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Abstract: Estimating object counts within a single image or video frame represents a challenging
yet pivotal task in the field of computer vision. Its increasing significance arises from its versatile
applications across various domains, including public safety and urban planning. Among the various
object counting tasks, crowd counting is particularly notable for its critical role in social security
and urban planning. However, intricate backgrounds in images often lead to misidentifications,
wherein the complex background is mistaken as the foreground, thereby inflating forecasting errors.
Additionally, the uneven distribution of crowd density within the foreground further exacerbates
predictive errors of the network. This paper introduces a novel architecture with a three-branch
structure aimed at synergistically incorporating hierarchical foreground information and global
scale information into density map estimation, thereby achieving more precise counting results.
Hierarchical foreground information guides the network to perform distinct operations on regions
with varying densities, while global scale information evaluates the overall density level of the
image and adjusts the model’s global predictions accordingly. We also systematically investigate
and compare three potential locations for integrating hierarchical foreground information into the
density estimation network, ultimately determining the most effective placement.Through extensive
comparative experiments across three datasets, we demonstrate the superior performance of our
proposed method.

Keywords: crowd counting; foreground segmentation; hierarchical foreground information; scale
information

1. Introduction

The objective of crowd counting is to automatically analyze densely populated scenes,
aiming to determine the precise count of individuals within raw images. This task has
gained significant importance in the field of computer vision due to its potential applications
in urban planning, crowd management, and extensive surveillance. Furthermore, networks
designed for crowd counting can be applied to tasks with similar characteristics. Notable
examples include vehicle detection and quantification at traffic intersections or along
highways [1,2], estimation of wildlife group populations [3,4], automated enumeration of
specific cells in microscopic images [5], and more.

Historically, methodologies for crowd counting can be broadly categorized into three
main groups: detection-based methods [6–8], traditional regression-based approaches [9–11],
and density map estimation-based techniques [12–14]. In cases where crowd density is
relatively sparse, human body part detection through sliding windows has been employed
for counting [15,16]. However, dense crowd scenarios introduce challenges such as oc-
clusion and increased computational demands, making sole reliance on object detection
inadequate for accurate counting. In such instances, traditional regression methods of-
fer an alternative approach. This regression-based approach consists of two sequential
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phases: the initial extraction of low-level features and subsequent regression modeling.
After capturing global and local features through various extraction techniques, distinct
regression methodologies, including linear regression, piecewise linear regression [17],
ridge regression [9], and neural networks, are employed to learn the mapping from these
low-level features to crowd counts. Despite their utility, these techniques may overlook
spatial information, leading to suboptimal predictive accuracy for crowd counts.

In recent years, the emergence of deep learning has effectively addressed the afore-
mentioned issue. Deep neural networks inherently represent nonlinear functions, allowing
for the establishment of complex and accurate mapping relationships as long as a large
amount of training data is available. Leveraging the advantages of extensive datasets, the
strategy of using neural networks to map images into density maps has gained widespread
adoption for crowd counting. The density map emerges as a result of applying Gaussian
processing to crowd labels, capturing not only the count of individuals but also crucial
spatial and scale information related to the crowd’s distribution. By employing a neural
network to transform input images into density maps, the inherent spatial information
within the images can be fully utilized, ultimately leading to enhanced counting accuracy. A
variety of deep neural network-based approaches have been introduced to tackle this prob-
lem, including cross-scene counting [12], MCNN [13], Switching CNN [18], ACSCP [19],
ACSPNet [20], MMCNN [14] and others. However, crowd counting and density estimation
tasks remain challenging, primarily due to the intricate elements present within the original
images, such as complex buildings, roadways, and surrounding vegetation, which further
compound the complexity of the crowd context.

As discussed above, the mainstream method of crowd counting involves mapping
the input image to a density map using a convolutional neural network and subsequently
obtaining the count by integrating the density map. However, in these methods, the
network often misclassifies the background (zero-valued area in the density map) as part
of the head areas, leading to increased prediction errors, as highlighted by the red boxes in
Figure 1. Additionally, the network tends to average high-density and low-density regions
during computation, further contributing to the error. These errors occur for the following
reasons. In the current density map labeling scheme, the values in the density map can
have one of two states: a zero value means that there is no human head there, while a
non-zero value means that there is a human head object there, and the value represents
the local density. Density map estimation involves two steps: determining whether a pixel
belongs to the foreground or background (object/non-object) and estimating the density
value of the foreground region. However, when a single density map estimator is used for
both tasks, the regressor may struggle to accurately distinguish between human heads and
human head-like regions (such as grass and poorly lit forests), limited by the amount of
data and network structure.

Figure 1. Examples of background misjudgments.

Motivated by these challenges, this paper introduces a novel network architecture that
addresses these tasks sequentially. Specifically, after forecasting foreground/background
regions, the proposed architecture hierarchically segregates foreground areas. Subsequently,
it amalgamates hierarchical foreground information with intermediate density maps to
derive the final density map. This strategy serves a dual purpose: it filters out human-like
head regions in the background and effectively guides the network to make distinctive pre-
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dictions for high-density and low-density regions, thereby enhancing the overall regression
quality. The contributions of this paper can be summarized as follows.

• This paper proposes a novel architecture for crowd density estimation. To achieve
accurate results, the model employs a three-branch structure that integrates foreground
segmentation with density prediction and adjusts the global density using a scale
factor, which evaluates the crowd density level in the original image.

• This article utilizes image segmentation techniques for crowd counting. Specifically,
the image undergoes segmentation into three distinct categories: background, regions
with low crowd density, and regions with high crowd density. This segmentation
approach provides hierarchical foreground information that effectively guides the
network in distinguishing areas with varying levels of crowd density.

• In this paper, we investigate and compare three distinct locations for the integration of
hierarchical foreground information. Finally,we identify the hierarchical foreground
information fusion location that yields the highest performance.

2. Related Work
2.1. Density Map-Based Methods

Benefiting from the rapid development of deep learning, contemporary crowd count-
ing methods primarily rely on predicting density maps using deep neural networks. The
density map-based approach for crowd counting was initially introduced in [1] aiming to
incorporate spatial information into the regression process by learning a linear mapping
between local patches and their corresponding density maps. However, mastering this
linear mapping proved to be challenging. To mitigate this challenge, Pham et al. [21]
employed random forest regression to map images to density maps, achieving satisfactory
results by introducing a measure of crowdedness to train two different forests. While these
traditional density map generation methods took spatial information into account, they
relied solely on traditional hand-crafted features to extract low-level information and often
struggled to produce high-quality density maps for more accurate counting. In recent years,
due to the remarkable feature representation capabilities of CNNs, an increasing number
of researchers have used CNN-based methods to enhance the accuracy of crowd density
estimation. In this context, defining the original image as X and the network weights as
θ, the process of crowd counting for a single image through a CNN can be expressed as
Equation (1):

C =
∫∫

∑
F(X, θ)dxdy (1)

where F denotes the neural network. Wang et al. [22] developed an end-to-end CNN
regression model to count the number of people in extremely crowded scenes. Their ap-
proach takes the entire image as input and directly outputs the final counts. In the same
year, Zhang et al. [12] proposed a deep CNN method that alternately trained two related
learning objectives: crowd density estimation and crowd count estimation. To address the
dramatic changes in human head size caused by perspective, Zhang et al. [13] utilized a
multi-column neural network (MCNN) to achieve more accurate counts by using differ-
ently sized receptive fields in each column. Sam et al. [18] introduced a path-switching
architecture called Switching-CNN to handle crowd density changes within an image.
Sindagi et al. [23] proposed a context pyramid CNN to combine different levels of context
information. CSRNet [24] employed dilated convolution to expand the receptive field,
improving accuracy and proving the effectiveness of dilated convolution. Xu et al. [25]
introduced a novel approach to scale crowded patches, ensuring similar densities across
all patches, addressing the issue of uneven density distribution. Recently, Zhou et al.
[26] applied this method and achieved better results. Jiang et al. [27] incorporated an
attention mechanism to enhance the prediction accuracy of their neural network. Addi-
tionally, some methods [28,29] have focused on designing new loss functions to effectively
reduce estimation errors. Geng et al. [30] use high-level contextual information to im-
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prove the abilities of anchor-based detectors to detect dense and degenerate faces. This
research served as a source of inspiration for our work. In addition, some recent works
[26,31,32] have shown promising results and contributed to the advancement of crowd
counting techniques.

2.2. Image Segmentation-Based Methods

Image segmentation is fundamental in computer vision and extensively applied to
precise segmentation tasks, particularly in the domain of medical images. However, it
is noteworthy that only a limited number of existing methods have leveraged image
segmentation to aid crowd counting. MMCNN [33] is a multi-column multi-task network
that incorporates the learning of location information based on MCNN. Although MMCNN
imitated image segmentation, the loss function was still the Euclidean distance based on
the density map, such that it could not accurately segment the crowd area. Hossain et al.
[34] proposed to adjust the local regions in the image by means of a local attention network,
an approach that also drew on the idea of image segmentation. However, there was no
clear demarcation among the different density regions examined by this method. Unlike
the methods discussed above, this paper explicitly performs foreground segmentation and
obtains hierarchical foreground information to effectively guide the generation of the final
density map.

3. Our Method

To enhance counting accuracy by effectively integrating foreground information into
the density map estimation process, we introduce our approach, named FSDGNet, whose
architectural design is illustrated in Figure 2. FSDGNet employs a three-branch structure
to combine hierarchical foreground information and global scale context into the density
estimation network. The model comprises three branches: the density map generation
network (comprising a multi-feature extraction network and a density estimation net-
work), the foreground segmentation network, and the scale factor extraction network,
respectively. The input image undergoes processing through the multi-feature extraction
network, resulting in an intermediate density map. This intermediate density map is then
combined with hierarchical foreground information using broadcasting operations and
bitwise multiplication. The fusion position for the hierarchical foreground information,
as described here, is located at position 2 in Figure 2. Detailed experimental information
regarding the fusion position will be provided in Section 4.5.2. Finally, the results of the
fusion operation are modified by the scale factors derived from the scale factor extraction
network, producing the input of the density estimation network. The complete process can
be outlined as Equation (2):

M = D(X) ∗ B(F(X)) ∗ G(X) (2)

where X is the input image, while D, F, and G represent the multi-feature extraction net-
work, foreground segmentation network, and scale factor extraction network, respectively.
Moreover, B represents the broadcast operation and M is the input of the density estima-
tion network that produces the final density map. In the following subsections, we will
introduce the three branches of the model, methods used to generate the ground truth for
the density map, and hierarchical foreground information.

3.1. Density Map Generation Network

The architecture of the density map generation network is composed of two main
components: the multi-feature extraction network and the density estimation network.
The initial 10 layers of the multi-feature extraction network replicate those found in the
VGG16 network, such as in CSRNet. This design offers a dual advantage: it harnesses
the powerful feature extraction capabilities inherent to the VGG model while preventing
excessive network depth. Subsequently, an upsampling layer is added to the front-end
network, scaling up the feature map, which is initially 1/8 the size of the original image, to
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1/4 of the original image size. We up-sample here for two main reasons: first, to ensure
the intermediate density map can be effectively fused with the hierarchical foreground
information map, requiring them to be of the same size; and second, to enhance the
resolution of the output density map for improved spatial accuracy. Finally, a convolution
operation is applied to fuse the upsampled local features, resulting in the intermediate
density map.

Figure 2. The architecture of the Foreground Segmentation-Based Density Grading Network. The
three branches of the model are the scale factor extraction network, the density map generation
network (consisting of a multi-feature extraction network and a density estimation network) and the
foreground segmentation network, respectively.

The density estimation network comprises an average pooling layer, six dilated con-
volutional layers, and an output layer. We substituted pooling layers with dilated convo-
lutions to expand the receptive field while preserving resolution, thereby enhancing the
preservation of spatial semantic information.

3.2. Scale Factor Extraction Network

The scale factor extraction network has an identical initial 10-layer structure as the
multi-feature extraction network. Firstly, an average pooling layer is added after the base
network, enhancing the network’s capability to comprehensively assess the global head
density. Following this, four convolutional layers with a 3 × 1 kernel size are appended to
adjust the output channel count to 1. After this sequence of convolutional operations, an
adaptive average pooling operation is applied to the network output to quantize the feature
map into a scale factor denoted as ’i’. Subsequently, the scale factor value is adjusted to fall
within the range of 0 to 2 through the following operation:

i = HardTan(i) + 1 (3)

The density map produced by the multi-feature extraction network is modulated
based on the scaling factor ’i’. Specifically, when the scale factor value exceeds 1, the output
value of the multi-feature extraction network is increased from its initial value. Conversely,
if the scale factor is less than 1, the output value is attenuated. If the scale factor is equal
to 1, the output value remains unchanged. This adjustment mechanism ensures that the
density map is properly scaled according to the scale factor.
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The specific structures of the density estimation network and the scale factor extraction
network are presented in Figure 3. The loss function used to train the network for density
map generation is the Euclidean loss, which is widely employed in current practice.

Figure 3. Structure of the density map generation network and scale factor extraction network.

3.3. Generation of Ground Truth and Foreground Segmentation Network

In this section, we will first introduce the method used to generate the Ground Truth
map, which includes the density map and the hierarchical foreground information map.
Following this, we will provide a detailed explanation of the foreground segmentation
network in Section 3.3.3.

3.3.1. Generation of Density Map

This paper employs the density map generation method proposed in MCNN. An ex-
ample density map is presented in Figure 4. A picture with N marked heads is represented
by the following function:

H(x) =
N

∑
i=1

δ(x − xi) (4)

This function represents the case where N heads are labeled in an image, where
δ(x − xi) is the Dirac δ function which equals 1 at (x − xi) and 0 elsewhere. xi denotes the
position of the i-th head. Then, this function is converted to a continuous density function
by convolving it with a Gaussian function to generate a density map:

F(x) = H(x)∗Gσ(x) (5)



Sensors 2023, 23, 8177 7 of 15

Figure 4. The original image and its corresponding density map.

The objective in generating the density map is to ascertain the parameters of the
Gaussian function, particularly the diffusion parameter which dictates the size of the head
on the density map. In this paper, the diffusion parameters for each person are adaptively
determined based on the average distance between each person and their four nearest
neighbor heads. For a head Xi in a given picture, we define its nearest k distances as:
di

1, di
2, ..., di

k. Consequently, the average distance can be computed as Equation (6):

d̄i =
1
m ∑m

j=1di
j (6)

Finally, we convolve the pulse function with the Gaussian kernel function to generate
the density map. The exact density function is as Equation (7):

F(x) =
N

∑
i=1

δ(x − xi) ∗ Gσi (x), σi = βd̄i (7)

3.3.2. Generation of Hierarchical Foreground Information Map

We then proceed with further processing of the density map obtained in Section 3.3.1
to create the hierarchical foreground information map. This process is essentially assigning
a grade to each pixel within the density map.

The procedure for generating the hierarchical foreground information map is illus-
trated in Figure 5. The process begins with the creation of a GT map “b” from an original
image “a”, both with dimensions M ∗ N. This creation process is detailed in Section 3.3.1.
Then, we scan the GT map “b” pixel by pixel employing a sliding window of dimensions
64 ∗ 64. This scanning enables the computation of the summation of pixel values within
the local vicinity of each pixel, resulting in a neighborhood density map “c”. At this point,
the segmentation between the background and foreground is complete. We now proceed
with further processing to divide the foreground in neighborhood density map ’c’ into
high-density and low-density areas. Continuing the process, density grading is applied
to the foreground in “c.”While traversing the neighborhood density map pixel by pixel,
we identify the largest pixel value, denoted as Imax, and the smallest non-zero pixel value,
denoted as Imin. The threshold for density grading is subsequently set as the average value
of these two values:

Ithreshold = (Imax + Imin)/2 (8)

Concluding this process, the neighborhood density map is once again traversed pixel by
pixel. During this traversal, non-zero pixels that fall below the threshold are categorized
as belonging to low-density regions, while pixels exceeding the threshold are classified
as high-density regions. Based on experimental findings, optimal network performance
is attained when the value for low-density regions is established at 0.9 and the value for
high-density regions is set at 1.1. The resultant hierarchical foreground information map is
depicted in Figure 5.
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Figure 5. The generation process of hierarchical foreground information map. Image (a) is the
original image,image (b) is the GT map,image (c) is the neighborhood density map and image (d) is
the hierarchical foreground information map.

3.3.3. Foreground Segmentation Network

For the foreground segmentation component of our model, we have chosen the U-Net
architecture, which is renowned for its exceptional segmentation efficacy. In contrast to the
Euclidean distance used in the multi-task branch of MMCNN, we have opted for the cross-
entropy function as the loss function for training the foreground segmentation network.
Due to variations in dimensions among the original images in the Part A ShanghaiTech
dataset, which is used for training, and considering the limited dataset size, we have
employed a strategy of dividing each image into nine sub-images. Subsequently, each
sub-image is resized to dimensions divisible by 16. This resizing ensures consistency in
output dimensions with the graded mask GT map. The transformation of images before
and after cropping is illustrated in Figure 6.

Figure 6. Training data of foreground segmentation network.

3.4. Multi-Scale Feature Extraction Module

As introduced in Section , the initial ten layers of the multi-feature extraction network
adopt the corresponding layers from the VGG16 architecture, maintaining consistency
with the baseline model. However, this structure fails to capture multi-scale information.
To overcome this limitation, we have developed a multi-scale feature extraction module
to replace a portion of the original network structure within the multi-feature extraction
network. To be specific, we will replace the first three layers of the multi-feature extrac-
tion network with a multi-scale feature extraction module during the experiments. The
comparative results of these experiments will be presented in Section 4.1.
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Figure 7 illustrates the structure of the multi-scale feature extraction module, which
includes both a coding unit and a spatial soft attention unit. As depicted on the left side of
Figure 7, the multi-scale encoding unit is designed to enhance the extraction of features
relevant to densely populated crowd scenarios while simultaneously capturing the spatial
specifics of crowd distribution. This is achieved by employing convolution kernels of
various scales—1, 3, and 7—within the multi-scale encoding units. The design of the
multi-scale encoding units empowers them to effectively capture features across different
scales, effectively addressing challenges posed by occlusion and scale variation within
crowd counting contexts. However, the feature map obtained at this time contains both
location information and irrelevant background information. To reduce redundancy and
enhance the network’s focus on essential information, a spatial attention unit is added after
the multi-scale encoding unit. This unit serves to filter out extraneous details and heightens
the network’s attention to important information regions.

Figure 7. Multi-scale feature extraction module.

4. Experiments

We evaluate our proposed model using three distinct datasets: ShanghaiTech, UCF_CC_50,
and WorldExpo’10. Additionally, we conduct a comparative analysis of our approach
against other crowd density estimation models, with the aim of demonstrating the effec-
tiveness of our proposed method. Next, we will provide details about the datasets used
in our experiments and outline the evaluation criteria applied. This will be followed by a
comprehensive description of our experimental procedures.

4.1. Dataset

1. UCF_CC_50 is the first challenging dataset created from publicly available web images.
It contains various densities and different perspective distortions in various scenes,
including concerts, protests, stadiums, and marathons. Given the dataset’s size of only
50 images, it is typically processed with five-fold data partitioning before training and
further processed with cross-validation during training. The limited dataset size often
leads to suboptimal results, even with state-of-the-art CNN-based methods.

2. WorldExpo’10 is a large-scale, data-driven, cross-scenario crowd-counting dataset
collected from the 2010 Shanghai World Expo. It comprises 1132 annotated video
sequences captured by 108 surveillance cameras. The dataset contains a total of
3920 frames with a size of 576 × 720 pixels, encompassing scenes both indoors and
outdoors, and includes annotations for 199,923 people.

3. ShanghaiTech is one of the largest crowd-counting datasets to emerge in recent years,
comprising 1198 images and 330,165 annotations. The dataset is divided into two
parts, A and B, based on differing density distributions. Part A consists of pictures
randomly selected from the Internet, while those in part B are captured on a busy
street in downtown Shanghai, featuring lower image density. Notably, the scale
changes and perspective distortions within this dataset introduce new challenges and
opportunities for many CNN-based network designs.
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4.2. Experimental Details

The experiments are conducted using the PyTorch framework. We generate the ground-
truth map of a density map using the geometric adaptive kernel proposed in Section 3.3.1.
We then utilize this density map to generate the ground-truth map for the hierarchical
foreground information map, which is used to train the foreground segmentation network.

We utilize the U-Net network as the foreground segmentation network. The initial
10 layers of both the density estimation network and the scale factor extraction network
are initialized with pre-trained network parameters, while the other layers in the network
architecture are initialized with normal distributions. We adopt mini-batch stochastic
gradient descent (SGD) as the optimizer. The learning rate is initially set to 1 × 10 −5 and
is reduced by a factor of 0.1 every 20 epochs. The cross-entropy loss function is used for
the foreground segmentation network, while the density estimation network employs the
Euclidean loss function.

4.3. Evaluation Metrics

The two metrics we use in our experiments are Mean Absolute Error (MAE) and Mean
Squared Error (MSE), which are defined as follows:

MAE =
1
N

N

∑
i=1

∣∣∣Cpred
Ii

− Cgt
Ii

∣∣∣ (9)

MSE =
1
N

√√√√ N

∑
i=1

∣∣∣Cpred
Ii

− Cgt
Ii

∣∣∣2 (10)

N is the number of pictures, Cpred
Ii

is the predicted value and Cgt
Ii

is the true value.MAE
assesses the accuracy of estimation results, while MSE evaluates the robustness of estima-
tion. MSE is particularly sensitive to larger errors, making it more focused on identifying
outliers or anomalies.

4.4. Comparison with Other Methods

In this section, we compare the proposed method with other methods on the Shang-
haiTech, UCF_CC_50 and WorldExpo’10 datasets to demonstrate the effectiveness of
our algorithm.

The comparative networks include MCNN, MANET, CSRNET, CPCNN, SANET,
TEDNET, DENET and KDMG. We denote the network in which the first three layers of the
density estimation network are replaced by the multi-scale feature extraction module as
’OURS_M’ in Table 1. The experimental results presented in Table 1 were obtained using our
re-implemented code. One notable observation is that our network consistently achieves
superior performance across all three datasets, outperforming the competing networks. It
is worth highlighting that the performance of ’OURS_M’ is significantly better than that
of ’OURS,’ demonstrating the effectiveness of the designed multi-scale feature extraction
module in improving counting accuracy.

The reason for our network’s outperformance compared to MANET, another network
grounded in image segmentation principles, can be attributed to our incorporation of
graded foreground information. Prior to merging foreground information, the estimations
in certain regions exceed the labeled counts, while the opposite is true for other areas. The
overall error value is an average of these two conditions. When foreground information
only focuses exclusively on discerning crowd areas, the mask leads to a reduction in the
predicted head counts, resulting in decreased errors in regions where predicted counts
surpass the labeled count. However, errors are exacerbated in areas where the predicted
count falls short of the labeled count.
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Table 1. Comparison of the results of different methods.

SHTech Part A SHTech Part B UCF_CC_50 WorldExpo10

Method MAE MSE MAE MSE MAE MSE S1 S2 S3 S4 S5 avg
MCNN [13] 110.2 173.2 26.4 41.3 377.6 509.1 3.4 20.6 12.9 13 8.1 11.6
CPCNN [23] 73.6 110.2 20.1 30.1 295.8 320.9 2.9 14.7 10.5 10.9 5 8.8
CSRNET [24] 68.2 115 10.6 16.8 266.1 397.5 2.9 11.5 8.6 16.6 3.4 8.6
MANET [35] 66.3 109.4 16.9 28.4 283.3 411.6 3 16.7 11.6 12.5 4.1 9.6
SANet [36] 67 104.5 8.4 13.6 258.4 334.6 2.6 13.2 9.0 13.3 3.0 8.2

TEDNET [37] 64.2 109.1 8.2 12.7 249.4 354.6 2.3 10.1 11.3 13.8 2.6 8.0
DENET [38] 65.9 105.4 9.8 15.4 247.3 350.6 3.1 10.7 8.6 15.2 3.5 8.2
KDMG [39] 63.8 99.3 7.8 12.7 241.3 351.6 3.0 9.1 8.6 11.2 3.1 7.0

Ours 63.8 104.6 9.6 13.7 246.6 356.1 3.3 9.8 9.1 12.7 3.2 7.6
Ours_M 61.9 103.8 9.0 12.3 240.1 351.1 3.1 10.7 8.9 12.1 3.1 7.6

In contrast, the layered foreground infographic (with values of 0, 0.9, and 1.1 for
different density areas) achieves balanced results by reducing the number of people in some
areas while increasing the number of people in others. Figure 8 shows some experimental
results of our proposed model and the baseline model on the dataset.

Figure 8. Some experimental results.

4.5. Ablation Experiment

In this section, we conduct a two-part investigation. First, we explore the impact
of sliding window size on hierarchical foreground information maps in Section 4.5.1.
Subsequently, in Section 4.5.2, we elaborate on the optimal fusion position for integrating
the hierarchical foreground information map into the density map generation network.
Both experiments were performed on the ShanghaiTech dataset.

4.5.1. Study on Sliding Window Sizes

As depicted in Figure 5, during the process of hierarchical foreground information
extraction, a fixed-size sliding window is employed to scan the ground truth density map
pixel by pixel. The scanning operation can calculate neighborhood pixel values, thereby
aiding in the grading of specific areas.

The size of the sliding window is the neighborhood size of a single pixel, which affects
the accuracy of the hierarchical foreground information generated by the foreground seg-
mentation network. In the conducted experiments, we performed a series of comparative
analyses by employing sliding windows with dimensions of 48, 64, and 80. These sliding
windows of varying sizes are employed to generate ground truth maps for hierarchical
foreground information, which in turn serve as training data for the foreground segmenta-
tion network. Figure 9 depicts the results of training the foreground segmentation network
using these three different window sizes. Notably, when the window size is set to 64, the
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hierarchical foreground information map produced by the network aligns most closely
with the ground truth map.

Figure 9. The results of the foreground segmentation network trained with the three differently
sized windows. The sliding window sizes of the first, second , and third column are 48, 80, and 64,
respectively. The first row is the input image, the second row is the ground truth of the density map,
the third row is the predicted foreground information map, and the fourth row is the ground truth of
the foreground information map.

The experimental outcomes, succinctly outlined in Table 2, offer a comprehensive view
of the accuracy performance achieved by employing three distinct sliding window sizes.
Notably, the results underscore that the network attains its optimal performance when the
sliding window size is configured at 64.

Table 2. Comparison of the results of using three sliding windows with different sizes.

Window Size Without 48 64 80

MAE (SHTech PartA) 68.2 66.1 63.8 65.9
MSE (SHTech PartA) 115.3 107.6 104.6 109.4
MAE (SHTech PartB) 10.6 10.8 9.6 10.7
MSE (SHTech PartB) 16.8 14.0 13.7 15.9

The bold font indicates the results with the minimum error in each row.

4.5.2. Study on the Location of Hierarchical Foreground Information Fusion

In previous crowd density prediction research, distinguishing intricate backgrounds,
such as trees and lawns, from actual crowd areas during density estimation, was a prevalent
challenge. Our initial proposal aimed to utilize foreground information to guide crowd den-
sity estimation, enabling the density map generation network to adapt distinct approaches
for regions with varying density levels and effectively mitigating prediction errors. For
further study, we fuse hierarchical foreground information maps at three different locations,
as shown in Figure 3. Simultaneously, we conduct a comparative experiment without
the hierarchical foreground information map. Indeed, the integration of the hierarchical
foreground information map at location 1 involves a pre-processing operation on the input
of the density prediction network. The integration at at location 2 is to fuse the hierar-
chical foreground information with the feature information in the intermediate density
map. Additionally, the fusion of the hierarchical foreground information map at location
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3 is intended as a post-processing step for the output of the density estimation network.
Essentially, this intricate approach systematically explores the integration method of the
hierarchical foreground information at distinct stages of the density prediction process,
thereby providing a nuanced understanding of its influence on network performance.

The comprehensive experimental findings are tabulated in Table 3, where it is evident
that the most favorable outcomes are achieved by incorporating the hierarchical foreground
information map at location 2. This can be attributed to the fact that our hierarchical
foreground information map operates in a manner that dynamically adjusts the density
estimation network’s attention across distinct regions, transcending a simplistic mask
operation. Consequently, location 1 and location 3, which are more sensitive to confidence
levels, do not exhibit the same level of effectiveness as location 2. Consequently, we opt
to integrate the hierarchical foreground information map at location 2. To illustrate the
effect of the hierarchical foreground information map in our experiments, we present the
prediction results under the hierarchical foreground information map fusion condition
(added at location 2), which is denoted as “W”, and the result without the hierarchical
foreground information map, denoted as “W/O”. Figure 10 shows the different prediction
results of partial images before and after removing the foreground segmentation network.

Table 3. Comparison of the results of fusing hierarchical foreground information map at different
locations.

Fusing Location Without Location 1 Location 2 Location 3

MAE (SHTech PartA) 68.2 66.1 63.8 66.6
MSE (SHTech PartA) 115.3 108.4 104.6 109.8
MAE (SHTech PartB) 10.6 10.8 9.6 10.7
MSE (SHTech PartB) 16.8 13.5 13.7 14.0

The bold font indicates the results with the minimum error in each row.

Figure 10. Different prediction results of partial images before and after removing the foreground
segmetation network.

5. Conclusions

This paper addresses the challenge of crowd counting by harnessing deep neural
networks. Our main contribution is to propose a novel architecture adopting a three-branch
structure; this design effectively integrates hierarchical foreground information and global
scale information into the density map estimation process, improving the accuracy of
crowd counting. In addition, we demonstrate the effectiveness of the designed multi-
scale feature extraction module for improving the counting accuracy through experiments.
Finally, we systematically explore the methods for incorporating hierarchical foreground
information into the density map generation network and identify the best-performing
solutions. Through experimental validation, we demonstrate that the proposed method is
effective and achieves a competitive crowd counting performance on various datasets.
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