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Abstract: (1) Background: At present, physiological stress detection technology is a critical means
for precisely evaluating the comprehensive health status of live fish. However, the commonly
used biochemical tests are invasive and time-consuming and cannot simultaneously monitor and
dynamically evaluate multiple stress levels in fish and accurately classify their health levels. The
purpose of this study is to deploy wearable bioelectrical impedance analysis (WBIA) sensors on fish
skin to construct a deep learning-based stress dynamic evaluation model for precisely estimating
their accurate health status. (2) Methods: The correlation of fish (turbot) muscle nutrients and their
stress indicators are calculated using grey relation analysis (GRA) for allocating the weight of the
stress factors. Next, WBIA features are sieved using the maximum information coefficient (MIC)
in stress trend evaluation modeling, which is closely related to the key stress factors. Afterward, a
convolutional neural network (CNN) is utilized to obtain the features of the WBIA signals. Then,
the long short-term memory (LSTM) method learns the stress trends with residual rectification
using bidirectional gated recurrent units (BiGRUs). Furthermore, the Z-shaped fuzzy function can
accurately classify the fish health status by the total evaluated stress values. (3) Results: The proposed
CNN-LSTM-BiGRU-based stress evaluation model shows superior accuracy compared to the other
machine learning models (CNN-LSTM, CNN-GRU, LSTM, GRU, SVR, and BP) based on the MAPE,
MAE, and RMSE. Moreover, the fish health classification under waterless and low-temperature
conditions is thoroughly verified. High accuracy is proven by the classification validation criterion
(accuracy, F1 score, precision, and recall). (4) Conclusions: the proposed health evaluation technology
can precisely monitor and track the health status of live fish and provides an effective technical
reference for the field of live fish vital sign detection.

Keywords: live fish health monitoring; waterless and low-temperature conditions; deep learning;
wearable bioimpedance monitoring; stress evaluation

1. Introduction

The monitoring and evaluation of live fish stress levels is generally considered an
effective approach to acquiring their health status in the aquatic food industry [1]. When
fish are subjected to extreme environmental stress, such as hypoxia, low temperatures, and
water scarcity, it may arouse a decrease in their metabolic rate and varying degrees of stress
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response to maintain homeostasis in their bodies [2,3]. Compared to normal conditions,
fish undergo significant changes in their physiological and biochemical processes, such
as hormone secretion and material energy metabolism during stress reactions, which can
directly affect fish health and have adverse effects on their muscle qualities. Furthermore,
the physiological variations of live fish experience nonlinear and dynamic life decline with
various stress interferences, exhibiting multi-scale stress changes in individuals [4,5].

At present, a series of traditional analytical techniques have been employed to obtain
accurate stress level evaluations in live fish quality [6,7]. Some research shows that the
serum cortisol, lactate, and blood glucose are the most important factors of fish stress
indicators, and their contents significantly increase under low temperatures and anhydrous
conditions [8]. Currently, the commonly adopted approaches to fish stress testing mainly
focus on blood biochemical tests; however, accurate testing results come at the cost of
invasive testing, which may generate indefinite results owing to the changes in the original
inspection conditions. The current fish stress detection methods and their pros and cons
are categorically presented in Table 1.

Table 1. Stress detection methods and their pros and cons.

Measurement
Mode Detection Means Pros Cons References

Invasive blood stress
factors test

Vein blood extraction
from fishtail or tail

amputation extraction;
blood analysis

(microplate reader,
medical blood

analysis equipment)

Rich detection indicators;
the comprehensive

reflection of fish stress and
health status;
high accuracy

Injury or fatal to the fish;
no in situ-based test;

discontinuous; unable to
truly reflect fish dynamic

health level

[9,10]

Minimally invasive
blood factors test

Implantation of
biosensors in fish eye

interstitial fluid

Dynamically collect
changes in blood glucose,

sterols, lactate, and cortisol
levels of fish

Anesthetize the fish before
deploying the sensors; may

cause discomfort; may
introduce additional stress

[11–13]

Non-invasive
stress detection

Applying acceleration
sensors; multi-gas
sensors; fish skin
mucus sensors;

millimeter-level radar
wave-based sensors for

health monitoring

Easy sensor deployment
and monitoring carrying

out; non-invasive and
continuous health
status detections

Cannot accurately reflect
stress and health status;

easily influenced by
variations in surroundings

[14–17]

Based on the above analysis, it is urgent to design a wearable and non-invasive mea-
suring and modeling method for evaluating original fish stress variations and acquiring
their declining health patterns, which will enable the precise observation of fish health
without reducing their vitality or survival quality. In recent studies, some researchers have
focused on WBIA-related detection for aquatic food quality or biological health levels.
Fan et al. [18] proposed a prediction method for the non-destructive freshness measure-
ment of rainbow trout during ice storage using impedance technology. Their findings
exhibited high correlations with the key quality indexes, such as hardness, K-value, and
rigor mortis. Other scholars have reported that bioimpedance signals effectively reflect
the ATP-related compound variations in fish and conveniently assess their freshness [19].
Classifying fish freshness using the peaks in the electrochemical impedance spectroscopy
morphological characteristic curves has made great improvements to the classification
accuracy [20]. Curtis et al. [21] experimentally verified the effects of five parameters related
to fish handling on a momentary body condition index (phase angle) measured using a suit-
able BIA-based approach for quickly detecting an individual’s conditions. As mentioned
above, numerous studies have shown that the health status of live fish can be accurately
measured by the levels of blood stress and antioxidant substances [22]. Some scholars have
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also utilized electrochemical impedance spectroscopy (EIS) and quartz crystal microbal-
ance (QCM) for the detection of three fish hormones, cortisol, insulin-like growth factor 1
(IGF-1), and vitellogenin [23]. They discussed prospective applications to understand fish
physiology from the aspect of hormone measurements. Moreover, BIA is a common tool in
human health and physiology assessment that has recently been adaptively applied to fish
and wildlife. It can provide accurate estimates of body composition in fish, such as water,
protein, fat, and percent dry mass [24–26].

Except for the above BIA-based fish health measurement, the image-processing ap-
plication of camera images, microscopic images, spectral images, ultrasound images, and
fluorescence images has provided non-destructive, automatic, rapid, and real-time ap-
proaches to fish health status evaluation [27]. For in vivo glucose monitoring in animal
studies, millimeter-wave sensing technology is utilized in the 58–62 GHz frequency range
for stress variations in pigs [28]. Microwave resonators can also potentially be used for an
individual’s blood glucose level. This is reflected in the correlation coefficients between
the glycemia and the consistent measuring magnitude for continuous stress analysis [29].
Additionally, some scholars have developed a variety of biosensors that can be used to mea-
sure the target factors of fish health by combining bio-catalysis technology with electronic
technology so that the indicators of fish health can be measured quickly and easily [30]. The
non-invasive detection of glucose content was also proposed using a density-transformed
microstrip patch antenna [31]. In addition, a wireless biochemical sensing system for
the continuous monitoring of glucose in flounder has been developed. When the sensor
is placed into the sclera, changes in the glucose concentration can be monitored in real
time [32]. Some scholars also used infrared reflection technology to automatically track fish
to reduce human interference and improve the accuracy of fish behavior detection [33].

Nevertheless, few current studies are focused on the non-destructive detection of
multiple factors of stress for live fish quality classification. The research gaps are that
critical physiological stress indicators cannot be simultaneously measured by one probe
unit, such as an exclusive biosensor, image-grabbing device, or electromagnetic spectrome-
ter, which makes it difficult to simultaneously acquire multiple stress factors in fish and
comprehensively determine their health classification. Therefore, the significance of our
study is that we applied WBIA-based key stress detection with a multifrequency combi-
nation for fish vitality evaluation under adverse conditions. Furthermore, the multiple
stress measurements also pave the way for optimizing live fish quality control using deep
learning estimation modeling for precise stress acquisitions and reasonable stress-based
health classifications.

In this study, we first tested and calculated the relationship between fish muscle
nutrients and key stress factors to set the different weights of the key stresses for the final
fish health classifications. Then, WBIA signals on the fish skin were filtered and selected,
which is more related to the stress trends. Afterward, the deep learning-based stress factors
evaluation approaches were established for estimating precise stress variations. Ultimately,
we conducted fuzzy membership function-based health classification by weighted and
normalized stresses to improve the accuracy of fish health status predictions.

This paper is organized as follows. Section 2 summarizes the related concepts and
theories of wearable WBIA-based stress estimation and health classification approaches.
Next, the experimental scheme is presented, and the WBIA-based stress monitoring system
is explained. Then, the fish health assessment approach is described using the obtained
dynamic stress variations and stress-based fuzzy health classification. Sections 3 and 4
verify and discuss the experimental results to obtain a final integrated conclusion.

2. Materials and Methods
2.1. Experimental Scheme for Health Evaluation
2.1.1. Experimental Equipment

The test equipment is listed as follows: HBS-1096 enzyme marker, Nanjing DeTie
Biotechnology Co., Ltd., Nanjing, China; FYL-7S-431L Refrigerator (0–20 ◦C), Beijing FuYi
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Electrical Appliance Co., Ltd., Beijing, China; LP-31 aquarium three-in-one gas exposure
machine, Shenzhen Xingrisheng Industrial Co., Ltd., Shenzhen, China; 5810R high-speed
freezing centrifuge, Shanghai Aice Electronic Technology Co., Ltd., Shanghai, China; CK-2
Fish Tank Refrigerator, Guangzhou Chengke Electronic Technology Co., Ltd., Guangzhou,
China; ELISA detection kit (fish blood indexes: glucose, cortisol; fish muscle indexes: lactate,
glycogen), Shanghai Coibo Biotechnology Co., Ltd., Shanghai, China; ultraviolet-visible
spectrophotometer (VIS-721N), Shanghai YiDian Scientific Instrument Co., Ltd., Shanghai,
China; LC-8000 ultra high-performance liquid chromatography instrument, Beijing JITIAN
Instrument Co., Ltd., Beijing, China.

2.1.2. Experimental Scheme

The experimental scheme for live turbot health monitoring, evaluation, and verification
is illustrated in Figure 1.
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Figure 1. The experimental scheme for live fish health assessment under waterless and low-
temperature conditions.

In this study, we generally defined the fish size features (weight, length, and width)
into three categories: small size (weight: 957.1 g ± 12 g; length: 34.4 cm ± 3 cm; width:
25.4 cm ±2.5 cm); medium size (weight: 977.4 g ± 10 g; length: 37.5 cm ± 3 cm; width:
27.9 cm ± 2.5 cm); large size (weight: 987.4 g ± 10 g; length: 39.5 cm ± 3 cm; width:
29.2 cm ± 3 cm). The experimental subjects were medium-sized turbot temporarily bred in
a prepared seawater tank for 2 days without feeding. The water was kept at an average
water temperature of 13 ◦C, salinity of 25%, pH of 7.5, and an average dissolved oxygen
(DO) content of 6.0 mg/L. Next, the fish were transferred to a cold taming bucket for cold
dormancy treatment by gradually reducing the water temperature from 13 ◦C to 2 ◦C at
a rate of 2 ◦C/h. After that, the dormant turbot were gently collected and put on a wet
sponge in a plastic bag. One piece was put in each plastic bag, and the air was emptied.
Then, the bags were filled with pure oxygen, tightened, and stacked in the refrigerator at
1–3 ◦C and 3–6 ◦C for the waterless and low-temperature physiological stress monitoring
and verification tests.

At first, we determined the near-death time point to clearly identify the health decline
process. At this stage, 25 fish were prepared to accomplish this verification. We observed
the subjects every hour (recording the respiratory rate (times/min), gill flapping amplitude,
body surface color, converged fin angle, behavior changes, and duration (hours)) using
video recognition technology. When the survival rate was less than 60% in these adverse
conditions, we ended the live status observation to record the near-death time point by
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judging the gills that remained motionless and unresponsive to stimulation, as a key
reference indicator to measure the fish health levels.

Meanwhile, WBIA-based stress monitoring and verification was carried out as follows:
Firstly, 35 turbot were temporarily bred in a prepared seawater tank for 2 days without
feeding. Five fish were placed in each layer, and the sides of their bodies were covered
with wireless WBIA electrodes, with a total of eight layers, for anhydrous low-temperature
vitality monitoring. At 0, 12, 18, 24, 48, 60, 72, and 84 h, five live fish samples were
taken for subsequent testing and analysis. At the checking time points, we used a 2 mL
disposable syringe to draw blood from the tail vein. Whole blood without anticoagulant
was transferred to a 2.0 mL centrifuge tube and placed in a refrigerator at 4 ◦C for 2 h. Then,
the plasma was prepared for centrifuge treatment, which was set at 1200× g (centrifugal
force) for 10 min. Finally, the serum was collected in a 1.5 mL centrifuge tube and stored
at −80 ◦C until analysis. Afterward, we slaughtered the turbot and inserted a pH probe
to measure the muscle pH at the above assigned time points. The back muscles of the
turbot (5 in each group) were sampled and placed on ice, quickly removed, and stored
in a refrigerator at −20 ◦C for testing the other muscle indicators. Finally, the muscle
ATP-related compounds were analyzed using high-performance liquid chromatography.
Lactate and glycogen kits (CB10190-Fi, Shanghai Coibo Biotechnology Co., Ltd., Shanghai,
China) were applied to determine the lactic acid and glycogen in the muscles of the turbot,
and we used an ultraviolet-visible spectrophotometer (VIS-721N) to obtain the readings.

2.2. Health Monitoring System
2.2.1. Wearable Bioelectrical Bioimpedance Analysis (WBIA)

Regarding dynamic stress factor detection, the WBIA module was deployed, which
uses multiple probes covering the fish skin to continuously measure the fish stress levels
and evaluates their degree by analyzing the measured fish skin bioimpedance signals [34].
During the measurement, the WBIA sensing module returns the real value R and imagi-
nary value I of the impedance Z to be measured at each sweep frequency point, and its
impedance amplitude M and phase θ are calculated by Equations (1) and (2).

M =
√

R2 + I2 (1)

θ = arctan(I/R) (2)

After calculating the amplitude M of measuring the bioimpedance and obtaining the
gain factor K using the known resistance (such as 1 kΩ, 2 kΩ, etc.), the impedance value Z
is computed by Equation (3):

Z =
1

M× K
(3)

In Section 2.3.3, we take the impedance value Z and its phase θ as the input features
for obtaining the predicted stress status.

2.2.2. Data Preprocess

In this study, the Romanovsky criterion was utilized to remove large errors to improve
the accuracy of the WBIA data acquisitions [35]. This criterion can detect whether the raw
series contains a gross error and remove suspicious measurement values, which satisfies
Equation (4). 

∣∣xi − xp
∣∣ > Kσ

σ =

√
n
∑

i=1,i 6=j
(xi−xp)

n−2 ,xp = 1
n−1

n
∑

i=1,i 6=j
xi

(4)

where the criterion distinguishes gross errors based on the actual error distribution range
of the t-distribution. Set a set of monitoring data {x1, x2, . . . , xi, . . . xn} and assume the
measurement value xi are suspicious data. If suspicious data are removed, xi needs to meet
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∣∣xi − xp
∣∣ > Kσ, where xp is the average value of the remaining data after removing the

data; Kσ is the critical value; K is the t-distribution test coefficient, and σ is the experimental
standard deviation of the remaining measurement data.

Savitzky–Golay smoothing is applied to a data series to smooth it and improve the
accuracy of the data without changing the signal trend or width [36]. This tool is illustrated
in Equation (5) and implemented through the process of convolution, which involves fitting
a continuous subset of adjacent data points with a low-order polynomial using the linear
least squares method.

xk, smooth = xk =
1
H

+w

∑
i=−w

xk+ihi (5)

where hi/H is the smoothing coefficient obtained by fitting a polynomial using the least
squares method. w is the width of the windows.

2.2.3. Stress Weight Allocation and WBIA Feature Selection

Generally, the nutrients in fish muscle gradually decrease, which may be caused by a
decline in the health condition of the fish [37]. Among the nutrients, fat and crude protein
are important energy sources for fish, and their consumption process may accelerate in
stressful conditions. Muscle glycogen reserves are also mobilized to provide energy. In
addition, lactate accumulation in the muscle will lead to a decrease in the muscle pH and
reduce the meat quality. ATP also provides the energy necessary to maintain fish’s normal
life activities. Furthermore, studying the hormone levels of stressed fish is crucial for
evaluating their health status [38]. Changes in the external environment will activate the
hypothalamic–pituitary renal tissue system of fish, leading to the production of a large
number of hormones to maintain their physiological balance and achieve longer survival.
In this work, the values of the stress factors at different time points are denoted as the
following matrix in Equation (6):

Sn×t =


s11, s12, · · · , s1t
s21, s22, · · · , s2t
· · · · · · · · · · · · · · · · · ·
sn1, s12, · · · , snt

 (6)

where Sn×t is the fish stress discrete detection at time t, and n is the number of stress factors.
Grey relationship analysis (GRA) is a multi-factor statistical analysis method [39]. In

terms of these tools, we determined which stress indicators were more related to fish edible
quality, and which factors were relatively weak. GRA is formally expressed as Equation (7).

ζi(k) =
minimink|x0(k)− xi(k)|+ ρ ·maximaxk|x0(k)− xi(k)|
|x0(k)− xi(k)|+ ρ ·maximaxk|x0(k)− xi(k)|

(7)

where the comparison series is xi. The reference series is x0. ρ is the resolution coefficient,
which is in the range of (0, 1). The smaller the value of ρ, the greater the resolution. ζi
represents the correlation degree between the data of the i-th indicator and the evaluation
result. Thus, the grey correlation weight of the i-th indicator is calculated using the

expression
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[w1, w2, · · · , wn].
To better analyze the WBIA features and the stress variations, the maximum infor-

mation coefficient (MIC) was selected, as it can more sensitively determine their depth
correlation compared to the Pearson, Spearman, and other linear correlation analysis meth-
ods due to its universality and robustness [40]. Its value range is between 0 and 1, and
higher values indicate a stronger correlation. The whole process of MIC calculation is
divided into three steps. (1) Given i and j, the scattergram composed of X, and Y is gridded
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into i columns and j rows, and the maximum mutual information value is calculated; (2) the
MIC value is normalized; (3) the MIC value is concisely expressed as Equation (8).

MIC[x; y] = max
|X||Y|<B

I[X; Y]
log2(min(|X|, |Y|)) (8)

In the above equation, I is mutual information. There are a number of partitioned grids
in the x, y directions, essentially the grid distribution, and B is the variable. Generally, the
size setting of B is about 0.6 times the data volume. In this work, we used this correlation
analysis tool to obtain highly related WBIA features as the input parameters for the next
more precise deep learning-based stress level estimation.

2.2.4. WBIA-Based Health Monitoring System

In this work, a health monitoring system was designed for the continuous stress
monitoring of live fish health conditions. As shown in Figure 2a, the fish stresses were
evaluated by a wireless WBIA system.
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Figure 2. Semantic description of wireless WBIA-based stress monitoring and evaluation process:
(a) WBIA system architecture for live fish stress detection and health status classification; (b) working
procedure of WBIA signal monitoring and wireless harvesting; (c) preprocessing of the WBIA signal
acquisition; (d) fish stress biomarker acquisitions, testing, its weight allocation and evaluation model
verification in waterless and low-temperature conditions.

Firstly, the WBIA module (AD9533, Analog Devices, Inc., Wilmington, MA, USA)
sampled the WBIA signals (bioimpedance and phase) under different frequencies from
30 kHZ to 100 kHZ and combined the temperature (SHT31, Sensirion, Stäfa, Switzerland)
data series with packaging in an STM32F103 micro-controller (STMicroelectronics, Geneva,
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Switzerland). Then, the data were harvested by Lora (Semtech, Camarillo, CA, USA) in live
fish monitoring containers. Afterward, these data were transmitted to an on-site mobile
device for data temporary storage and preprocessing. Finally, the grouped data in the
previous nodes were collected and merged in the stress evaluation modeling server for
the fish health comprehensive evaluation and classification. In Figure 2b, the working
procedure of multi-frequency WBIA signal harvesting is illustrated in a flow chart as
a guide for the monitoring procedure. As shown in Figure 2c, the raw WBIA signals
were preliminarily processed by the Romanovsky criterion to remove the large error
deviations. Next, the Savitzky–Golay filter further smoothed the signals and constructed
the training data set for the stress evaluation modeling. As shown in Figure 2d, fish stress
biomarkers were deliberately acquired, tested, weight allocated, and verified for health
status classification modeling.

2.3. Health Level Assessment Modeling
2.3.1. Health Level Calculations

In this test scenario, the live fish health levels were roughly divided into five levels:
strong live level (SLL), medium live level (MLL), basic live level (BLL), weak live level
(WLL), and death status (DS). The turbot were in cold dormant conditions with the initial
filled oxygen level (95%) and a time duration of about T hours in waterless and low-
temperature conditions (1–3 ◦C and 3–6 ◦C). The initial low-temperature dormancy and
near-death time points are important reference indicators for monitoring the health of
live fish under adverse conditions. Thus, the key behavior indexes of the respiratory rate
(times/min), gill flapping amplitude, body surface color, converged fin angle, survival
rate, and behavior changes were the evaluation basis for the health-level classifications.
Therefore, the health levels were measured by the degree of fish nutrient decline from
the strong live level to the death status, divided according to the above-mentioned key
behavioral indexes (in Section 3.4) and expressed by Equation (9).

HS = dist
[Tlow ,Thigh ]

(
TNu0, TNuj

)
TNu0 = 1

H

H
∑

i=1
{norm[Nui(t0)]}

TNuj =
1
H

H
∑

i=1

{
norm

[
Nui

(
tj
)]} (9)

where
[

Tlow, Thigh

]
is the temperature zone. H is the number of nutrients. TNu0 (TNu0 = 1)

is the initial normalized value of all nutrients. TNuj (0 ≤ TNuj < 1) is the normalized value
of all nutrients at time j(j ≤ T). HS is the health score that is calculated by the Euclidean
distance between TNu0 and TNuj (HS is in [0, 1]).

For comprehensive health level identification, the total stress value is a biomarker-
based judgment-dependent indicator. Its value is normalized to a range of 0 to 1 by
summing each weighted and normalized stress value. For a certain fish size, the total fish
stress value St

total is calculated as shown in Equation (10).

St
total =

n

∑
i=1
{Wi × norm(Si(t))} (10)

where norm(Si(t)) is the normalization of a certain stress factor Si at time t. n is the number
of stress factors. W is the stress factor weight deduced by the GRA.

In experiments, the nutrient decline trends and stress factor variations are presented by
an inversely proportional relationship, which is generally described as Z-shaped functions
by setting the different adjustment coefficients [41]. The health quality level classifica-
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tion model is expressed as a fuzzy mapping calculation using the Z-shaped membership
function (ZMF), which is given by the following Equation (11):

HQ
(
St

total , W, a, b
)
=



1, St
total ≤ a

1− 2
(

St
total−a
b−a

)2
, a ≤ St

total ≤
a+b

2

2
(

St
total−b
b−a

)2
, a+b

2 ≤ St
total ≤ b

0 St
total ≥ b

(11)

where HQ
(
St

total , W, a, b
)

is the health quality mapping function. The result of this fuzzy
function is [0, 1]. a and b are the adjustment coefficients that will make the ZMF fit well with
the health score and the corresponding total normalized stress values. For well-fitting health
scores and stress values, the two ZMF curves were used to enclose the detection points from
alive to near death. Therefore, the ZMF-based health mapping curve was calculated using
the mean value of the two enclosing curves’ parameters as its adjustment coefficients. In
addition, the HQ calculations are more specifically discussed and instantiated in Section 3.4.

2.3.2. Deep Learning Models

In this section, deep learning-based stress estimation methods are introduced and
discussed for obtaining stable and precise stress variations. Previous studies have shown
that one-dimensional CNN has strong feature extraction capabilities in temporal data
processing [42]. Depending on the monitored historical changes of WBIA signals, gated
recurrent units (GRUs) allow each recurrent unit to be adaptively captured independently at
different time scales to better evaluate fish health status [43]. GRUs also combine the input
gate and forgetting gate of long short-term memory (LSTM) into an update gate, and change
the output gate into a reset gate, which makes it have a simpler structure. Thus, it is easier
to train and update its hidden status with less computation [44]. However, unidirectional
LSTM and GRU neural networks have problems, such as the insufficient utilization of data
information. Considering the above issues, the BiGRU model was reasonably introduced in
this work to capture the two-way information flow of the time series-based stress features
and more accurately learn the dynamic trends of the stresses. The BiGRU model consists
of four parts, an input layer, forward propagation layer, backward propagation layer, and
output layer, which are divided into two processes: forward propagation and backward
propagation. It trains each time series through two GRUs, forward and backward. The
calculation of the hidden status at time t is shown in Equation (12).
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To improve the regression accuracy of the LSTM and BiGRU, we also added mecha-

nisms of attention to the structure of the deep learning network [45]. Suppose the input 
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In the above equation,
→
ht and

←
ht represent the forward and backward calculation

processes, respectively;
←
ΘBiGRU and

→
ΘBiGRU are the parameter sets for the forward and

backward processes; ht−1 is the hidden status at time t− 1; h̃t is the candidate hidden status

at time step t;
→
bz,
→
br and

←
bz,
←
br are the biases during the forward and backward processes;

→
Wxz,

→
Whz,

→
Wxr,

→
Whr,

→
Wxh,

→
U and

←
Wxz,

←
Whz,

←
Wxr,

←
Whr,

←
Wxh,

←
U are the input weights in the

forward and backward processes, respectively.
To improve the regression accuracy of the LSTM and BiGRU, we also added mecha-

nisms of attention to the structure of the deep learning network [45]. Suppose the input
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vectors are the multidimensional feature vectors before the predicted time. The attention
coefficient is obtained by calculating the previously hidden layer h′i−1 and the encoder hj of
another LSTM or BIGRU network in the decoder. The attention mechanism is as shown in
Equations (13) and (14):

eij = νtanh
(
W · hj + U · h′i−1 + b

)
(13)

aij =
exp
(
eij
)

t
∑

k=t−n
exp(eik)

(14)

2.3.3. Health Status Assessment and Classification Modeling

In this section, the CNN-LSTM-BiGRU-based stress evaluation modeling for live fish
health evaluation proposes a new direction to comprehensively identify its vitality degree
by WBIA measurement. The whole procedure is divided into three parts. The modeling
process is shown in Figure 3.
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Figure 3. CNN-LSTM-BiGRU-based stress estimation and fuzzy health status classification modeling.

Part 1 is the acquisition of WBIA-based training data (impedances and phase series)
and the biomarkers in fish blood or muscle to construct the stress estimation data set.
Moreover, the WBIA signals are harvested with noise removal and smooth processing to
establish a relatively ideal training data set. Part 2 is primarily the computation of the
MIC between the WBIA signals under the specific frequencies and stress variation series
to obtain a well-established training data set. Then, we utilized the CNN-LSTM-BiGRU
model to obtain the relevant stress levels, such as glucose, lactate, cortisol, and so forth. In
Part 3, we used each stress factor’s estimation to evaluate the final fish health conditions in
terms of the weight allocation for each stress indicator and Z-shaped member function.

During the WBIA feature extraction in Figure 3, the convolutional kernel ω
acts on the input data xt ∈ Rs× f of the t-th time step, extracting the feature matrix
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Ct = {Ct,1, Ct,2, · · · , Ct,s−1} ∈ Rτ×d, where f represents the length of the time step; τ is the
feature dimensions; X indicates the length of the output feature; S represents the dimen-
sion of the output feature, and its size is determined by the filter settings. In this study,
the concrete implementation of the fish health classification was constructed using the
following steps.

The WBIA signals X were input based on different frequencies, temperature series T,
the series of stress factors S, and nutrient variations.

Step 1. Calculate the nutrient-based weight calculation for stress indicators: W =[w1, w2, · · · , wn]
using the GRA in Equation (7).

Step 2. Eliminate the gross errors using the Romanovsky criterion in Equation (4).
Step 3. Smooth the WBIA signals using the Savitzky–Golay filter in Equation (5).
Step 4. Calculate the maximum mutual information MIC(X, S) between X and S according

to Equation (8).
Step 5. Select the maximum stress-related WBIA features X∗(X∗ ⊂ X) if MIC(X, S) ≥ 0.9

to establish a training data set.
Step 6. Extract features of the WBIA series using a CNN: Ct = {Ct,1, Ct,2, · · · , Ct,s−1}.
Step 7. Utilize LSTM for the estimation of one stress S each time and calculate the residual

series resi with an attention mechanism.
Step 8. Regress the residual series resi using the BiGRU network (hidden status:

Hk =

(
Sk;

⇀
ΘBiGRU ,

←
ΘBiGRU

)
) with an attention mechanism using Equations (12)–(14).

Step 9. Input the learning features of the fully connected layer to generate an estimated stress

result Ŝi(t) at time point t, and then normalize the i-th stress to obtain ̂norm(Si(t)).

Step 10. Finally, evaluate the health status HQ
(

Ŝt
total , W, a, b

)
by the total normalized

stress at time t with the temperature zone (Tlow, Thigh) and the ZMF adjustment
coefficients (a and b).

3. Results and Discussion

This section provides a detailed description and discussion of the experimental results
of the stress status estimation and health level classification. All these calculations and data
visualization were carried out using MATLAB R2022b and Python 3.11.4 with the Scikit-
learn 1.3 library as the data analyzing and processing tools. In this study, the evaluation
indices are first listed for the forthcoming model’s calculation and its verifications. The
training and testing data sets for validation comprised 80% and 20%, respectively.

3.1. Evaluation Criterion

In this work, the mean absolute error (MAE), the mean absolute percentage error
(MAPE), and the root mean squared error (RMSE) were used to assess the performance
of the stress evaluation models. To judge the conditions of the fish health status, indexes
such as the accuracy, F1 score, precision, and recall were utilized to measure the final
classification performance of the fish health status [46]. The relevant calculations are shown
in Equations (15)–(18).

Precision =
TP

(TP + FP)
× 100% (15)

Recall =
TP

(TP + FN)
× 100% (16)

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (17)

F1− Score = 2
Precision× Recall
Precision + Recall

(18)
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3.2. WBIA Feature Selection

Physiological biomarkers were discretely and accurately detected to obtain the main
trends of fish stress variations. In this work, cubic spline interpolation technology was
utilized to complete the missing data and construct a time series-based stress data set
that was similar to real stress changes. The stress prediction system established a hybrid
deep neural network to complete short-term stress trend estimation and health quality
evaluation by utilizing a WBIA feature data series and an interpolated key stress series as
the training data set.

Figure 4 shows the periodic substance testing of physiological stresses and muscle
nutrients of dormant turbot at different checkpoints under waterless and low-temperature
(1–3 ◦C) conditions. Through the above biomarker and nutrient test, the physiological stress
levels and muscle nutritional components of the turbot under such adverse conditions were
calculated and are shown in Figure 5. Based on the above analysis, we assigned the proper
weights for each stress index according to the relationship between the muscle nutrients
and physiological stress levels using GRA. Lactate dominated the most important position
among the three key stress factors. The weight allocations were WLactate (0.396), WGlucose
(0.290), and WCortisol (0.314), which were calculated using Equation (19).
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Figure 4. The periodic substance testing of the physiological stresses and muscle nutrients of dormant
turbot at different checkpoints under waterless and low-temperature (1–3 ◦C) conditions, (a) Stress
factors variation; (b) Muscle nutrition variation.

The normalization of all stresses is denoted by Equation (19).

Stotal =
3

∑
i=1

[Wi × norm(Si)] = WGlucose × norm(G) + WLactate × norm(L) + WCortisol × norm(C) (19)

where norm(.) is the normalized function to map the data to a range of [0, 1].
Among the WBIA features, some stress-related features were chosen as the input data

set to improve the efficiency of the ML algorithms. Through the MIC calculation between
the physiological stress indicators and the WBIA-based features (phase θ, bioimpedance Z),
the critical components of the WBIA were calculated and are recorded in Tables 2 and 3.
After the calculation, the values of bioimpedance at frequencies of 80, 90, and 100 and
the values in the phase of BIA at frequencies of 70, 80, and 90 were screened out for the
forthcoming training and testing using the single or compound ML approaches.
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Table 2. MIC calculation between stress indicators and bioimpedance of WBIA.

Bioimpedance Z
(Frequency: 30–100 KHZ;

Interval: 10 KHZ)
Glucose Lactate Cortisol

30 0.225 0.378 0.225
40 0.378 0.378 0.378
50 0.558 0.558 0.558
60 0.225 0.558 0.225
70 0.791 0.991 0.791
80 0.991 0.991 0.991
90 0.991 0.991 0.991

100 0.991 0.991 0.991

Table 3. MIC calculation between stress indicators and phase of WBIA.

Phase θ
(Frequency: 30–100 KHZ;

Interval: 10 KHZ)
Glucose Lactate Cortisol

30 0.5900 0.5577 0.5900
40 0.5577 0.5900 0.5577
50 0.5900 0.5900 0.5900
60 0.5900 0.5900 0.5900
70 0.9911 0.9911 0.9911
80 0.9911 0.9911 0.9911
90 0.9911 0.9911 0.9911

100 0.4789 0.5789 0.3789

3.3. Stress Evaluation Verification

The three key stress factors were continuously estimated using the sliding window
strategy. The main stress-changing scope was also visualized with a confidence of 95%
in the prediction periods. As can be seen in Figure 6, the deviation of the stress level
evaluation was relatively small, at 1–3 ◦C.

Meanwhile, based on the enclosed predicted area and the real data fitting curves with
a confidence of 95%, the prediction deviations increased with the rise in the temperature
zone to 3–6 ◦C. Therefore, the stress assessment was in the ideal expected range when the
temperature zone was confined to 1–3 ◦C.
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After that, we calculated the errors of the stress trend estimation in terms of the WBIA
signals using ML approaches under 1–3 ◦C and 3–6 ◦C, which are clearly illustrated in
Figures 7 and 8, respectively. In the process of the evaluation comparisons, the ML method
configuration is clarified as follows: GRU: layers: 2, neurons: 30–40, fully connected layers:
2, dense layers: 10, batch size: 30, optimizer: Adam; LSTM: layers: 2, neurons 30–40,
fully connected layers: 2, dense layers: 10, batch size: 30, optimizer: Adam; SVM: kernel
function: RBF, loss function: 0.01, C: 10, gamma: 0.3; BP: hidden layers: 9; input layers: 7,
learning rate: 0.01.
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Figure 6. Stress trend evaluation using CNN-LSTM-BiGRU in 24 h under adverse conditions (param-
eters of BiGRU: layers: 2, neurons: 32, dense layer neurons: 32, fully connected layers: 3, batch size:
32, optimizer: Adam, sliding window length: 15).

With the increase in the estimation steps, the MAE was about 9.06 at 5 min, 9.33 at
10 min, and 9.61 at 20 min. The MAPE was 0.319, 0.339, and 0.359, respectively, and it also
clearly showed little deviation in the stress trends at different times compared to the other
estimation methods. Regarding the RMSE at 1–3 ◦C, it individually demonstrated excellent
estimation results of 1.03, 1.27, and 1.57. At the same while, the RMSE of CNN-LSTM and
CNN-GRU reached about 2.13 and 2.15. Finally, Figure 7 shows that our method exhibited
superior performance. Concurrently, in Figure 8, the three deviation indices all increased
at different degrees within 3–6 ◦C. Regarding the proposed approach, the MAE was 9.39,
10.05, and 10.09 at 5 min, 10 min, and 20 min, respectively. The MAPE reached 0.341, 0.349,
and 0.402 at the above time points. Finally, the RMSEs of CNN-LSTM-BiGRU were 1.13,
1.43, and 1.76, respectively, which means increased error in the stress evaluation.

3.4. Health Fuzzy Evaluation Verification

According to the experimental results and previous studies, the surface and behavioral
features of cold dormant live turbot in adverse conditions are listed in Table 4, along with
their roughly defined health levels and survival durations.

Based on the health quality mapping function, health levels can also be empirically
classified according to the principle of the close or far distance from the most suitable
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dormant temperature zone. In this research, 1–3 ◦C was more suitable than 3–6 ◦C and
could better reduce external stimuli and achieve the best cold dormancy status for fish. At
a certain health level status, the corresponding total stress was deduced for certain health
levels, the mapping relationship of which can be approximately fitted by the ZMF curve
with the optimized a, b.The average value St

total accurately reflects the real health status.
Additionally, St

total is the invasive accurate biomarker test result and not the estimated
results ˆSt

total of the WBIA-based stress evaluations. Through the test, the survival rates of
25 turbots treated with waterless and dormant preservation were tested, and the survival
rates were observed to detect the near-death time points. They had a high survival rate
within 60 h, with two dead at 60 h, three dead at 72 h, three dead at 78 h, and three dead
at 84 h (survival rate: 56%). We took 84 h as the near-death point to continue this study.
In this work, we define the near-death time point as 84 h. Table 5 shows the health level
criterion that is expressed by the suggested health score ranges.
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In this section, we assign the health quality (HQ) a number from 0 to 1, which represent
the weak live level (WLL) to the strong live level (SLL). The suggested health score range
was determined by the surface and behavior features. It is roughly divided into five levels,
which express the vitality levels. Regarding parameters a and b, we used the two ZMF
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curves to envelope the nutrient scoring points in Figure 9 from SLL to DS to deduce the
basic curve equations for different temperatures’ HQ classification. Through the above
mapping calculation, the turbot health quality was classified by evaluating the stress trends
under adverse conditions.
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In this study, medium-sized fish were chosen for the health evaluation test. The
experiments were carried out at the time points of 24 h and 74 h for the biomarkers test of
turbot and compared with the WBIA-based stress evaluation results at 1–3 ◦C and 3–6 ◦C
to validate the accuracy of the HQ classification using the criteria of the F1 score, precision,
accuracy, and recall. Through the final deviation of health classification testing and feedback
of the validations of real health indexes (biomarkers in blood and muscle nutrients), the
assessment system can make dynamic revisions and improve the HQ criterion database by
fundamentally upgrading the HQ classification performance. We calculated the average
values as the evaluation and classification results. In the comparative outcomes, the micro-
metrics were calculated globally by counting the total true positives, false negatives, and
false positives. In addition, the macro-metrics were computed for each label, and we
obtained their unweighted mean. This did not take label imbalance into account. The
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classification verification for the health status evaluation at different temperatures is shown
in Table 6.

Table 4. The surface and behavioral features of turbot health levels under waterless and cold dormant
statues in 1–3 ◦C.

Health
Levels

Respiratory
Rate

(times/min)

Gill Flapping
Amplitude

Body Surface
Color

Converged
Fin Angle Behavior Changes Duration

(hours)

SLL 16–21 Normal Normal Normal

The respiratory rate is
lower than normal, with

regular intermittent
oscillations of the

side fins

0–12

MLL 12–15 Slightly
reduced

Partially Slightly
darkening Basic

The respiratory rate is
even more lower than

normal, and the edge fins
occasionally oscillate

13–48

BLL 9–11 Reduced Overall darkening Normal
Breathing weakly, and

the side fins are
not swinging

49–72

WLL 6–8 Weak Overall darkening
and Partial graying Slightly

Intermittent cessation of
breathing and with low

frequency, body stiffness
73–84

DS 0 Motionless
Overall darkening,

large area
grayish white

Converged

Repeated stimulation
without response, the

disappearance of
vital signs

Larger
than 84

Table 5. Health classification criteria at different temperature ranges. (Fish body size: medium;
1--3 ◦C: a = 0.019, b = 1; 3–6 ◦C: a = 0.0138, b = 1).

Temperature Ranges Health Status Suggested Health
Score Ranges

Total Normalized
Stress Ranges

1–3 ◦C

SLL [1, 0.857) 0 ≤ AVG
(
St

total
)

1−3 ◦C < 0.406
MLL [0.857, 0.429) 0.406 ≤ AVG

(
St

total
)

1−3 ◦C <0.625
BLL [0.429, 0.143) 0.625 ≤ AVG

(
St

total
)

1−3 ◦C < 0.783
WLL [0.143, 0.131) 0.783 ≤ AVG

(
St

total
)

1−3 ◦C < 0.792
DS [0.131, 0) 0.792 ≤ AVG

(
St

total
)

1−3 ◦C < 1

3–6 ◦C

SLL [1, 0.857) 0 ≤ AVG
(
St

total
)

3−6 ◦C <0.368
MLL [0.857, 0.429) 0.368 ≤ AVG

(
St

total
)

3−6 ◦C <0.597
BLL [0.429, 0.143) 0.597 ≤ AVG

(
St

total
)

3−6 ◦C <0.767
WLL [0.143, 0.131) 0.767 ≤ AVG

(
St

total
)

3−6 ◦C <0.779
DS [0.131, 0) 0.779 ≤ AVG

(
St

total
)

3−6 ◦C <1

Table 6. Verification of health status classification under different temperature ranges.

Temperature Ranges Criterion Scores

1–3 ◦C

Precision (micro) 0.917
Recall (micro) 0.917

Precision (macro) 0.938
Recall (macro) 0.917

Accuracy 0.917
F1 score (micro) 0.917
F1 score (macro) 0.914
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Table 6. Cont.

Temperature Ranges Criterion Scores

3–6 ◦C

Precision (micro) 0.832
Recall (micro) 0.833

Precision (macro) 0.875
Recall (macro) 0.831

Accuracy 0.833
F1 score (micro) 0.833
F1 score (macro) 0.829

The final validation results show that the classification using the Z-shaped membership
function had the ideal performance at 1–3 ◦C. The accuracy was about 0.917 after the
classified health evaluations. The F1 score was up to about 0.916 on average. The precision
(micro) and precision (macro) were 0.917 and 0.938 respectively, which are relatively high
scores. The recall (micro, macro) was under suitable temperature conditions and the score
reached about 0.917. Meanwhile, the performance slightly decreased when the temperature
rose to 3–6 ◦C. With the increments in the temperature range, uncertainty adversely affected
the final health status evaluation. Specifically, the F1 score was reduced to about 0.831 on
average. The precision, recall, and accuracy decreased to 0.853, 0.832, and 0.833, respectively.
The test outcomes indicate that the increment in the ambient temperature region under
adverse conditions may have reduced the performance of the live fish health assessment to
varying degrees.
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3.5. System Evaluation and Suggestions

The evaluation of the health monitoring system for live turbot includes the optimiza-
tion and improvement of real-time stress data harvesting, preprocessing, and modeling,
and health classification before and after deploying WBIA-based sensing and analyzing
devices [47–50]. The evaluation performance and suggestions for the improvement of the
proposed monitoring system enabled by deep learning-based stress estimation and fuzzy
health mapping calculation are demonstrated in Table 7.

Through analysis of the above experimental results, we first obtained more accurate
stress variations by WBIA feature selection and deep learning-based stress evaluation
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models. Then, the stress-related fish health fuzzy assessments were also sufficiently verified
in this evaluation test and achieved relatively excellent accuracy. Regarding the fish health
evaluation system and suggestions, we describe the advantages of our designed WBIA-
based stress monitoring system in terms of deep learning techniques and give constructive
suggestions for its possible improvement.

Table 7. The improvement and suggestion for WBIA-based fish health monitoring system.

Content
Previous Health

Monitoring System
WBIA-Based Health
Monitoring System

Suggestion

Acquisition mode of
stress factors

Invasive; minimal
invasive; destructive

Non-invasive;
wearable

Improvement of WBIA sensors’
flexibility and conformability;

reducing the
deformation interferences

Multiple stress detection

Relatively simple features for
stress signal extractions;

cannot track various stress
indexes at one time

Multiple frequencies and
multiple features in WBIA for
selections; can track multiple

stress indexes at one time

To select more
suitable referenced

WBIA features

Weights of stress factors No definition or
calculations

To scientifically allocate the
weight of the specified stresses

To dynamically assign the weight
for each stress factor during the

health status monitoring

Stress evaluation
and health classification

Less accuracy; relatively
simple modeling; less
reasonable mapping

calculation; only based on
blood biomarkers

More accuracy; deep
learning-based modeling;

continuous fuzzy mapping
based on the blood

biomarkers and
muscle nutrients

To extend the stress factors (not
confined to glucose, lactate, and
cortisol) for health evaluations

4. Conclusions

In this research, a wearable bioimpedance-based deep learning technique is proposed
to conduct fish stress monitoring and stress-related fuzzy health evaluation. For precisely
acquiring different stress indexes, closer correlations between the WBIA signals and the
stress variations were selected according to their MIC results. Moreover, to minimize
the stress assessment errors, some popular ML approaches, such as CNN-LSTM-BiGRU,
CNN-LSTM, CNN-GRU, LSTM, GRU, SVR, and BP network, were applied to reduce the
deviations. After the experiments, the results were verified by the MAE, MAPE, and RMSE,
which show that the CNN-LSTM-BiGRU exhibited superior accuracy compared to the
other ML algorithms. Finally, the fuzzy health classification tests were also validated by the
F1 score, accuracy, precision, and recall criteria. The classification performance showed a
relatively higher accuracy at 1–3 ◦C than that at 3–6 ◦C owing to the fewer stress variations
under the optimal cold dormancy levels. Therefore, dynamic WBIA-based sensing for fish
health assessment using a deep learning algorithm is a significant method to obtain the
optimum survival conditions and effectively provides an in-depth theoretical reference for
improving the levels of fish vitality detections.
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