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Abstract: Current vehicles include electronic features that provide ease and convenience to drivers.
These electronic features or nodes rely on in-vehicle communication protocols to ensure functionality.
One of the most-widely adopted in-vehicle protocols on the market today is the Controller Area
Network, popularly referred to as the CAN bus. The CAN bus is utilized in various modern,
sophisticated vehicles. However, as the sophistication levels of vehicles continue to increase, we now
see a high rise in attacks against them. These attacks range from simple to more-complex variants,
which could have detrimental effects when carried out successfully. Therefore, there is a need to
carry out an assessment of the security vulnerabilities that could be exploited within the CAN bus. In
this research, we conducted a security vulnerability analysis on the CAN bus protocol by proposing
an attack scenario on a CAN bus simulation that exploits the arbitration feature extensively. This
feature determines which message is sent via the bus in the event that two or more nodes attempt to
send a message at the same time. It achieves this by prioritizing messages with lower identifiers. Our
analysis revealed that an attacker can spoof a message ID to gain high priority, continuously injecting
messages with the spoofed ID. As a result, this prevents the transmission of legitimate messages,
impacting the vehicle’s operations. We identified significant risks in the CAN protocol, including
spoofing, injection, and Denial of Service. Furthermore, we examined the latency of the CAN-enabled
system under attack, finding that the compromised node (the attacker’s device) consistently achieved
the lowest latency due to message arbitration. This demonstrates the potential for an attacker to take
control of the bus, injecting messages without contention, thereby disrupting the normal operations
of the vehicle, which could potentially compromise safety.

Keywords: Controller Area Network (CAN); autonomous systems; intrusion; security; vulnerability
andthreat modeling

1. Introduction

As the number of electronic features embedded in modern cars continues to increase,
cars can now be compared to advanced computers operating with numerous digital
nodes [1]. These nodes provide drivers with a wide range of benefits that transcend
mere transportation, encompassing enhanced comfort and ease. Examples of these nodes
are the Anti-lock Braking System (ABS), the Engine Control Module (ECM), the airbag
module, infotainment module, the instrumental cluster panel, and so on. The successful
integration of advanced car nodes has been made possible by various features, particularly
the in-vehicle communication protocol. In-vehicle communication protocols ensure that
the various nodes within the car communicate using standardized methods with each
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other. Simply put, these protocols allow for the effective exchange of information and data
between the different electronic nodes when the car is in operation [2–5]. One of the highly
prevalent in-vehicle protocols used in modern cars is the Controller Area Network (CAN)
bus [6]. Most car vendors adopt this communication protocol because it offers reliability
and real-time capabilities with minimal power consumption [7]. The technical terms for
nodes in a CAN-enabled system are Electronic Control Units (ECUs). As earlier stated,
these nodes or ECUs refer to the various electronic systems effectively communicating with
each other via the CAN bus in the car.

The automobile industry has witnessed technological growth over the years, with con-
tinuous improvements in the vehicles being produced yearly. A notable improvement in
this industry is the invention of autonomous vehicles or self-driving cars [8]. Famous auto-
mobile companies that produce these high-performance cars are Tesla, Waymo, General
Motors (GM), and Ford. It is worth mentioning that these famous automakers employ
the CAN bus in the manufacturing of self-driving cars to facilitate the required integra-
tion and coordination functionalities amongst the various ECUs, primarily due to the
numerous benefits it offers, such as increased reliability, improved efficiency, resilience,
and cost-effectiveness.

Although the CAN bus was initially introduced in the early 1980s [9], its significance in
today’s technological era cannot be overemphasized, especially as automakers continue to
adopt it in deploying increasingly sophisticated vehicles. However, a major area of concern
arises when it comes to security. The CAN bus was not initially designed with security
as a focal point [10]; instead, its primary focus was on reliability in communication while
using minimal resources such as wires and power consumption. This design philosophy
facilitated the integration of ECUs into vehicles, increasing their overall sophistication. As a
result, as cars became more sophisticated, the frequency of attacks against them increased.
Therefore, there is an imperative need to investigate the security vulnerabilities associated
with the CAN bus.

Despite the numerous benefits of the CAN, the issue of security is of utmost impor-
tance, as the adverse effects of an attack on a CAN-enabled vehicle can be life-threatening
to passengers and cause financial liabilities to car manufacturers [11]. A common security
flaw highlighted by most researchers within the CAN bus is the lack of encryption in the
messages exchanged between the various ECUs [12,13]. That is, the messages are sent in
plain text. For instance, attackers can hack into the car to tamper with the ECUs (such as
the ABS and/or airbags), intercept the messages, and alter them to make them ineffective
when needed [14].

In this paper, we aimed to extend our work in [1], where we detailed the steps to create
a testbed for a CAN-enabled system with four ECUs attached to it. The testbed created in
this work will be the base system for investigating the security vulnerabilities within the
CAN bus. We discuss the proposed attack scenario and implemented this attack scenario
in three cycles to compare the effect of the attack as time increases. Furthermore, we
conducted a comparative analysis to monitor the system’s performance during normal and
attack operations. Additionally, we studied the latency within the system to monitor the
time delay between messages transmitted via the bus. The result of the assessment revealed
that the CAN arbitration feature could be used as an attack vector by an attacker to flood
the bus with irrelevant messages after gaining access to the bus. This attack prevents the
effective transmission of legitimate messages from other nodes within the vehicle, thereby
disrupting its general operations. Furthermore, the examination of the latency distribution
of the vehicle under attack in the proposed scenario shows the extensive control that the
attacker has over the vehicle in transmitting messages. We recorded relatively low latency
from the compromised node (attacker’s device) in all scenarios monitored and high latency
for legitimate messages from other nodes on the bus. This shows that the attacker is able
to send messages rapidly with little competition from other nodes due to the malicious
messages consistently winning the arbitration process.
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The rest of this paper follows the following structure: Section 2 gives an overview
of the CAN bus protocol and existing relevant works. Section 3 discusses the testbed
used as the base system for security assessment and the threat model identified in this
research. Section 4 discusses the security vulnerability in this research, explaining the
proposed attack design, the implementation cycles, and the simulations. Section 5 explains
the experiments, the results, and the latency of the system under attack. Finally, Section 6
explains the conclusion, limitations, and future works.

2. Background and Related Work

In this section, we give a brief overview of the CAN bus protocol, highlighting its
structure, communication mechanism, and message format. Additionally, we examine
existing literature that tackles attacks on the CAN bus system over the years.

2.1. CAN Bus Overview

A thorough grasp of the CAN bus protocol is required to develop a standardized
CAN bus system for cars. Here, we summarize the fundamental components of the CAN
bus protocol. We focus on the bus architecture and data transmission mechanisms within
the bus.

Bosch [9] created the CAN bus in 1983 as a multi-master message broadcast system. It
was created to communicate at a maximum signaling rate of 1 Mbps. Unlike traditional
networks such as USB or Ethernet, CAN does not use the same protocol to send huge data
blocks from one node to another. It is a serial communication bus created for the vehicle
industry by the International Standardization Organization (ISO). Its major goal was to
eliminate complicated wiring harnesses in favor of a simpler two-wire bus arrangement.
The CAN bus comprises a controller and a transceiver responsible for transmitting and
receiving information among subsystems [15]. It incorporates object and transfer layers for
message filtering and status handling.

Communication within the CAN bus occurs through different pair signals: CAN high
and CAN low. The standard data rates for the configuration include 125 kbps, 500 kbps,
and 1 Mbps. In the latest CAN bus standard, the CAN frame allows transfers of up to 64 B
at higher speeds [16]. Figure 1 illustrates a typical physical configuration of a CAN network
with an arbitrary number of nodes. These nodes communicate via the two-wire CAN bus
protocol, where the lines are CAN high and CAN low.

Figure 1. The CAN network [1]: This illustrates a CAN-enabled network with n-number of nodes
sending messages via the bus for the vehicle’s overall functionality. The nodes can be the engine,
radio, brake, steering wheel, etc.

The CAN protocol is a broadcast network; as a result, all ECUs connected to the bus
can pick up signals/messages sent via the bus. Signals sent on the bus are referred to
as frames. These frames consist of the messages alerting the vehicle (or system) of the
operations to be performed. The length of CAN messages can be in two formats: the
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standard format and the extended format. The extended CAN message format differs
from the standard CAN format slightly due to the inclusion of the additional 18 bit in the
arbitration field [17]. Figure 2 shows the frame format of an extended CAN message.

Figure 2. The frame format for an extended CAN message: This shows an example of a message
packet sent via the bus. When the message is decoded, we can retrieve all of its components based on
the size of each field.

The fields in Figure 2 are briefly described below:

1. SOF: This is the “Start of Frame”. This denotes the beginning of the message.
2. Arbitration: This field consists of five components in the extended frame format.

• Identifier: This subfield decides which message takes precedence in the standard
frame format.

• SRR: This stands for “Substitute Remote Request”. It contains 1 bit, and it is
always recessive. It signifies that the bus uses data frames instead of remote
request frames.

• IDE: This is the “Identifier Extension” sub-field. It signifies the frame format.
The standard frame format is dominant “0”, and extended is represented as “1”.

• Identifier: These additional 18 bit are used to signify the arbitration on extended
frame formats.

• RTR: This represents “Remote Transmission Request”. This sub-field is used to
indicate if the frame is a request for data or the transmission of data.

3. Control: This is used to represent the data length on the bus.
4. Data: This is the actual message on the bus.
5. CRC: This represents the “Cyclic Redundancy Check”. It checks for errors within

the frame.
6. ACK: The ACK sub-field is the “Acknowledgement”. It checks for the message’s

reliability and integrity on the bus.
7. EOF: EOF stands for “End of Frame”. It is always recessive (0).

2.2. Related Work

Here, we discuss existing literature highlighting security vulnerabilities within the
CAN bus. Following high-profile hacking attacks that rattled the automobile industry
in recent years, the CAN bus and its security have taken center stage [18–25]. Nodes
such as the airbags and WiFi nodes have become the most-prevalent entry points for
automotive hackers [26]. For example, the CAN bus can easily be accessed via the Onboard
Diagnostics (OBD) port [27], which is also used to obtain vehicle data at service facilities.
As a result, the issue of security within the CAN bus has been extensively researched,
specifically to identify possible avenues that attackers could easily exploit within a vehicle
operating with the CAN protocol. In light of this, we examined these prior works and state
our contributions.

The earliest reported attack on the CAN bus system was carried out on the simulation
of a car by tampering with the electric window lift by Hoppe and Dittman in 2007 [28].
Following this attack, Kosher et al. [29] carried out various successful attack attempts on
other electronic systems within the two CAN-enabled automobiles, particularly the radio,
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instrumental panel cluster, body controller, engine, and brakes. Their experimental security
assessment of the CAN protocol identified vulnerabilities such as Denial-of-Service attacks
(DoS), packet sniffing, and fuzzing attacks.

Upon reviewing multiple successful attack mechanisms, it becomes evident that attack-
ing a CAN-enabled system effectively requires targeting a vulnerable node. Researchers
commonly agree that such an attack must be conducted by physical or remote access
means [11,30]. Physical access attacks involve establishing a direct or indirect connection to
the targeted vehicle. In other words, the attacker must create opportunities to connect with
the vulnerable node while executing the attack physically. In contrast, remote access attacks
are centered on gaining unauthorized entry to the vehicle via wireless means. Current vehi-
cles incorporate various ECUs that facilitate wireless communication, such as Bluetooth,
WiFi, radio, telematics, tracking tools, and more [31]. These ECUs can be targeted by the
attacker even without being in the same vicinity as the vehicle.

A common physical attack mechanism categorized as direct access is the attack on the
OBD port. This port was primarily created by automakers for the diagnostics analysis of the
vehicle in real-time. Kosher et al. [29] attacked the OBD-II port to inject fake packets into
the CAN bus. The messages sent via the port enabled them to access the brake, preventing
it from halting the car while running at 40 mph. Zhang et al. [32] used the OBD-II port to
sniff packets sent via the CAN; their attack mechanism involved exploiting the arbitration
feature in the CAN to cause DoS attacks within the vehicle.

Currently, remote access attacks are becoming more common due to the impracticality
of physical access attacks in real-life scenarios [11]. Checkoway et al. [33] targeted various
electronic systems within the vehicle via wireless access. They exploited vulnerable nodes
such as CD players, Bluetooth, and radios, concluding that a car door can be unlocked via
remote access. Payne [34] remotely hacked into the simulation of a car using a hacking
tool that they have now made open access. This tool allowed them to capture packets and
send signals that made the vehicle inaccessible for hours. In the scenario centered on the
simulation of a car, they accessed the car remotely to cause replay attacks.

Some researchers have focused on attacking the CAN bus via its inbuilt fault tolerance
feature for error handling, famously known as the bus-off attack. The attack mechanism
revolves around triggering the deactivation of a node upon detecting suspicious activity.
Lehira et al. [35] exploited the error-handling mechanism in the CAN bus protocol to launch
spoofing attacks against specific ECUs within the vehicle. As a result, regular messages
from authorized ECUs were obstructed. Additionally, Bloom [36] proposed an attack
mechanism called WeepingCAN. In their research, they attacked a 2016 Kia Optima to
identify low-priority signals to create bus-off attacks. Upon examining the feasibility of the
WeepingCAN attack in a car, they reported an initial success rate of 75% before detection.

Additionally, Mohammed et al. [37] proposed a novel attack known as physical-layer
data manipulation. This attack involves the collaboration of multiple compromised ECUs
to induce changes from dominant bits (0) to recessive bits (1) within CAN messages.
To execute this manipulation, the attackers generate transient voltages on the CAN bus,
capitalizing on the parasitic reactance of the bus and imperfections in the line drivers. They
revealed that, when more than eight compromised ECUs coordinate their efforts, they can
create a significant voltage drop, resulting in the alteration of dominant bits to recessive
ones in transmitted messages.

Prominently, Valasek and Miller [38] conducted a comprehensive survey on 12 car
brands and 21 commercial cars to identify remote attack surfaces and assess their difficulty
levels. The attack had three stages: compromising the wireless interface ECU, injecting
messages to communicate with critical ECUs, and modifying an ECU maliciously. While
they anticipated increased vulnerabilities due to growing cyber–physical systems, practical
verification was hindered by diverse vehicle applications. Notably, they also remotely
hacked a Jeep Cherokee [39], drawing attention to motor vehicle vulnerability, prompting a
public announcement.
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After analyzing the existing literature, we observed and identified possible means that
attackers could exploit, which is the arbitration mechanism. There is a need to examine the
impact of the attackers leveraging this means of attack. Therefore, in this paper, we carried
out a security assessment of the CAN bus protocol by proposing an attack scenario that
exploits the CAN arbitration feature. This feature gives precedence to high-priority IDs,
i.e., messages with the lowest ID. Additionally, we monitored the latency of the system
under attack to gauge the impact of the attack on the speed and efficiency of message
delivery. The work is an extension of the paper [1].

3. CAN Bus Testbed and Threats

In this section, we examine the threat model used to identify the vulnerabilities within
the system. Furthermore, we highlight the hardware used to build the CAN testbed used
as the base system in this research. We outlined the comprehensive steps in developing
this testbed in [1].

3.1. Threat Model

After analyzing our system under attack and in its normal operations, we can identify
three major vulnerabilities. In the event that an attacker uses a compromised node by
exploiting the arbitration mechanism, the three attacks we identified are the spoofing
attack, injection, and Denial of Service attack:

1. Spoofing attack:
Spoofing occurs when a compromised node sends CAN data frames with a changed
(forged) ID field to masquerade as data or a command from a valid-source ECU node.
The spoofing attack is easy to adapt to the CAN bus model. It has adverse effects be-
cause it decreases communication performance on the network [40]. Since CAN lacks
authentication and the bus is a broadcast network, a compromised ECU might readily
deliver CAN frames with any ID, even IDs belonging to other legitimate/critical ECUs.
In this research, we achieved this spoofing attack by assuming that, first, an attacker
gains physical access to the CAN bus and connects to it, effectively becoming part of
the network. Since messages sent via the bus are in plain text, they can easily monitor
and understand messages sent and can then skillfully alter bits within the packet
frame to manipulate the CAN ID, specifically changing the ID segment to the decimal
number 0, which is represented in hexadecimal notation as 0x00.

2. Injection attack:
Generally, attackers use direct or indirect access points to inject messages into the
CAN bus, suppress valid communications (i.e., genuine messages with higher-priority
IDs than injected ones are ignored), or penetrate an ECU to perform malicious actions.
Attacks against direct access points include the OBD-II port, CD player, and USB
port [41]. In our case, we could inject futile messages to the bus via the WiFi node
we attached to it. In our attack scenario, we implemented an injection attack where
the attacker successfully spoofed the CAN ID to a high-priority ID, in particular
0x00. Consequently, the attacker’s node flooded the bus with fraudulent or irrelevant
messages by either continually injecting arbitrary messages into the CAN bus or
injecting unauthenticated messages with the spoofed ID into the vehicle. We explain
the result of this implementation comprehensively in Section 5.

3. Denial of Service (DoS) attack:
The CAN protocol is also subject to DoS attacks. CAN’s arbitration system allows
higher-priority nodes to talk first. Because of the prioritization on the CAN bus, if a
malicious node with the highest priority is always active, the other nodes cannot
interact.
As shown in this research, an attacker can carry out a DoS attack to render a specific
CAN bus system inoperable by conforming to the CAN standard or by breaching
it [42]. We achieved this by transmitting as many messages to the CAN bus as
physically possible with the smallest feasible ID (0x00). When the bus is idle, if two or
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more ECUs desire to transmit simultaneously, the one with the lowest ID will have
priority (arbitration). As a result, we noticed in the logs that, because the zero ID takes
precedence over all other message IDs, none of the normal messages will win the
arbitration against the injected message, resulting in the prevention of signal transfer
from the regular ECUs.

3.2. Hardware

Selecting appropriate hardware components is crucial when constructing a CAN bus
system to represent the nodes effectively. In a CAN bus network, all nodes are intercon-
nected in parallel, establishing a direct link between each node and every other node.
The necessary hardware to develop the CAN-enabled system is listed below. In Table 1, we
highlight the hardware used to develop the physical structure of the system.

Table 1. Hardware used to create the CAN bus testbed.

Hardware Purpose

STM Nucleuo– F103RB The Microcontroller (MCU) used for the
research.

MCP 2551 Transceivers to allow for the CAN
communication on the

CL2000

This device was used to log CAN traffic from
the bus (i.e., the sniffer). It included the

timestamps, data length, bus rate, and message
IDs.

PicoScope 2204A An oscilloscope used to decode the traffic
sniffed from the bus.

3.3. Physical Structure of the CAN Testbed

Figure 3 shows the physical layout of the base system used in the security vulnerability
assessment in this study.

Figure 3. The implementation of a testbed for a CAN bus system [1]: A testbed of a CAN-enabled
system with four nodes attached to it. These four nodes communicate via the CAN high and
low wires.

Once the physical and software components of the node were successfully intercon-
nected to simulate the CAN protocol system, we conducted rigorous testing to ensure
its proper functioning. To monitor and analyze the data generated by our system, we
used a sniffer called the CL2000. This sniffer allowed us to assess the effectiveness of
our system and examine the transmitted data on a host computer. Additionally, we in-
corporated a protocol decoder, the PicoScope 2204A, into our CAN system. This device
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effectively parsed messages transmitted on the CAN bus, measuring voltage in relation
to time (in milliseconds). In Figure 4, we present a decoded sample message captured by
the PicoScope.

Figure 4. A CAN message decoded into its individuals assembling fields using the PicoScope [1]: An
actual representation of a real CAN message packet decoded into its various fields, as illustrated in
Figure 2.

4. Proposed Attack

In this section, we examine the security vulnerabilities that could be exploited within
the bus. We discuss the attack scenario and highlight the steps and hardware used to im-
plement the scenario in our already-existing system. We then discuss the threats identified
based on the attack scenario created.

All messages are sent on the bus in plain text. Figure 4 shows the plain message
sent within the bus after the PicoScope 2204A decoded it. These signals and messages
are generated by the nodes communicating to ensure the optimal performance of the
car. Considering that the protocol sends messages without any encryption, it creates an
appealing avenue for attacks. Any exploit against a node on the system will disrupt the
network if an attacker targets the bus. In light of this lack of security, it is critical to evaluate
the security threats to which the CAN bus protocol may be vulnerable.

From a security point of view, a secure network should meet these five measures:

• Data integrity: This means that the message sent was not altered by the time it reached
the receiver. The CAN bus has a mechanism called the CRC embedded into the packet
to check that the data reach their destination without any changes being made to it.

• Authentication: a process that verifies the validity of a node. The CAN bus does not
have a mechanism to perform this check.

• Confidentiality: Only authorized users have access to the communication between
sender and receiver.

• Non-repudiation: There should be a way to demonstrate that the parties involved in the
communication cannot refute the message’s legitimacy.

• Availability: The system should ensure that message reliability is ensured under all
conditions.
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To investigate the potential threats to the bus, we devised an attack scenario centered
on message injection into the vehicle. As previously stated, the bus uses arbitration, which
is a process that determines which message is sent on the bus if a collision occurs. The node
that wins the process is always the one with a smaller message ID. Our proposed attack
scenario exploits this arbitration process of the CAN bus protocol. This process was also
explained using analogies in [1].

4.1. Proposed Attack Scenario

We propose to utilize the CAN-enabled system, depicted in Figure 3, to develop our
proposed attack scenario. A typical car can have up to one-hundred and twenty-seven
nodes connected to the CAN bus system [1]. To simulate the inner mechanism of a real car,
we assigned thirty IDs to three of the nodes in the system we developed. As a result, we
had a CAN-enabled system working with ninety IDs transmitting messages via the bus.

Recall that the initial system consisted of four ECUs connected to a CAN bus sys-
tem. Among these ECUs, three were assigned thirty IDs each, while the remaining ECUs
served as the compromised node responsible for injecting messages into the bus. In the
proposed attack scenario, which is depicted in Figure 5, we aimed to exploit the CAN
arbitration mechanism.

In this proposed attack scenario, we simulated over ninety ECUs to communicate on
the CAN bus in a car. One of the ECUs was hijacked by an attacker to gain entry into a
vehicle and make that vehicle inoperable. The attacker hijacks a node that can be connected
and spoofs the IDs of the messages sent to the bus to the smallest number possible (in this
case, 0x00). As the attacker begins to send messages, all messages from the other ECUs
will be halted because the compromised node has the smallest message ID. Therefore,
this means that, when the attacker sends messages at an elevated rate (injection), the only
signals transmitted on the bus will be those of the attacker, making other legitimate ECUs
inoperable for a particular time (DoS).

Figure 5. Proposed attack design scenario: An ECU is hijacked by an attacker, and the message
ID is spoofed to hex 0x00, ensuring that messages from that ECU/node always win the arbitration
process, thereby allowing for continuous injection of the signals and, consequently, preventing the
transmission of other messages from legitimate nodes on the bus (DoS).

Table 2 shows the message IDs assigned to each ECU to carry out the attack in this
research. To simulate a vehicle with thirty ECUs communicating via the CAN bus, we
assigned ten random IDs each to ECU 1, ECU 2, and ECU 3. We carried out this allocation
in the software phase of this research. Using C++, we leveraged <random>, which is a
random number generator library. Specifically, we designed a custom script that employed
the random number generator functions provided by the <random> library to generate
random CAN IDs within the specified CAN ID range. This aided the simulation of ninety
ECUs in our implementation. The range of the IDs allocated to each node generated is
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highlighted in the column called Number of Assigned IDs in Table 2. We also detailed the
values of each of these message IDs in hexadecimals (hex).

Table 2. ECUs and Message IDS in the proposed attack scenario.

ECU Number of Assigned
Message ID

Message ID (Hexadecimal
Notations)

ECU 1 10 0x64 – 0x82
ECU 2 10 0xC9 – 0xDC
ECU 3 10 0x12C – 0x14A

Compromised ECU 1 0x00

4.2. Metrics Used in the Research

The metrics used are based on the implementation cycles and simulations of the runs.
These are explained below:

1. Implementation cycles:
We conducted three separate runs for the implementation of the attack scenario. This
approach aimed to examine the developing impact of the attack over time. As a result,
we compared the system’s performance during normal operation with its performance
during the attack operation throughout all three runs to provide a full assessment of
the CAN bus operation and its capacity to handle attacks. Table 3 depicts the time for
each run during analysis.

Table 3. Implementation cycles and their time intervals.

Implementation Cycles Time Interval

Test Run 1 15 min
Test Run 2 30 min
Test Run 3 60 min

2. Simulations:
We monitored the traffic of the CAN system from two perspectives (normal simu-
lation and attack simulation) in all three implementation cycles. Table 4 provides a
description of these perspectives.

Table 4. Simulations and their descriptions.

Perspective Description

Normal Simulation

This represents the operation where all four
nodes are working properly without any attack.

In this case, we assigned ten message IDs to
each node.

Attack Simulation

In this scenario analysis, we examined the
performance of a system operating during the
attack scenario discussed earlier. That is, one

compromised node continuously injected
messages into the bus with ID 0x000.

We carried out this examination in all three attack cycles from the two perspectives
detailed above (normal and attack) by connecting a sniffer (CL2000) to the CAN system in
Figure 3. This sniffer monitored all traffic sent within the system for allotted time limits
in each implementation cycle. After the specified time limit had passed, we halted all
communication within the system by disconnecting the power supply. We connected the
CL2000 to a workstation and retrieved the Comma-Separated Values (CSV) file containing
the log of the CAN traffic. From this CSV file, we were able to obtain all message IDs,
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timestamps, data, and data lengths sent via the bus during a particular implementation
cycle. We processed and interpreted these CSV files using Python and discuss the results of
our analyses below.

5. Experiments and Results

As stated previously, we monitored the system in three different cycles with strict
time intervals. Here, we will discuss the result of our evaluation. By monitoring the
system during three separate runs, we aimed to compare the effects of the attack over
time and gain insights into the resilience and adaptability of the CAN bus under such
circumstances. This analysis provides valuable insights for enhancing the security and
robustness of automotive systems.

5.1. Test Run 1 Results

After running the first attack simulation for 15 min, we observed the traffic from the
sniffer and evaluated the data using Python. In this analysis, we counted the occurrence of
each message ID in the CSV file containing the observation of the vehicle simulation under
attack after 15 min:

1. Attack simulation: After we processed the data using Python, we observed that the
compromised node with the ID 0x00 sent the most messages. We recorded the total
packets sent from ID 0x00 as 432 packets in the observed time frame in the attack
simulation. The next most-active message ID (0x6D) only sent 66 packets, which is an
84.72% decrease compared to the packets sent from the compromised message ID.

2. Normal simulation: We then monitored the system in normal operations, i.e., without
the compromised ID 0x00. In this simulation cycle, the message ID that displayed
the highest activity (000000D1) transmitted 86 packets, while the following message
ID (00000196) sent 82 packets. Our observation of all packets or frames transmitted
throughout this simulation revealed an equitable distribution in the sent packets.

We displayed the result of the count of the total number of packets sent by each
message ID in the attack and normal simulation, respectively. Table 5 shows the total
number of packets sent for the attack simulation, and Table 6 shows the total number of
packets sent in the normal simulation in Test Run 1 (15 min).

Table 5. Test Run 1 (attack simulation) total packets.

Message ID Packets Sent in 15 min

00000000 432
0000006D 66
00000191 53
00000069 52
00000192 50
00000195 49
00000065 49
00000196 49
0000006A 48
00000193 46
00000197 43
00000199 43
0000006C 41
00000194 41
00000067 41
0000006B 40
00000066 39
00000064 38
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Table 6. Test Run 1 (normal simulation) total packets.

Message ID Packets Sent in 15 min

000000D1 86
00000196 82
0000006D 79
00000195 79
00000191 75
000000CC 70
00000193 69
000000C9 69
00000192 68
00000068 68
000000CD 68
000000CA 68
00000065 67
00000194 65
0000006A 65
0000006C 64
000000CE 64
00000064 64

Subsequently, we visually represent these tabular data in bar charts. Figure 6a gives
a visual representation of the packets sent in the test run in the attack scenario, while
Figure 6b shows the packets sent during normal scenarios after 15 min. “CAN_ID” in the
x-axis of the figures represents the message ID, and “count” on the y-axis represents the
total number of packets sent by each message ID. In Figure 6a, we see a bar surpassing
the other bars in the graph greatly; this bar with the largest count shows the total count
for the compromised message ID in the attack scenario. This indicates the DoS attack,
clearing emphasizing the control the attacker had to flood the system with packets in
15 min. However, Figure 6b shows the typical distribution of packets when the system
operates in its regular mode. This indicates all nodes/ECUs had a fair opportunity to send
packets via the bus when needed.

(a) (b)

Figure 6. Test Run 1: Bar chart of the total packets sent in the attack and normal simulations after 15
min. (a) Bar chart of the total packets sent in the attack simulation after 15 min. (b) Bar chart of the
total packets sent in the normal simulation after 15 min.
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5.2. Test Run 2 Results

In the second test run, we monitored the system under normal and attack operations
after 30 min. The data were logged using the sniffer discussed prior and saved in CSV
files to represent each simulation. Using Python, we processed and interpreted these files,
particularly focusing on the message ID column to count the total number of packets sent by
each of them. We discuss the results of these occurrences in the two simulations monitored
in this cycle below:

1. Attack simulation: In this cycle, the compromised message ID (0x00) sent 3556 packets
in 30 min. The following message ID with the second-highest count was 00000130.
This message ID could only send 377 packets within 30 min of the attack opera-
tion. This shows a percentage difference of 842.72% between the packets sent by the
compromised message ID and the legitimate message ID.

2. Normal simulation: Upon analyzing the normal operation, messages were sent in
an evenly distributed manner. The highest number of packets sent from a particular
message ID was recorded as 106. The message ID that recorded this figure was
00000191, while the subsequent message ID sent 103 packets. Further analysis of
the data processed in this phase revealed closely correlated figures in relation to the
overall packets sent without any indications of irregular behavior.

Tables 7 and 8 show the total number of packets sent by the message IDs in the attack
and normal simulations in Test Scenario 2, respectively. Furthermore, we visually represent
these data using bar charts in Figure 7a,b. Figure 7a shows a visual representation of the
total number of packets sent by each ID in the attack simulation. Figure 7b depicts the
packets sent in the normal simulation using a bar chart. Similar to Figure 6a,b, the “CAN_ID”
on the x-axis signifies the message IDs in each simulation, while “count” on the y-axis
denotes the total packets sent by each message ID.

Table 7. Test Run 2 (attack simulation) total packets.

Message ID Packets Sent in 30 min

00000000 3556
00000130 377
00000134 376
00000194 376
00000198 376
00000196 374
00000132 374
00000195 373
0000006A 372
00000131 372
00000067 372
0000012F 370
00000193 370
0000006D 365
0000012D 364
00000191 364
00000065 361
00000068 354
00000064 352
0000012E 352
00000069 352
00000192 352
00000066 349
0000006B 346
00000133 339
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Table 8. Test Run 2 (normal simulation) total packets.

Message ID Packets Sent in 30 min

00000191 106
00000195 103
00000196 101
0000006D 100
00000065 95
0000006C 93
00000192 92
0000006A 91
00000066 88
00000067 87
00000193 87
000000D1 86
0000006B 85
00000068 85
00000194 84
00000069 84
00000064 83
00000198 82
00000197 78
000000C9 74
000000CC 74
000000CA 74
00000199 72
000000CD 70
000000CE 68

In Figure 7a, the bar displaying the highest count value is the compromised message
ID (0x00), indicating the extensive control of the attacker over the bus to prevent the
transmission of signals from legitimate message IDs within the system. The attacker
leveraged the arbitration feature of the CAN bus by flooding the bus with signals from
a message ID 0x000, thereby ensuring it wins the arbitration process. The staggering
difference between the highest total number of packets sent and the subsequent packets
indicates the DoS attack. On the other hand, Figure 7b shows the typical variations of
packets sent by each node when the system operates in its standard mode.

(a) (b)

Figure 7. Test Run 2: Bar chart of the total packets sent in the attack and normal simulations after
30 min. (a) Bar chart of the total packets sent in the attack simulation after 30 min. (b) Bar chart of the
total packets sent in the normal simulation after 30 min.
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5.3. Test Run 3 Result

In the final cycle, we monitored the system after an hour in both the normal and attack
scenarios. Analogous to Test Runs 1 and 2, we also monitored the traffic sent and logged the
data using a sniffer, eventually storing the raw data in CSV files. We discuss our findings
after processing the data using Python below:

1. Attack simulation: In this cycle, the compromised node sent over 6112 packets, which
is over two-times the total packets sent in Test Run 2. The following message ID
sent only 642 packets, an astounding percentage decrease of 852.96% compared to
the highest number of packets recorded for message ID 0x00. The major difference
between the total packets sent by the compromised message ID and other message
IDs in the simulation shows that the attacker had major control of the bus, thereby
causing a DoS attack. We represent the total number of packets sent in this phase in
Table 9.

2. Normal simulation: In this simulation, like in the prior test runs discussed, we
observed a fair access of each message ID to transfer signals via the bus by the
uniform distribution of packets across the system. The highest number of packets sent
was 120, from message ID 0000006D. The slight difference between the total number of
packets recorded for each message ID in this phase indicates the absence of abnormal
activities in this phase, as each message ID had a fair opportunity to transmit signals
within the system. In Table 10, we present the total number of packets sent by each
message ID within the 1 h time frame.

We visually represent the tabular data presented in Tables 9 and 10 using bar charts
to observe the variations of packet transfer across all message IDs. Figure 8a shows the
bar chart of the total number of packets sent in the attack simulation displayed in Table 9.
In this figure, we see a spike for the message ID 0x000, indicating the continuous flooding
of packets from this message ID on the bus during the time of monitoring. Figure 8b shows
the bar chart of the total packets sent in the normal simulation after 1 h.

After all three runs, our experimentation showed that the CAN protocol is prone to
various security vulnerabilities, particularly DoS, spoofing, and injection. In all three runs,
the compromises ID “0000000” sent increasingly high numbers of packets, which could
be detrimental to the CAN bus primarily because it prevents the system from obtaining
signals from legitimate ECUs by flooding irrelevant signals.

Table 9. Test Run 3 (attack simulation) total packets.

Message ID Packets Sent in 60 min

00000000 6112
00000067 642
00000196 635
00000132 635
0000006D 632
00000130 631
00000194 631
00000133 626
00000198 625
00000197 625
00000134 625
0000012F 624
00000193 624
0000006A 623
00000064 622
0000012E 616
00000192 616
00000069 615
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Table 9. Cont.

Message ID Packets Sent in 60 min

0000012D 614
00000191 614
00000066 613
00000131 611
00000195 611

Table 10. Test Run 3 (normal simulation) total packets.

Message ID Packets Sent in 60 min

0000006D 120
00000195 115
00000065 110
0000006A 108
00000191 107
00000196 105
0000006C 105
00000068 103
00000067 103
0000006B 100
00000066 96
00000064 96
00000192 94
00000193 93
00000069 91
00000194 91
00000198 88
00000197 84
000000D1 84
00000199 80
000000CC 72
000000C9 72
000000CA 68

(a) (b)

Figure 8. Test Run 3: Bar chart of the total packets sent in the attack and normal simulations after
60 min. (a) Bar chart of the total packets sent in the attack simulation after 60 min. (b) Bar chart of the
total packets sent in the normal simulation after 60 min.
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5.4. Latency of the CAN Bus System

Here, we examine the latency of the CAN bus system when it is under attack. Under-
standing CAN bus latency is critical for creating real-time systems that rely on timely and
coordinated communication between nodes [43]. Latency reduction is vital for ensuring
efficient and dependable performance.

Latency in the CAN bus is the total time it takes for a message to propagate across
the bus from when a node initiates it until another node receives it [44]. In our proposed
attack scenario, it is important to note that the attacker’s node is stationary. This static
configuration can indeed have an impact on message latency. Furthermore, factors such as
propagation delay, bit rate, bus length, transmission delay, and arbitration time can also
contribute to variations in CAN bus latency [45]. Consequently, calculating the precise
latency of the bus in such a complex system can be challenging. However, in our research,
we made an effort to examine the latency of the CAN simulation system under the three
test runs detailed in Section 4.

To calculate the latency, we used a mathematical formula shown in Equation (1). This
formula focuses on the time delay for message transfer from the same node on the bus.

∆x = xi+1 − xi, (1)

where:

xi = timestamp for the current message transmitted on the bus from a specific ID.
xi+1 = timestamp for the preceding message transmission from the same message ID.
∆x = latency.

In our analysis, we took the difference between these variables as the system’s latency.
The timestamp in this research was measured in milliseconds (ms); latency was also
measured in ms. We examined the latency of the system in each of the three attack
implementation cycles explained in Section 4 and visualize our results using Kernel Density
Estimation (KDE) graphs.

KDE is a statistical approach for estimating the probability density function of a
continuous random variable based on observed data. In KDE, we constructed a kernel
(usually a smooth, bell-shaped function) at each data point and added these kernels to
generate a continuous probability density curve. This curve depicts the probability of the
observation of data values at various positions along the x-axis. Upon viewing the graphs
illustrating the latency values in Sections 5.4.1–5.4.3, we notice some negative values in
the x-axis. Negative x-axis values do not signal the presence of negative data values in the
dataset. They, instead, highlight areas where the predicted probability density is lower than
the general average. In other words, these negative values show portions of the distribution
where data points are less likely to occur than in the center. The presence of negative values
in KDE is a natural result of the method’s capacity to capture fluctuations in data density
over the variable’s entire range. It is critical to understand these negative values within the
context of probability density estimates, viewing them as indicators of lower probability
density regions rather than true negative data values. We explain the analysis of the latency
in all three test runs previously discussed in Section 4 below.

5.4.1. Latency of the System in Test Run 1

We monitored the signals sent within 15 min of this attack simulation. The signals
were stored in a CSV file and processed using Python. In the file containing the raw data
captured, two columns were significant for calculating the latency: the timestamp column
and the message ID column. We organized the data to depict the difference between the
time a message ID transmits a signal and the time that same message ID transmits its
next message.

During the attack simulation in this cycle, a notable observation was the consistent
value of latency recorded for the packets sent from CAN ID “00000000”. The latency value
for every packet sent from this particular ID was recorded as 3 ms. Furthermore, a unique
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observation was made that following the compromised ID “00000000”, the preceding
subsequent message exhibited a significant spike in latency. All the highest latencies were
recorded after a node transmitted after ID “00000000”. In Figure 9, we show the frequency
of the latency distribution for data captured in the first attack cycle. The frequency values
show the count per millisecond of each latency value calculated. The blue line in Figure 9a
represents the frequency of the same latency value (3 ms) recorded for the ID “0x000”.
From this figure, we see a spike for the ID “0000000”, indicating a higher frequency for
the same latency value (3 ms) from that particular message ID. This implies a consistent
pattern of signal transmission from the attacker.

(a) (b)

Figure 9. Frequency of latency distribution for the first attack simulation after 15 min. (a) KDE log
plot of the latency distribution for the first attack simulation. (b) Latency variations for the non-zero
CAN ID in the first attack simulation.

Figure 10. Frequency of latency distribution for the first normal simulation after 15 min.

In retrospect, upon reviewing the total packets sent in the attack simulations discussed
in Section 5, we can correlate the high packet transfer with the latency value displayed
in Figure 9a. This correlation suggests that the high packet transfer rate aligns with the
repeated occurrence of the 3 ms latency value. Consequently, the preceding message IDs
recorded extremely low frequencies for the latency distribution of signals sent on the bus.
This indicates varying time space for message transfer across the bus, ultimately signaling
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the long wait time for legitimate nodes to transfer data on the bus. Furthermore, to offer a
more-comprehensive representation of the latency variations for the legitimate ECUs with
non-zero IDs, we created Figure 9b, which focuses solely on the legitimate IDs, excluding
the illustration of the attacker’s ID. This approach allowed us to expand the depiction of
latency variations specifically for the legitimate ECUs.

Figure 10 illustrates the frequency of the latency distribution for the normal simulation
after 15 min. In this figure, we note a relatively uniform distribution in the increase and
decrease of the latency across the bus. Upon reviewing the x-axis in Figure 10, the latency
is recorded in milliseconds, and the higher frequency for almost all message IDs’ latency is
situated between 500 ms and 10,000 ms. This indicates similar wait times across the bus for
the message IDs. The impact of this is that it shows no abnormal behavior regarding the
systems’ performance analysis.

5.4.2. Latency of the System in Test Run 2

In Figure 11, we show the frequency of the latency distribution for the attack simulation
in Test Run 2. We calculated the latency of all the packets sent after allowing this simulation
to run for 30 min. Notably, the lowest recorded latency was 7 ms, and all of these packets
originated from the ID “000000000”. Furthermore, we observed a consistent pattern, where
after the bus processes packets sent from the ID “00000000”, there is an increased time
delay recorded for the subsequent packet transmitted via the bus. In Figure 11a, the blue
line signifies the frequency of the latency for the message ID “0000000”. We see this value
as a straight line because the same value was recorded for that message ID, and this value
was 7 ms. That is, after every 7 ms, the attacker sent a message to the bus. Upon correlating
the total packets sent in this simulation as discussed in Section 5, in 30 min, the attacker
sent 3556 packets, with each packet sent every 7 ms.

A major significance of reviewing the latency distribution is to monitor the timing of
the message transfer within the system. From examining Figure 11a, an abnormal activity
we can see reoccurring is the consistent value for latency from the same message ID. This
lets us know that the system is behaving in a suspicious manner. Additionally, in the
context of this simulation, the frequencies of other message IDs are depicted as straight
lines positioned at the bottom of the graph. This positioning suggests that almost all
legitimate message IDs experience wait times that can be as long as 50,000 ms. This further
buttresses that the CAN bus is highly prone to DoS attacks as the high latency values for
the latency of legitimate message IDs signify delays in the system’s real-time response
and performance.

(a) (b)

Figure 11. Frequency of latency distribution for the second attack simulation after 30 min. (a) KDE
latency distribution for the second attack simulation. (b) Latency variations for the non-zero CAN ID
in the second attack simulation.
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Furthermore, to provide a more-comprehensive representation of latency variations
for the legitimate ECUs with non-zero IDs, we introduce Figure 11b, which specifically
focuses on the legitimate IDs. In this figure, the illustration of the attacker’s ID has been
excluded, allowing us to expand the depiction of latency variations for the legitimate ECUs.
We positioned this figure side by side to visualize the impact of the attacker.

In Figure 12, the frequency of the latency distribution for the normal simulation in
Test Run 2 is shown. Here, we observe that the latency increases steadily until the bus goes
idle. The lowest latency recorded in this observation was 29 ms. This is normal as the CAN
bus is more centered towards fault tolerance than low latency.

Figure 12. Frequency of latency distribution for the second normal simulation after 30 min.

Figure 12 also shows that all message IDs display similar values for the frequency
of the latency, indicating the absence of abnormal activities such as unexpected high
latency values, which could cause delays or consistently small latency values, which could
prevent the transfer of signals from other message IDs. The impact of the similarity in the
gradients of the frequency for the latency distribution indicates that the system is working
in typical operations.

5.4.3. Latency of the System in Test Run 3

In Figure 13a,b, we show the latency distribution for the attack simulation of Test Run 3.
This simulation revealed a similar occurrence when compared to the previous two attack
simulations that were studied. Notably, we recorded the lowest latency distribution from
message ID “0000000” at 7 ms.

Similar to Figures 9a and 11a, we notice that the “blue line” in Figure 13a signifies the
frequency of the latency values associated with the message ID “0000000”. The graph shows
a straight line for this value (7 ms) because the same latency value is consistently recorded
for that specific message ID. The consistent latency pattern is ominous as it prevents other
message IDs from sending legitimate signals to the system and continuously floods the
system with irrelevant signals every 7 ms. The impact of this is the poor performance of the
system, which could be detrimental to the vehicles’ overall performance, thereby leading
to dire effects that could compromise safety.

Further, analogous to Figures 9b and 11b, to offer a more-comprehensive view of the
latency variations among the legitimate ECUs with non-zero IDs, we introduce Figure 13b,
concentrating solely on these legitimate IDs. In this figure, we deliberately excluded the
depiction of the attacker’s ID, enabling us to enhance the visualization of latency variations
among the legitimate ECUs. In the case of Figure 13b, we arranged this figure side by side
with Figure 13a to illustrate the influence of the attacker in the third attack scenario.
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(a) (b)

Figure 13. Frequency of latency distribution for the third attack simulation after 60 min. (a) KDE
latency distribution for the third attack simulation. (b) Latency variations for the non-zero CAN ID
in the third attack simulation.

Figure 14 displays the latency frequency in our 60 min normal simulation, illustrating
message transfer timing in regular operations. Figure 14, akin to Figures 8 and 12, exhibits
consistent timing gradients for message transfer across all message IDs on the bus, primarily
because they operate in normal simulation. In this figure, we understand the timing
behavior of the network, and it shows proper communication and synchronization between
nodes transmitting messages. Consequently, Figure 14 leads to the inference that all
message IDs transmitted messages devoid of any irregularities.

Figure 14. Frequency of latency distribution for the third normal simulation after 60 min.

5.4.4. Average of the Latency in All Three Test Runs

We calculated the average latency of both normal and attack scenarios studied in this
research. This is because we believe it is useful for a variety of research and analytical
applications as it provides a summary metric that may be used to evaluate the overall perfor-
mance of the CAN system. This indicator allows us to effectively monitor how the system
performs on average, providing significant insights into its efficiency and dependability.

Furthermore, computing the average latency can serve as a valuable tool for trend
analysis. By tracking changes in the average latency over time, it will be easier to identify
patterns or trends. These trends may include gradual degradation of performance or



Sensors 2023, 23, 8223 22 of 25

improvements resulting from system updates or optimizations. Trend analysis enhances
the ability to fine-tune systems for optimal performance and security.

Therefore, to calculate the average of the latency values in this research, we used the
formula below:

Average =
∑n

i=1 xi

n
. (2)

where:

xi = represents each individual latency value in that particular simulation
n = the total number of packets sent
Average = average of the latency for that particular simulation.

We display the average of the latency values for all three test runs in Table 11 below.

Table 11. Average of the latency values in all three test runs.

Simulation Average for Normal
Simulation (ms)

Average for Attack
Simulation (ms)

Test Run 1 189.137 183.124
Test Run 2 210.080 147.188
Test Run 3 225.965 147.189

In Table 12, we summarize the latency distributions for all experimental runs in
this research.

From our analysis of the average in regards to the latency values in Table 11, we
can conclude that, when the average latency for normal messages exceeds that of attack
messages in a CAN-enabled system, it may suggest that normal traffic within the system
may inherently exhibit higher latency due to factors such as the message volume, priority,
or system design. Conversely, a lower average latency for attack messages may signify
attackers’ attempts to efficiently disrupt the network or execute attacks with minimal
latency. This discrepancy can also serve as an effective anomaly-detection mechanism,
flagging potential issues or security breaches when deviations occur.

Table 12. Summary of latency analysis.

Implementation Cycle Simulation Observations

Test Run 1

Attack Simulation

• Lowest Latency recorded 3 ms.
• The CAN ID “00000000” recorded the lowest latency.
• Nodes that send messages after the compromised CAN ID

recorded the highest latency.

Normal Simulation
• This had a more-uniform distribution.
• The lowest latency recorded was 9 ms.

Test Run 2

Attack Simulation

• Lowest latency recorded was 7 ms
• The ID “00000000” always recorded the lowest latency.
• Increased time delay recorded for the subsequent packet trans-

mitted via the bus.

Normal Simulation
• Steady increase in latency until the bus becomes idle.
• The lowest latency recorded was 29 ms.
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Table 12. Cont.

Implementation Cycle Simulation Observations

Test Run 3

Attack Simulation

• Lowest latency of the compromised CAN ID “000000000” was 7
ms. This value was consistent for all signals sent from this ID.

• Signals sent after this compromised ID recorded the lowest la-
tency at 8 ms.

Normal Simulation

• Lowest latency recorded was 12 ms.
• The messages were distributed fairly across the bus.
• More message IDs were recorded in this time phase.

6. Conclusions

In this research, we conducted a security assessment on a simulation of a CAN-enabled
system, building upon our previous work described in [1]. We proposed an attack scenario
and implemented it in three cycles to analyze the evolving effect of the attack over time.
Through a comparative analysis, we evaluated the system’s performance under normal
and attack operations. Additionally, we examined the latency within the system to assess
the time delay between transmitted messages via the bus.

The analysis revealed vulnerabilities within the CAN bus that render it susceptible
to some attacks, such as injection, spoofing, and DoS attacks. Our analysis revealed
a major vulnerability of the CAN bus to DoS attacks. The results obtained from the
three monitored simulations demonstrated that, when an attacker successfully spoofs the
message ID to “0000000” within a vehicle, the attacker gains control over the bus, allowing
the attacker to flood it with a high volume of packets using extremely low latency times.
This malicious activity effectively prevents authorized nodes from accessing the bus when
required. The consistently low latencies observed from the same message ID serve as a
strong indicator of a potential attack on the bus. In normal operations, we observed that
the bus prioritizes reliability over low latency. Therefore, the presence of such low latencies
suggests that the bus might be under attack, mainly because relatively low latencies are not
common when the CAN bus is not under attack. These findings highlight the importance
of conducting such investigations to identify vulnerable areas that malicious attackers
may exploit for personal gain. Ultimately, in this paper, we presented the vulnerabilities
we uncovered in the CAN bus, including the potential for some attacks such as spoofing,
injection, and DoS. We also highlighted the role of abnormally low latencies as an indicator
of suspicious activity. By addressing these issues, we can strengthen the security and
reliability of CAN-enabled systems. In the future, our goal is to develop an effective system
that monitors and halts attacks within the bus.
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Abbreviations
The following abbreviations are used in this manuscript:

CAN Controller Area Network
ECU Electronic Control Unit
MCU Microcontroller
DoS Denial of Service
ID Identifier
CSV Comma-Separated Values
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