [20] and Nisar [19].

Codebook Approach for Atomic Activities

This is a kind of bag-of-words approach that creates a feature representation of the
data in an unsupervised manner by identifying the characteristic data segments, called
codewords, after applying a clustering algorithm. The frequencies of the learned codewords
are then used as features to represent the original data sequences. We have applied this
approach to recognize atomic activities.

CNN Approach for Atomic Activities

A multichannel CNN approach was tested to generate atomic scores for state and
behavioral activities.

5.3.3. Single-Task Learning for Atomic Activities

We begin our experiments using the STL method for state and behavioral activities,
as described in Section 4.1. Following the method, the multibranch CNN models were
trained for state and behavioral activities separately. These models consist of two modules.
The first module is called the multibranch-CNN module, as described in Figure 5a, and is
identical for both state and behavioral models. In this module, each branch receives the
raw data from one of the nine sensor modalities. Each sensor modality has different data
dimensions depending upon the sampling rate of the sensors. The raw data of a sensor
are inputted to a sensor module, as shown in Figure 4, which involves two consecutive
blocks of layers, each of which includes convolutional, RELU activation, and max-pooling
layers. The batch normalization is performed on the data prior to sending them to the
first block of layers. The outputs produced using the second blocks of all sensor modules
are first flattened and then concatenated to construct a big joint vector Φ for all sensor
modalities. Table 3 shows the information about the layers and the hyperparameters used
in the multibranch–CNN module.
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Table 3. Architecture and hyperparameters of the multibranch convolutional module, containing
the sequence of layers, the number of convolutional filters and kernel sizes, pooling, and stride sizes
used in the model.

Multibranch CNN Module: Architecture and Hyper Parameters

Layer Information
Sensors

sp-acc, sp-gyro sp-magn sg-acc
sp-grav, sp-linAcc (sw-acc, sw-gyro) sg-gyro

Input Size X, 3, 900 X, 3, 450 X, 3, 80

Batch normalization Yes Yes Yes

Conv 1
Filters 16 16, (32) 16
Kern size 64 32 8
Activation reLU reLU reLU

Max Pool 1 Pool, Stride 16, 4 16, 2 8, 2

Conv 2
Filters 32 32, (64) 16
Kern size 128 64 8
Activation reLU reLU reLU

Max Pool 2 Pool, Stride 16, 4 16,2 8,2

Flattening and Concatenation of All Branches

The second module is named either the state-layer or behavioral-layer module and
consists of three fully connected layers, including the softmax or output layer. The state
STL model contains a multibranch-CNN module and state layers, whereas the behavioral
STL model consists of a multibranch-CNN module and behavioral layers. In both models,
the respective state or behavioral layers receive the joint vector Φ. The constituent fully
connected layers in state or behavioral-layer modules are then used to perform a fusion of
the information extracted from all sensor channels. The probabilistic outputs (i.e., atomic
scores) for each of the atomic activities are obtained by their respective softmax layers.
Tables 4 and 5 show the information about layers and hyperparameters used in state layers
and behavioral layers, respectively. Both STL models used categorical cross-entropy as the
loss function.

Table 4. Architecture and hyperparameters of state layers, containing the sequence of layers, number
of units, activation functions, optimizer, and the loss function used in the model.

State Layers: Architecture and Hyper Parameters

Layer Information
Sensors

sp-acc, sp-gyro sp-magn sg-acc
sp-grav, sp-linAcc (sw-acc, sw-gyro) sg-gyro

FC 1 Units State In: 10,752, Out: 256
Activation reLU

Dropout Rate 0.3

FC 2 Units State In: 256, Out: 64
Activation reLU

Dropout Rate 0.3

Output Units State In: 64, Out: 6
Activation softmax

Optimizer: Adadelta, Learning rate: 0.0001

Loss function: Categorical Cross Entropy
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Table 5. Architecture and hyperparameters of the behavioral layers, containing the sequence of layers,
number of units, activation functions, optimizer, and the loss function used in the model.

Behavioral Layers: Architecture and Hyper Parameters

Layer Information
Sensors

sp-acc, sp-gyro sp-magn sg-acc
sp-grav, sp-linAcc (sw-acc, sw-gyro) sg-gyro

FC 1 Units Bhv In: 10,752, Out: 512
Activation reLU

Dropout Rate 0.3

FC 2 Units Bhv In: 512, Out: 256
Activation reLU

Dropout Rate 0.3

Output Units Bhv In: 256, Out: 55
Activation softmax

Optimizer: Adadelta, Learning rate: 0.0001

Loss function: Categorical Cross Entropy

The models are trained for 1000 epochs using the ADADELTA optimizer [44] with
categorical cross-entropy loss functions. The training dataset is used to train the model, and
the models are evaluated on the test dataset. The accuracy and average F1-scores are used
as evaluation metrics. The models were coded using Python 3.7 and the Pytorch library
and trained using a 32 GB RAM machine with an Intel(R) Core(TM) i7-8700 CPU and an
Nvidia GTX 1080Ti GPU.

5.3.4. Multitask Learning for Atomic Activities

The multitask models of atomic activities learn state and behavioral activities simul-
taneously. The architecture of the MTL model consists of a common multibranch-CNN
module that is connected to state and behavioral layers, as described in Figure 5b. The raw
sensor data of both state and behavioral activities are inputted to the multibranch-CNN
module that generates a vector Φ, which is forwarded to both the state and behavioral
layers. The softmax functions employed on the last fully connected layers in state- and
behavioral-layer modules produce state and behavioral scores, respectively. Categori-
cal cross-entropy functions are used to compute loss for state and behavioral activities.
The joint loss L( fA) is computed as described in Equation (22). As the number of examples
of state and behavioral activities differs in the dataset, we introduced a weighting strategy
to adjust the loss accordingly. We used five different options to adjust the weights wB for
the behavioral activity loss L( fB). Table 6 shows the results of the experiments in which
we fixed wS to 1.0 and computed results by using one of the five values for wB. The best
results were produced using wS = 1.0 and wB = 0.10. Therefore, we used this setting in
further experiments of MTL atomic models.

Table 6. Results (accuracy) obtained from multitask learning models of state and behavioral activities
using different weighting strategies. The results of the experiments are obtained by fixing the weight
for state activities, wS to 1.0, and computed results using one of the five values for the weight of
behavioral activities wB. The best results were produced using wS = 1.0 and wB = 0.10. Therefore,
we used this setting in further experiments of MTL atomic models.

Comparison of Results with Different Values of Bhv Weights (wB)
Activity Bhv Weights

1.0 0.10 0.01 0.001 0.0001
State 73.54 75.00 72.82 74.76 72.57
Behavioral 73.55 73.34 71.63 71.09 69.14
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The models are trained for 1000 epochs using the ADADELTA optimizer [44]. The train-
ing dataset is used to train the model, and the models are evaluated on the test dataset.
Accuracy and average F1-scores are used as evaluation metrics. The models were coded
using Python 3.7 and the Pytorch library and trained using a 32 GB RAM machine with an
Intel(R) Core(TM) i7-8700 CPU and an Nvidia GTX 1080Ti GPU.

5.4. Recognition of Composite Activities

Composite activities are also learned using two different approaches, namely the STL
and MTL approaches. The training and testing data distribution for the experiments is
described in the following section.

5.4.1. Data Distribution of Composite Activities

Similar to the CogAge-atomic dataset, data collection for the CogAge-composite
dataset was performed separately for the training and testing phases on different days
to capture activity data with variations. Since the number of instances in the composite
dataset is comparatively smaller, we trained the models with the following three data
settings to show the generalization of the trained models:

• Train–Test: in this setting, the models were trained and evaluated on the data collected
separately for the training and testing phases on different days. All subjects were in-
volved in both sessions of data collection. The training dataset consists of 453 instances
of composite activities, whereas the testing dataset consists of 449 activity instances.
There was no overlapping of instances between the training and testing datasets.

• Leave-one-subject-out cross-validation (LOSO-CV): in this setting, the models were
iteratively trained with data from five subjects and then evaluated with data from
another single subject. In this configuration, each activity was tested once and included
five times in the training set. This approach mitigates potential bias resulting from
splitting the data while reducing the variance of the results.

• Holdout: in this setting, the CogAge composite dataset was split into a training and a
testing part using a holdout method. The training part included the data from three
subjects (specifically, S1, S3, and S4), comprising a total of 481 composite activity
instances. The testing part, on the other hand, used the data from the remaining three
subjects (S2, S5, and S6), which comprised a total of 421 activity instances.

5.4.2. Description of Existing Approaches on CogAge-Composite

The following approaches were implemented on CogAge-composite by Nisar [19] and
Amjad [45].

Max Pooling (MP) and Average Pooling (AP) Approaches for Composite Activities

Max pooling and average pooling are widely recognized techniques for dimensionality
reduction in input data while preserving the essential information in the output. In the
context of composite activity recognition, these pooling techniques are used to convert a
matrix of atomic scores into a feature vector. Both pooling methods produce feature vectors
with a dimensionality of 61 for each composite activity instance.

Rank Pooling (RP) Approach for Composite Activities

Rank pooling represents a temporal pooling method that gathers relevant information
during the execution of a composite activity. This is achieved by training a learning-to-rank
model and then using the parameters obtained from this learned model as new features for
the composite activity.

5.4.3. Finding Optimal Length of Composite Activities

The CogAge-composite dataset contains composite activity instances with varying
lengths. Our initial thought was to fix the instances to a certain length. To find an optimal
length, we performed the segmentation of the composite activity instances in three different
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lengths, i.e., 18, 45, and 90 s. We began our experiments for the recognition of composite
activities by training the models with fixed-length instances and produced results for all
three segment sizes. Table 7 shows the results on different lengths. We found out that as
we increase the lengths, we achieve better results in both single-tasking and multitasking
models. Therefore, we decided to use the actual length of each activity instance to obtain
the most optimal results in our final experiments. The models trained with actual lengths
produced the best results.

Table 7. Comparative results (accuracy) obtained from different methods, including multitask
learning for atomic and composite activities and the single-task learning of composite activities using
different lengths.

Comparison of Results Using Different Lengths of Composite Activity Instances

Length MTL STL
State Bhv Composite Holdout Train-Test

18 s 64.56 30.61 80.63 39.90 77.92
45 s 44.66 32.35 81.85 42.38 81.47
90 s 69.18 67.01 82.83 46.31 83.21
Actual 72.82 71.63 92.87 54.87 90.89

5.4.4. Single-Task Learning for Composite Activities

Composite activity-recognition models are trained in a hierarchical approach. The raw
sensor data of composite activities are first sent to atomic activity-recognition models to
obtain 61 atomic scores, which are then used to recognize composite activity using the
LSTM module. However, atomic activity-recognition models require the sensor data to
have a certain length. Therefore, composite activity instances are divided into fixed-length
segments in the time dimension. As each activity instance has a different length, the number
of segments of each instance can be different depending on its length. A time-distributed
layer is implemented to generate the sequences of atomic scores for each temporal segment
of a composite activity instance. These sequences of atomic scores are forwarded to
the LSTM module. The LSTM module contains two LSTM and fully connected layers.
The probabilistic scores for each of the seven composite activities are produced by the
softmax function.

The generation of atomic scores for the temporal segments of composite activities was
achieved by using either of the two atomic recognition approaches, i.e., the STL or the MTL
atomic model. In the case of the STL atomic models, the raw sensory data of temporal
segments are sent to both state STL and behavioral STL models. The former produces
6 state scores and the latter produces 55 atomic scores. The scores are concatenated and
then provided to LSTM modules. In the case of the MTL model, the raw sensory data
are sent to the combined MTL atomic model that generates sequences of 61 atomic scores,
which are forwarded to the LSTM module.

Table 8 describes the hyperparameters of the LSTM module. The composite models are
trained for 1000 epochs using the ADADELTA optimizer [44] with categorical cross-entropy
loss functions. The training dataset is used to train the model, and the models are evaluated
on the test dataset. Experiments have been performed in holdout and LOSO-CV data
settings. Tables 9–11 show the results in these three settings, respectively. The accuracy and
average F1-scores are used as evaluation metrics. The models were coded using Python
3.9 and the Pytorch library and trained by using a 256 GB RAM machine with an Intel(R)
Core(TM) i7-8700 CPU and an Nvidia GeForce RTX 2080 GPU.
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Table 8. Architecture and hyperparameters of the LSTM module, containing the sequence of layers,
number of units, activation functions, optimizer, and the loss function used in the model.

LSTM Module: Architecture and Hyper Parameters

Layer Information

Timedistributed- Input: Sensors’ data of all (lck) segments of an instance C(k)

State model Output: An array of lck score-vectors; each vector contains 6 state scores
Timedistributed- Input: Sensors’ data of all (lck) segments of an instance C(k)

Behavioral model Output: An array of lck score-vectors; each vector contains 55 behavioral scores

Concatenation of state and behavioral score-vectors

LSTM layers
Input size: 61
Hidden units: 128
Num of layers: 2

Output Input size: 128, Output size: 7

Optimizer: Adadelta, Learning rate: 0.00001

Loss function: Categorical Cross-Entropy

Table 9. Comparison of results of state and behavioral activities obtained from different methods.
The results have been compared using three methods, “codebook and SVM approach”, “multibranch
CNN using single-task learning(STL)”, and “multibranch CNN architecture using multitask learn-
ing(MTL)”, as explained in the methodology section. The atomic and composite models were trained
and evaluated using train–test data settings.

Recognition of State, Behavioral & Composite Activities (Train-Test)

Method State Behavioral Composite
Atomic Composite Acc AF1 Acc AF1 Acc AF1

Codebook RP 88.58 88.22 68.23 67.92 81.49 80.92
Codebook RP + MP + AP 88.49 87.98
CNN RP 92.41 92.32 71.83 71.68 82.89 82.57
STL Multibranch-CNN STL Td LSTM 93.69 92.71 73.66 73.22 91.31 90.89
MTL Multibranch-CNN STL Td LSTM 77.43 77.48 72.03 71.30 91.98 91.79

MTL_Atomic_Composite 74.27 73.25 72.19 71.66 92.87 92.32
MTL_(State-Comp, Bhv-Comp) 95.15 95.07 73.93 73.38 93.99 93.76

Table 10. Comparison of results of state and behavioral activities obtained from different methods.
The results have been compared using three methods: codebook and SVM approach, multibranch
CNN using single-task learning (STL), and multibranch CNN architecture using multitask learning
(MTL), as explained in the methodology section. The atomic models were trained and evaluated using
train–test settings, whereas composite activity models were trained and evaluated using train–test
data settings.

Recognition of State, Behavioral and Composite Activities (Holdout)

Method State Behavioral Composite
Atomic Composite Acc AF1 Acc AF1 Acc AF1

Codebook RP 88.58 88.22 68.23 67.92 61.48 60.91
Codebook RP + MP + AP 63.64 63.65
CNN RP 92.41 92.32 71.83 71.68 54.98 54.31
STL Multibranch-CNN STL Td LSTM 93.69 92.71 73.66 73.22 59.62 53.61
MTL Multibranch-CNN STL Td LSTM 77.43 77.48 72.03 71.30 55.11 51.76

MTL_Atomic_Composite 76.94 76.33 71.63 71.42 76.01 75.80
MTL_(State-Comp, Bhv-Comp) 94.90 94.85 73.48 73.10 70.55 69.01
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Table 11. Comparison of results of state and behavioral activities obtained from different methods.
The results have been compared using three methods: codebook and SVM approach, multibranch
CNN using single-task learning(STL), and multibranch CNN architecture using multitask learn-
ing(MTL) as explained in the methodology section. The atomic models were trained and evaluated
using train-test settings whereas composite activity models were trained and evaluated using LOSO-
CV data settings.

Recognition of State, Behavioral & Composite Activities (LOSO-CV)

Method State Behavioral Composite

Atomic Composite Acc AF1 Acc AF1 Acc AF1

Codebook RP 88.58 88.22 68.23 67.92 64.58 62.23
Codebook (RP + MP + AP) 88.58 88.22 68.23 67.92 68.65 64.39
CNN RP 92.41 92.32 71.83 71.68 56.80 52.85
STL Multibranch-CNN STL Td LSTM 93.69 92.71 73.66 73.22 77.37 76.60
MTL Multibranch-CNN STL Td LSTM 77.43 77.48 72.03 71.30 72.22 70.11

MTL_Atomic_Composite 75.00 74.96 72.18 71.66 82.31 80.67
MTL_(State-Comp, Bhv-Comp) 93.77 93.07 73.73 73.38 81.28 80.72

5.4.5. Multitask Learning for Composite Activities

In the MTL approach, composite activities are trained together with state and behav-
ioral activities. Figure 6 describes the architecture of MTL models of atomic and composite
activities. Two MTL approaches were tested in our research study. In the first approach, all
three activities were trained together. In each epoch, state, behavioral, and composites were
trained. The joint loss was accumulated, and backpropagation was performed to update
the weights of all trainable parameters of the model.
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Figure 6. The architecture of the multitask learning model for atomic and composite activities.
The first figure (a) shows the multitask learning of state and composite activities. The second figure
(b) shows the multitask learning of behavioral and composite activities.
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In the second approach, two parallel MTL branches were used in the model. State and
behavioral activities were trained only with composite activities but not with each other.
Both atomic activities have their own exclusive architecture, and they do not share the
layers. The training process begins by inputting the raw sensor data of state and behavioral
activities to their respective layers. The loss is computed after each batch of instances.
Once all the atomic activity instances have been passed through their respective state and
behavioral modules, the losses are accumulated by the loss functions L( fS) and L( fB).
Then, the instances of composite activities are segmented along their time dimension.
A time-distributed layer receives these temporal segments and passes them to the recently
updated state and behavioral modules to generate the sequences of 61 atomic scores.
These sequences of atomic scores are forwarded to the LSTM module, which produces
the probabilistic scores for each of the seven composite activities. The loss is computed
by the function L( fC). The accumulated loss of composite activities is used to update
the parameters of the LSTM module, as well as the parameters of state and behavioral
modules. Thus, in each iteration, not only are the state and behavioral modules updated by
their own backpropagation process but their parameters are also influenced by composite
activities. Such an MTL architecture produces the best recognition scores for the three types
of activities.

The composite models are trained for 1000 epochs using three ADADELTA optimiz-
ers [44] with categorical cross-entropy loss functions. The optimizerst and the optimizerbh are
used to update the trainable parameters of state and behavioral modules. The optimizercomp
is used to update the parameters of the whole model. The training datasets of the three
types of activities are used to train the model, and they are evaluated on their test datasets.
For composite activities, the experiments have been performed in both holdout and LOSO-
CV data settings. Table 10 shows the results obtained from holdout settings. Table 12 shows
the result after each pass of the MTL method obtained from LOSO-CV data settings. It
can be seen that for some subjects, the obtained results are comparatively better than the
others. Table 11 also shows the results in LOSO-CV settings, along with other methods.
The accuracy and average F1-scores are used as evaluation metrics. The models were coded
using Python 3.9 and the Pytorch library and trained using a 256 GB RAM machine with
an Intel(R) Core(TM) i7-8700 CPU and an Nvidia GeForce RTX 2080 GPU.

Table 12. Comparison of results obtained from multitask learning method. The two-branch MTL
model was jointly trained for state and composite activities in one branch and behavioral and
composite activities in the second branch. The results were obtained in the LOSO-CV settings of the
composite activity dataset.

LOSO-CV: Multitask Learning for State, Bhv and Composite Activities

Pass State Behavioral Composite

Pass-1 93.45 73.82 90.00
Pass-2 95.39 73.93 71.93
Pass-3 92.72 73.56 77.63
Pass-4 93.20 74.44 81.51
Pass-5 94.16 72.79 90.71
Pass-6 93.69 73.85 75.91

Average 93.77 73.73 81.28

5.5. Results and Discussion

We have summarized all the results in three tables, Tables 9–11. The tables show
the methods used for atomic and composite activities and the results obtained with these
methods for each type of activity. Table 9 shows the results obtained in train–test data
settings for the composite activities. The first two rows list the results of state and behavioral
atomic activities obtained using the codebook approach. The same rows list the results
of the composite activities obtained using the rank pooling approach and also by using a
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combination of the max, average, and rank pooling approaches. The third row shows the
results of atomic activities obtained with the CNN approach and the results of composite
activities obtained using the rank pooling approach. The fourth row of the table shows the
results of atomic and composite activities obtained with STL approaches. The fifth row
shows the results of atomic activities obtained with the MTL approach, while the results of
composite activities are presented with the STL time-distributed LSTM model. The sixth
row shows the results obtained with the MTL model for all three activities. The seventh
and final row shows the results of the MTL models where the composite activities were
trained with state and behavioral activities separately.

The proposed MTL methods yielded the results of all activities with an improvement
of almost 3%, 2%, and 6% for the recognition tasks of state, behavioral, and composite
activities, respectively, as compared to the previous methods applied to these datasets.
It can also be observed that the MTL method applied to cooperative tasks like state and
composite, and behavioral and composite, yields the best performance overall.

Table 10 shows the results obtained in the holdout data settings of the composite
activities. It is a subject-independent setting to show the generalizability of our proposed
methods. The format of the table is similar to Table 9. Likewise, the proposed methods also
produce the best results in this data setting. An improvement of almost 2.5%, 2%, and 13%
can be seen as compared to the previous methods in the recognition tasks of state, behavior,
and composite activities respectively.

Table 11 shows the results obtained in another subject-independent, i.e., LOSOCV, data
settings of the composite activities. The format of the table is similar to the two previous
tables, and the proposed methods also yield the best results as compared to the previous
methods. An improvement of almost 1.5%, 2%, and 14% can be observed for the recognition
tasks of state, behavior, and composite activities respectively.

Table 12 shows the results obtained after each step in the LOSOCV data settings using
the MTL method. It can be observed that the composite activity data of each subject have
significant variations for two main reasons: firstly, the individual’s own way of performing
the same activity, and secondly, the settings in which the data collected were different
according to the subject’s household arrangement. Such variations influenced the results
of composite activities within the range of almost 20% accuracy. However, due to the
generalizability of our proposed method, the average accuracy is still significantly higher
than the previous methods.

To determine which tasks are better learned with the single-task learning paradigm and
which tasks should be better learned with the multitask learning paradigm, we conducted
extensive experiments in which one category of activities was learned with the single-task
learning approach and two other categories of activities were learned with the multitask
learning approach. These experiments were conducted in three sub-settings. In the first
sub-setting, we trained the models for the atomic activities independently. Then, using
the pre-trained models, we performed the training for behavioral and composite activities
together. In the second setting, the behavioral activities were learned individually, but the
state and composite activities used the pre-trained model of behavioral activities during
their training phase. In the third sub-setting, the state and behavioral activities were learned
together, while the composite activities were trained using the pre-trained models of the
two atomic activities. The results are shown in Table 13.

Table 13. Performance comparison of multitask learning for two types of activities.

Activity State Behavioral Composite

State + Behavioral 77.43 72.03 -
State + Composite 95.17 - 92.43
Behavioral + Composite - 73.92 93.32



Sensors 2023, 23, 8234 27 of 31

Highlights of the Results

• We have presented and tested with STL and MTL approaches to recognize activities
of daily living. Tables 9–11 show the results obtained from different methods.

• All of our proposed approaches outperform the previous methods implemented on
the CogAge-atomic and Cogage-composite datasets.

• MTL methods improve the results when they are implemented on cooperating tasks.
The performance of the MTL methods deteriorates when they are implemented for
competing or conflicting tasks.

• State activities are learned better in the STL method than in the MTL method with
behavioral activities. It is observed that the performance of state activities deteriorates
by 17% to 21% when they are learned together with behavioral activities. The main
reason for this high ratio of misclassification is that behavioral activities are acquired
when a person is in one of the state postures; therefore, each behavioral activity
instance contains not only the data of the behavioral task but also the data of any of the
state postures. This phenomenon causes conflict in classifying state activity, especially
when it comes to classifying sitting and standing state activities (see Table 14) because
the data for most of the behavioral activities were acquired in these two state postures.

• Behavioral activities also do not improve when learned along with state activities.
However, they do not show a striking deterioration in performance when learned
together with state activities. This is because their dataset is very large compared to
the state activities.

• Composite activities are better learned when they are learned together with either
state or behavioral activities or both.

• The best results for all three activities are obtained when state and behavioral activities
are learned with composite activities but not with each other.

• As composite activities also contain data from different behavioral and state activities,
then why are the state activities not confused or misclassified when trained with
composite activities? The possible reason could be that each segment of a composite
activity contains different behavioral and state tasks and is not fixed to only one state
or behavioral task for the entire duration of a segment of the composite activity. This
phenomenon is different from what we observed when training the state and behavior
together, because in this situation, the same pose is maintained for the entire length
of the segment. Therefore, composite activity data not only help in obtaining good
accuracy for the state but also in the joint training of state and behavior, in which
the accuracy of composite activities is improved by using LSTM models.

Table 14. Confusion matrix of state activities obtained from the MTL model of state and behavioral
activities. The values in the circles show that most of the misclassification occurred in sitting and
standing state activities.

State Activities—Confusion Matrix—MTL State and Behavioral

Activities Bending Lying Sitting Squatting Standing Walking

Bending 69 0 0 0 0 0
Lying 6 63 0 0 0 0
Sitting 43 2 19 3 0 0

Squatting 17 0 2 48 0 0
Standing 43 0 0 0 27 0

Walking 5 0 0 0 0 65

6. Conclusions and Future Work

In this paper, we proposed our multitask learning framework to jointly solve atomic
and composite activity-recognition tasks. For atomic activity recognition, our proposed
method used a multibranch CNN to find deep features automatically; these characteristics
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are discriminating and task-specific. For the composite activity recognition, the features
after the use of the CNN are gathered using a TimeDistributed layer before inputting them
into an LSTM network. In this way, we can completely use the temporal context of activity
data. We presented several architectures for the three tasks in which they have a shared
structure (i.e., the CNN, TimeDisributed, and LSTM layers), which can benefit all tasks
and improve the generalization ability of our multitask learning methods. We evaluated
our approach on two datasets, i.e., CogAage-atomic and CogAge-composite, and the
experimental results showed that the proposed model was able to exhibit a competitive
performance in both atomic and composite activity recognitions as compared to the single-
task learning methods.

In addition to proposing the multitask methods, we described the problem of task
compatibility, as it pertains to multitask learning. We performed experiments to determine
which tasks should be trained jointly and which tasks should be trained separately in a
given setting.

We have observed that the state activities are learned better when they are learned
along with composite activities, while the models of behavioral activities produce the best
results when they are learned alone. However, when behavioral activities are learned along
with composite activities, they still produce results close to their best results. Our third
observation is that the models of composite activities produce the best results when they are
learned together with state and behavioral activities. So we experimented with a framework
in which two parallel multitask learning sequences are performed. In the first sequence,
we trained state and composite activities together, and in the second sequence, we trained
behavioral and composite activities together. This proposed framework produced the best
results for all activities.

The proposed approach yielded improved results as compared to the other state-of-
the-art methods on the CogAge-atomic and CogAge-composite datasets. However, it has
one limitation: the accuracy of behavioral activities is still under 75%, which seems to be
unsatisfactory. The first reason could be the diversity of the behavioral activities, as they
were performed in a variety of ways. The second possible reason could be their conflict
with the other activities, which might lead to comparatively low results, as the instances of
behavioral activity contain information not only about the behavior but also about the state
of the subject. Therefore, as a future work, a disentanglement procedure can be used to
separate the behavior from the state. Generative adversarial networks can be useful for
such disentanglement [46]. The behavior-specific data should then be used for improved
classification. Another approach that can help to improve the recognition mechanism is
the transformer-based approach that relies on self-attention-based mechanisms [47]. Such
models have been useful in learning long sequences in natural language processing, so they
should yield good results for long sequences of time-series data acquired from wearable
motion sensors as well [48,49]. Therefore, these approaches should be used to recognize
behavioral and composite activities.
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