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Abstract: The development of underground artificial cavities plays an important role in the exploita-
tion of urban spatial resources. As the rapidly growing number of underground artificial cavities with
different depths and scales increases, the detection and identification of underground artificial cavities
has become a key issue in underground engineering studies. Geophysical techniques have been
widely used for the construction, management, and maintenance of underground artificial cavities.
In this study, we present two identification methods for underground artificial cavities. Apparent
resistivity imaging is the most popular technique for quickly identifying underground artificial
cavities, using the forward simulation results of a three-dimensional earth model and comparing
these with the preset positions of artificial cavities, as demonstrated in the experiment. To further
improve the efficiency of underground artificial cavity identification, we developed a fast recognition
approach for underground artificial cavities based on the Bayesian convolutional neural network
(BCNN). Compared to a traditional convolutional neural network, the performance of the BCNN
method was greatly improved in terms of the classification accuracy and efficiency of identifying
underground artificial cavities with apparent resistivity image datasets.
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1. Introduction

In recent years, the construction of underground artificial voids has emerged as
a significant trend in urban development, aiming to utilize urban underground space
resources. Consequently, the number, depth, and scale of these voids have been rapidly
increasing in cities. The application of geophysical exploration methods is crucial for the
efficient, accurate, and non-invasive detection and identification of these underground
artificial cavities. The expansion of urban underground space, extending from shallow to
deep levels, has heightened the importance of studying efficient and precise geophysical
exploration technology. This technology is crucial for the development, utilization, and
safety management of urban underground space [1,2].

The geophysical electromagnetic method is an exploration technique that analyzes
changes or distributions in electromagnetic fields across space and time. It relies on the
varying responses of different media to natural or artificial electromagnetic fields. The
electromagnetic methods can be categorized as ground-based or airborne based on the
application space of detection systems. Ground electromagnetic methods mainly include
controlled source audio magnetotelluric methods [3-5], wide-field electromagnetic meth-
ods [6,7], etc. However, the application of ground-based electromagnetic methods is
significantly restricted in areas with complex surface conditions, such as wetlands, deserts,
and other locations where conducting ground surveys is logistically challenging. On the
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other hand, airborne electromagnetic methods can swiftly detect geological structures
without being hindered by ground factors. However, the detection depth of the airborne
electromagnetic method is relatively shallow due to limitations such as the drone load
capacity and launch power [8]. To enhance the detection depth, the semi-airborne elec-
tromagnetic method (SAEM) was employed. This technique involves placing high-power
electrical sources on the ground and using aerial platforms equipped with acquisition
systems to measure electromagnetic responses [9-11]. In comparison to airborne electro-
magnetic methods, semi-airborne methods can measure data with a higher signal-to-noise
ratio, resulting in a greater detection depth.

With the emergence of the artificial intelligence era, convolutional neural networks
(CNN) in deep learning have received much attention due to their advantages, such as
automatic feature learning, a simple structure, and strong adaptability. Consequently,
CNNss have found widespread applications across various fields. In the context of under-
ground artificial cavity recognition, CNNs primarily serve target detection and recognition
purposes. For example, Reichman et al. [12] employed CNN to detect hazardous under-
ground objects, where CNN utilized B-Scan images as the input and then used GPR images
from the test dataset for the detection and recognition of these underground hazards. The
results demonstrated a notably high detection rate for underground targets. Dinh et al. [13]
employed CNNSs for the detection of steel bars within bridge structures, which illustrates
the advantages of CNNs in automatic target detection. In addition, many variants of CNNs,
including R-CNN [14], Fast-RCNN [15], Faster-RCNN [16-19], and YOLO [20], have been
developed for the detection of underground targets. Pham et al. [21] explored the use
of Fast-RCNN for underground target detection. This algorithm involves the training of
network parameters using measured and simulated data, followed by the utilization of a
trained network model for underground target detection on the test dataset.

In this work, we aim to detect underground artificial cavities using the frequency-
domain SAEM method. To this end, we first examine the fundamental SAEM theory and
briefly introduce the implementation process of the apparent resistivity imaging method
for quick underground artificial cavity identification. The accuracy of this method is then
validated through numerical experiments. However, the imaging results using the conven-
tional apparent resistivity imaging method did not automatically identify artificial holes
and lacked efficiency when detecting potential underground artificial cavities over a large
area. To address this limitation, we developed an artificial hole recognition method based
on a Bayesian convolutional neural network [21-23]. This approach demonstrates robust-
ness against overfitting and the ability to learn from small datasets. The effectiveness of
this proposed method was verified using practical public datasets and COSMOL-simulated
artificial cavity imaging data.

2. Apparent Resistivity Imaging Method

To quickly image the electromagnetic simulation results and enable the identification
of underground artificial cavities, we employed the apparent resistivity imaging method.
Vertical magnetic responses in the frequency domain for uniform earth exhibit increased
monotonic behavior with resistivity; therefore, solving the inverse function of resistivity
allowed us to obtain a distinct and apparent resistivity value. When the resistivity of
uniform earth is p1, the expression of a vertical magnetic flux density in three-dimensional
space is [24]:
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where u; = /A2 + k%, k3 = —iwp/py. In order to quickly calculate the apparent resis-

tivity in the detection area, the Dichotomy method was used to iteratively calculate the
approximate value of apparent resistivity. The calculation process is shown in Figure 1.
Before solving the apparent resistivity, it was necessary to first set various measurement
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line parameters and electrical parameters. The transmitting antenna was 200 m long, and
the measurement line was 1000 m long.
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Figure 1. Flow chart for calculating apparent resistivity in the ground space frequency domain.
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The calculation steps for apparent resistivity are as follows:

Select the initial resistivity value py, iteration step size, A = 2 and allowable error
percentage to terminate the iteration ¢ = 0.0001;

When resistivity is pg, calculate the corresponding vertical magnetic flux density B,;
Compare the theoretical results and calculated results of vertical magnetic flux density
and evaluate whether the current error percentage ¢ is less than the predefined error ¢;
Terminate the iteration and consider the current resistivity value as the apparent
uniform resistivity at the measurement position when the allowable error ¢ is satisfied;
otherwise, update the resistivity value by pg = pp + A and repeat steps (2) and (3);
Furthermore, if the vertical magnetic flux density Bz for all resistivity within the
predefined range does not meet the allowable error, the resistivity value associated
with the smallest error can be chosen as the uniform apparent resistivity.

In addition, when the transmitting and receiving distance exceeds six times that of skin

depth, the apparent depth of anomalous bodies detected by the semi-airborne frequency
domain electromagnetic method can be directly calculated using the skin depth formula.

3. Classification and Recognition Method Based on Bayesian Convolutional
Neural Network

By using the apparent resistivity imaging method to obtain a 2D profile image and

manually determining whether there was low resistivity in the abnormal body of the image,
the identification of underground artificial cavities could be achieved. However, in the
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actual detection process, a large number of survey lines needed to be detected to obtain
multiple 2D apparent resistivity images. In order to effectively and intelligently identify
whether underground artificial caves existed in the image, the conventional method used
CNN:s for recognition processing.

CNNs have demonstrated good performance in processing image data due to their
ability to preserve spatial information for each pixel and extract crucial features. The typical
structure of a CNN is depicted in Figure 2, and its training process usually consists of the
following steps:

(1) Data Collection: generate or collect the training samples. The training set should
comprise input samples along with their corresponding reference outputs.

(2) Network Configuration: determine the number of layers and nodes in each layer of
the neural network and select suitable activation and loss functions. These choices
depend on the complexity and accuracy requirements of these problems.

(3) Initialization: Initialize the weights and biases for each node within the network.

(4) Forward propagation: Feed the input samples from the training set through the neural
network. Measure the disparity between the model’s output and the reference output
using the selected loss function.

(5) Backpropagation: Minimize the loss function by adjusting the network’s parameters
through the process of backpropagation. This involves calculating gradients and
accordingly updating weights and biases.

Forward propagation

Input 'Output
layer . layer

Back propagation
Figure 2. Conventional neural network structure.

CNN:s iteratively repeat the above steps until their loss value reaches a desired accu-
racy threshold.

In the CNN structure, the kernel function is an important parameter of the convolu-
tional layer, which is essentially a matrix composed of the weight parameters w of neurons.
The specific process for this is shown in Figure 3. The blue 3 x 4 matrix represents the
input image data, the yellow 2 x 2 matrix represents the convolution kernel, and the green
matrix represents the feature matrix obtained from the convolution. Due to the fact that, in
convolutional operations, data at the edge of the input matrix are only multiplied by the
convolutional kernel once, its proportion in the feature matrix is relatively small. However,
in some cases, this processing method can lead to the critical information being neglected
at the edges of the data.
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Figure 3. Schematic diagram of convolutional neural network.

BCNN is a powerful convolutional neural network architecture. Compared with
the traditional convolutional neural network (CNN), BCNN can adequately capture the
spatial relationship and global information of images, thus improving the accuracy of
image classification, target recognition, and other tasks. Figure 4 illustrates the network
structure of the Bayesian convolutional neural network, which is similar to the traditional
CNN. However, a key difference lies in how these weights between network nodes are
represented. In the Bayesian CNN, these weights are characterized by uncertain probability
distributions, whereas in the traditional CNN, they are deterministic values. Within
Bayesian convolutional layers, the weight of the convolutional kernel is no longer a single
value but a probability distribution, as depicted in Figure 5. It is worth noting that Bayesian
convolutional layers retain all the characteristics of traditional convolutional layers. In this
work, Gaussian distribution is utilized as the distribution type for each weight. During
the training process, the mean and standard deviation of the Gaussian distribution are
continuously updated, and the input data of the convolutional layer can be obtained by
sampling according to the current probability distribution.

Forward propagation

Input Output

| |
ayer Hidden Hidden ayer

layer

Back propagation

Figure 4. Bayesian neural network structure.
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Figure 5. Schematic diagram of Bayesian convolutional neural network.

In the backpropagation process, the posterior distribution of each weight in the net-
work can be calculated according to the Bayesian formula, which is expressed as:

wl D) = PPlw)p(w)

Among these p(D| w)p(w) is the prior distribution of the weight parameter and the
likelihood of probability distribution. However, the calculation of the above posterior
probability distribution is often very complex; therefore, Bayesian neural networks usually
use variational inference to derive the Loss function. Variational inference assumes that
weights follow a posterior w ~ g(w| D) distribution w ~ gg(w| D), minimizing the
difference between them and their true posterior distribution in the backpropagation
process of the neural network, obtaining a probability distribution that can approximate
the weight parameters of the network and replace the true distribution. As shown in
Figure 6, the loss function of the Bayesian neural network is a problem when minimizing
the difference between gy and g.

2
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>

Figure 6. Schematic diagram of variational inference.

To indicate the degree of consistency between g and gy, the Kullback-Leibler diver-
gence is introduced, which is expressed as:

KLlgl)| plw)] = [ q(w)tog £ de ®
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KL divergence can measure the difference between two distributions, and the optimal
parameters of the neural network 6 are:

0 = argminKL{go(w| D) p(e| D)} @)

KL[gg(w| D)| p(w| D)] By unfolding and simplifying, it can be concluded that:

p(w,D)
qo(w| D)

In Equation (5), log p(D) is referred to as the likelihood of data, which can be regarded
as a constant, while the § optimization process of parameters can be further transformed

into the [ go(w| D) log LZ((LZJ‘%))

KL[qe(| D)|| p(w| D)] = log p(D) = [ go(cw| D) log 0 ©

d0 process while minimizing the lower bound of evidence:
argminKL{qo ! D) | ()] = Eytur ) [log, (D] w)] +log p(D) (6)

Compared with Equation (2), although the above equation is also difficult to directly
calculate, the loss function of the Bayesian neural network can be expressed by sampling
the parameters of the above equation:

n

F(D,0) = l; —logp(D| w(i)) +logge (w(i)| D) — logp(a)(i)) (7)

4. Numerical Experiments

We first considered a three-dimensional (3D) geoelectrical model to validate the effec-
tiveness of the apparent resistivity imaging method. Then, a large number of simulated
apparent resistivity images were drawn as sample datasets to demonstrate the performance
of the developed BCNN for the recognition of underground artificial cavities.

The model shown in Figure 7 contains an underground artificial cavity embedded in a
homogeneous background. To simulate the SAEM responses of this model, the AC/DC
module in the COMSOL software was applied, using a long wire source as the transmitter.
Therefore, a magnetic field interface that was simpler than the physical field interface of the
electromagnetic field was selected. In addition, frequency domain electromagnetics were
selected, and the steady-state solution domain configuration was solved.

2

x10° m

=N

0.5

- T | T 0
/ | 0.5

x10° m

Figure 7. COMSOL simulation model.
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An antenna deployed at the surface of the earth was used as the transmitter with a
length of 200 m and a current of 50 A. The artificial cavity model was designed using a
combination of rectangular and arch structures, and its size was flexible and adjustable
considering the actual situations. To simulate the receiving system of SAEM, a measuring
line was deployed at a height of 30 m above the ground. The total length of the measuring
line was 2000 m, with site spacing at 10 m. In addition, various media properties were
set, with the resistivity of air set to 1 x 10° ()-m, earth’s resistivity set to 500 Q-m, and the
relative dielectric constant and relative permeability set to one.

To compute the SAEM responses, the 3D model was discretized within the Com-
ponent Geometry of the COMSOL software. The interior of this model is divided into
two parts: the upper part is the atmosphere with a size of 6000 m x 4000 m x 1000 m
(length x width x height), and the lower part is a large stratum with a size of
6000 m x 4000 m x 1000 m. In addition, for the meshes in the vicinity of the antenna,
the cavity and measurement sites are usually refined in order to obtain accurate simulation
results. The final discretized model using unstructured tetrahedral meshes is shown in
Figure 8. When solving electromagnetic fields, it is usually necessary to establish a do-
main with open boundaries such that there is no reflection in electromagnetic fields on the
boundaries of the computational domain. In the COMSOL software, the Perfect Matching
Layer (PML) can be employed as an additional domain outside the model. Essentially, it is
just an anisotropic, complex dielectric constant with a magnetic permeability domain that
can absorb all electromagnetic waves emitted by the model without any reflection.

Figure 8. Mesh generation and PML schematic diagram.

The size of the cavity was 30 m x 30 m, which was covered by a layer of concrete wall at
a thickness of 3 m and a resistivity of 1 ()-m. Apparent resistivity imaging calculations were
conducted for three different sets of geoelectric models representing underground artificial
cavities. The location parameters of the underground artificial cavity and the frequency of
the transmitter antenna for each of the three sets of models are shown in Table 1.

Table 1. Parameters of apparent resistivity imaging experiment.

Hollow Burial Void Line Emission
Depth/m Coordinates/m Frequency/Hz
Experiment 1 200 —200 3200
Experiment 2 200 0 3200
Experiment 3 50 0 25,000

The electromagnetic response data obtained from COMSOL simulation software were
used to calculate the apparent resistivity and apparent resistivity fitting curve with the
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apparent conductivity imaging results shown in Figures 9-11. Figure 9 demonstrates
how the center target of the artificial cavity was located at an offset of —250 m from the
center, with a depth of approximately 180 m. The experimental results in the red box were
relatively in agreement with the designated position of the artificial cavity. Figure 10 reveals
that the center target of the artificial cavity was positioned at an offset of —20 m from the
center, with a depth of around 170 m. The experimental results in the red box exhibited a
close correspondence to the designated center position. Lastly, Figure 11 illustrates how
the center target of the artificial cavity was situated at an offset of —50 m from the center,
with a burial depth of roughly 50 m. The experimental results in the red box also closely
match the designated center position.
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Figure 9. (a) Apparent resistivity fitting curve in Experiment 1. (b) Contour map of apparent
conductivity in Experiment 1.
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Figure 10. (a) Apparent resistivity fitting curve in Experiment 2. (b) Contour map of apparent
conductivity in Experiment 2.
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Figure 11. (a) Apparent resistivity fitting curve in Experiment 3. (b) Contour map of apparent

conductivity in Experiment 3.

In order to verify the effectiveness of the Bayesian convolutional neural network at
recognizing underground artificial cavities, this section employed neural network methods

Survey line coordinate /m
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to classify the presence or absence of underground artificial cavities within the sample set,
with the aim of achieving the accurate recognition of these artificial cavities.

Using the aforementioned approach, the electromagnetic response data acquired
from the forward simulation of 3D geoelectric models were utilized to invert and solve
the apparent resistivity images. These simulated apparent resistivity images were then
generated to expand the sample set. The sample set consisted of both the simulated
apparent resistivity images and added noisy apparent resistivity images. Figure 12 shows
partial samples in the sample set. The labels within the sample set were divided into two
categories: underground artificial cavities and those without underground artificial cavities.
This included 50 sets of apparent resistivity imaging maps and 150 sets of added noisy
apparent resistivity imaging maps. In the labeled samples containing underground artificial
cavities, the positions and sizes of these cavities were randomized. The samples labeled as
not containing underground artificial cavities consisted of images depicting non-anomalous
underground bodies as well as randomly positioned and sized low-resistivity anomalous
bodies in order to prevent the interference of low-resistivity anomalous bodies that could
exist underground, ensuring that the focus remained on the recognition of underground
artificial cavities.
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Figure 12. Partial samples in the sample set. (a) No noise. (b) 10% noise. (c) 30% noise. (d) 50% noise.
(e) 70% noise.

From the aforementioned sample set, 150 groups were selected for the training set,
while the remaining 50 groups were assigned to the verification set. The AlexNet network
structure was employed to compare the training results of the BCNN and the CNN. The
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learning rate was set to 0.001, the number of training iterations epoch was set to 100, and
the batch size was set to 10. Two different loss functions, namely Cross-Entropy Loss and
ELBO Loss, were utilized. The accuracy curve during the training process is depicted in
Figure 13, and the recognition accuracy is shown in Table 2. The recognition accuracy
of underground artificial cavities was reported as 75.05% and 82.77%, respectively. The
results demonstrate that both the CNN and the BCNN used in this study yielded favorable
outcomes when identifying the presence of underground artificial cavities in apparent
resistivity images. However, the BCNN achieved a higher recognition accuracy, thereby
enabling a more precise and effective identification of underground artificial cavities.

100%
80%

60% |

Accuracy

40% |

20% ——CNN
—BCNN
0 10 20 30 40 50 60 70 80 90 100
Epoches

Figure 13. Comparison and recognition results from the underground artificial cavity detection dataset.

Table 2. Classification accuracy of the neural network.

Dataset Method Accuracy
Underground artificial CNN AlexNet 75.05%
Cavity BCNN AlexNet 82.77%

5. Discussions and Conclusions

This study aimed to develop efficient approaches to identify artificial cavities in the
ground space using frequency domain semi-airborne electromagnetic responses. We first
derived the responses of SAEM in a 1D-layered earth model, which is fundamental for
the apparent resistivity imaging method. The effectiveness of this apparent resistivity
imaging method was validated on synthetic SAEM data for a 3D geoelectric exploration
model simulated by COMSOL software. However, the accuracy of the apparent resistivity
imaging method in target detection was dependent upon the complexity of the subsurface
and the interpreter’s experiences, which could not automatically identify artificial cavities.
In addition, this method lacked efficiency when detecting potential underground artificial
cavities over a large area. In order to develop an efficient and intelligent detection and
recognition method for underground artificial cavities, we propose the use of a Bayesian
convolutional neural network (BCNN). The BCNN is employed to recognize underground
artificial cavities by training it on the apparent resistivity image dataset of the preset
artificial cavity geoelectric model. The classification results demonstrate the excellent
performance of the proposed method in recognizing underground artificial cavities.

In this work, we conducted a detailed study on the identification method of un-
derground artificial cavities based on SAEM responses. However, there are still some
limitations to this study, and improvements need to be made in the future to address the
following limitations:

(1) The model is relatively simple; however, in practical situations, the geological struc-
ture is often complex and cannot be approximately simplified as a layered structure.
Therefore, it is necessary to establish accurate and detailed geoelectrical models based
on actual geological conditions.
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(2) Although 3D forward modeling results were simulated, the calculation results did
not take into account realistic signal noises and other factors that could exist in
actual testing.

(3) The Bayesian neural network used in this work could recognize whether there were
underground artificial cavities in the model after training, but there is still room for
improvement in its recognition accuracy. Therefore, further research is needed to
improve the recognition accuracy of underground artificial cavities.
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